Lindsay Knippenberg: Going Fishing! September 4, 2011

NOAA Teacher at Sea
Lindsay Knippenberg
Aboard NOAA Ship Oscar Dyson
September 4 – 16, 2011


Mission: Bering-Aleutian Salmon International Survey (BASIS)
Geographical Area: Bering Sea
Date: September 4, 2011

Weather Data from the Bridge
Latitude: 54.13
Longitude: -166.41
Wind Speed: 24.10kts
Wave Height: 4-6 ft
Surface Water Temperature: 9.0°C
Air Temperature: 8.8°C

Science and Technology Log

The station grid for all of the proposed sampling sites.

The station grid for all of the proposed sampling sites.

Yeah! Today we left Dutch Harbor and began the second leg of the Bering-Aleutian Salmon International Survey (BASIS). The purpose of the BASIS Study is to assess the status of marine species in the Eastern Bering Sea and support the decision making process for commercially important fisheries. The scientists on my team are accomplishing this goal by combining their knowledge of fisheries, oceanography, and acoustics. While I am onboard I will be helping out the scientists in all these different areas to get a broad view of all the science going on during our cruise.

There are specific sampling locations called stations that we will be going to throughout the Eastern Bering Sea. The map on the left shows the locations of these stations. The green dots are the stations that we are sampling during leg 1 and leg 2 of the BASIS survey. Leg 1 is already complete and they sampled at all the stations east of Unalaska. We will be picking up where they left off and sampling at all of the remaining green stations. The black dots are stations that will be sampled by another vessel named the Bristol Explorer.

The trawl net being let out behind the ship.

The trawl net being let out behind the ship.

For the first station I got to help out the fisheries team in the fish lab. We did a surface trawl by letting out a large net out the back of the boat with floats on it to keep it at the surface. By adjusting the floats and weights on the trawl, the fishermen can choose what depth they fish at. While the net is out, the OOD (Officer of the Deck) slowly motors the ship for about 30 minutes and the net catches the fish that are swimming in that area and depth. For this station we want to see the fish that are swimming within the top 30 meters of our sampling area. At later stations we might also do a mid level or deep trawl to see the fish that live at those depths.

We found some Salmon!

We found some Salmon!

After the 30 minutes were up, the fishermen slowly brought in the net and we immediately saw salmon caught in the net. Yeah! We caught something! As more and more net was brought in the fish began to pile up on our sorting table. There were a lot more fish than I had expected and the majority of them were salmon. It was now our job to sort the fish by species and I will admit that I am pretty slow at identifying the species. They may all look like fish, but they each have identifiable features like the color of their gums (black for Chinook Salmon), type of gill rakers, or color patterns on their body or tails. At this station we were lucky enough to pull in four out of the five salmon species in Alaska. We caught Chinook, Sockeye, Chum, and Pink Salmon. We also caught several different species of jellyfish and some squid.

That is a lot of salmon to sort.

That is a lot of salmon to sort.

After we caught the fish, we had to process them. In order to learn about the fish and the health of their population, we took samples and collected data from the fish we caught. Here is a description of the data we collected and what the scientists can learn from that data.

Weight and Length – Weight and length are an index of fitness for the fish. The scientists multiply how fat the fish is by how long it is to determine its lipid (fat) content. In cold waters the fish tend to have a higher lipid content than in warmer waters where the fish have to use more energy to metabolize. Additionally, if a fish has a higher lipid content, it might also mean that it is healthy and finding prey easily.

Gill rakers (white hairs on top of the red gills) from two different salmon. Can you see the difference?

Gill rakers (white hairs on top of the red gills) from two different salmon. Can you see the difference?

Axillary Process – We cut the axillary process off the fish we caught for genetic studies. The scientists know the baseline genetic sequence for the salmon that come from different regions of the world. By looking at the genetics of the fish we caught, we can tell where the fish came from and reconstruct their migration and distribution. For instance, the scientists have used the genetics from the axillary processes to determine that a large percentage of chum salmon caught in the Eastern Bering Sea are from Japan.

Sexual Maturity – By looking at the testes and ovaries of the fish, the scientists can determine if the fish were immature or mature and when they were going to spawn. Using this information along with the results from the axillary process genetics, the scientists can determine migration patterns and growth rates.

Determining the sex, stomach contents, and sexual maturity of the fish we caught.

Determining the sex, stomach contents, and sexual maturity of the fish we caught.

Male vs. Female – The scientists also use the testes and ovaries to determine if the fish was a female or male. This is helpful in looking at the ratio of males to females in their population.

Stomach Contents – By removing the stomach of the fish and analyzing its stomach contents, the scientists can determine what the fish was eating. This is can be very helpful when comparing warm years to cold years and the effect that climate change can have on prey sources and the nutrition of the fish.

All of this information can then be extremely useful to fisheries managers who are assessing the stock of the fish that are important to commercial fishermen. One of the species that we hope to collect as we sample at other stations is Pollock. Pollock is the largest US fishery by volume. Each year around 2.9 Billion pounds of Pollock are harvested. To learn more about the Pollock fishery check out this link to NOAA FishWatch. The scientists  on my team are assessing the health of the Pollock fishery by looking at the total lipid content of Age 0 Pollock in late summer. Their lipid content is important at this time of year because winter in coming and they will need lipids to survive the cold winter. By looking at the lipid content of the Age 0 Pollock that we collect, the scientists can predict how many Age 0 Pollock will survive to become Age 1 Pollock and eventually mature to become Age 3 or 4 Pollock that can be harvested.

Personal Log

The fluke of a whale as it dives.

The fluke of a whale as it dives.

Whales! I was hanging out on the bridge getting my last look at land for a couple of weeks when I thought I saw a whale out of the corner of my eye. I couple of minutes later a huge Humpback Whale breached right next to the ship. I have seen whales before, but it was just their dorsal fin of flukes. This was crazy. An entire whale was out of the water and it kept on breaching over and over again like it was playing. I wanted to take a picture, but I was too mesmerized to even take my eyes away from it for a moment. Then as I started to look farther out to sea, I saw even more whales. There were about a dozen whales flapping their tails and rolling on to their sides. It looked like they were having a good time playing on a beautiful day.

The weather forecast for September 4 - 6. It doesn't look good...

The weather forecast for September 4 - 6. It doesn't look good...

That beautiful day, however, did not last very long. We managed to sample at two different stations when the wind started to pick up and the waves began to get a little larger. The forecast was calling for a Gale Warning with gusts of up to 50kts and 20-24 ft seas. Those conditions are far too dangerous to fish in, so we turned around and headed back to Dutch Harbor. Hopefully the storm will pass quickly and we will only have to hide out a couple of days until it is safe to fish again.

Anne Mortimer: Cam-trawl, July 14, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 14, 2011

Weather Data from the Bridge
Conditions: sunny and windy
Air Temperature: 10.1 ⁰C
Sea Temperature: 7.6 ⁰C
Wind direction: 237 ⁰C
Wind speed: 20 knots
Wave height: 2-3 ft.
Swell height: 5-6 ft.

Science and Technology Log

My last blog I said that I would talk more about the cam-trawl. This technology was created by scientists working on the pollock survey. The purpose behind the cam-trawl is to be able to put a net in the water with an open cod-end (basically a net with an opening at the end), and have images of the number, species, and size of fish that went through the net. Of course, sometimes some fish would have to be brought on deck so the otoliths and stomachs could be taken back to the lab in Seattle. Overall, this could eliminate taking so many research-based fish and/or invertebrate samples. When cam-trawl is used on acoustic-trawl surveys, the echograms can be matched up with the stereo-camera  images which can provide more data about the distribution of fish or other marine organisms in the water.

How the cam-trawl works: it is a stereo-camera system that takes snapshots of whatever comes through the net. These images allow the research team (including me on this leg) to determine the approximate number, species (some, not all), and size of fish that go through the net.

cam-trawl image

This still image from the cam-trawl shows a salmon and pollock against a black “curtain.”

The pictures are taken at the same time, but because of the slight difference in camera position, they look similar but not identical. You can mimic this with your eyes by looking at an object with only your right eye, then switching to looking with only your left eye. Did you see the same object but from a slightly different perspective? This is called disparity, or parallax (astronomers often use parallax to estimate the distance of far-away stars or other celestial objects). The program that was written for the cam-trawl (also by this research team) can then calculate the approximate size of the fish based on their relative positions.

In this photo, I’m using the cam-trawl measuring program to measure a sample of fish.

This screen shot shows the stereo-images and the yellow measurements that I’ve added. Using the lengths that I’ve chosen for the program, it calculates the approximate length (in meters) of the fish.

Personal Log

After several windy days with lots of swell, I’m happy to be in calmer waters. I’ve been working on the computer for some of the time which doesn’t go well with swell. I have also found it to be very tiring and tense on my body to be in constant motion and prepared to grab whatever I can to stay upright. I can’t tell you how hard it is to use a treadmill or take a shower in rough seas! BUT, for the time being, it’s calm and I just watched a great sunset over Kodiak island with a few humpback whale blows in the distance. If you are still wondering about the salmon in the picture above, it’s a chum!

Species Observed
humpback whales
northern fulmars
tufted puffins
black-footed albatross
storm petrels
porpoises (yesterday)

Anne Mortimer: Life at Sea, July 5, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: Tuesday, July 5, 2011

Weather data from the bridge
Air Temperature: 8.8 C
Sea Temperature: 9.3 C
Wind Speed: 16.42 knots
Wind Direction: 210.11 degrees
Barometric Pressure: 1018.31 mbar

Personal Log
We’ve been at sea for almost 24 hours now, and so far, it’s been smooth sailing. We’re headed southwest to the area where the last leg of the cruise left off, which means lots of sailing and no trawling yet. Yesterday, before the ship left port, we participated in a  man-over-board drill and fire drill. These drills are required,  and we are also required to don the life suit for practice.

Anne Moritmer in life suit

Here I am, donning the life-suit.

My shift will be from 4pm to 4am, so I’m trying to adjust myself to that schedule, which last night led me to the bridge. The bridge is where the Commanding Officer and others navigate the ship and control several of the fishing operations. The bridge has windows all around, so even at 11pm, when the sun is close to setting it is still filled with daylight. Yesterday evening, I spent most of my time on the bridge watching Humpback whales with binoculars. Then, just as the sun was presenting a spectacular sunset, we saw multiple whale flukes and spouts on the horizon in the glow of the sun’s rays.

Humpbacks, July 4

We had a spectacular July 4th show at sunset from Humpback whales. Photo by Paul Walline, NOAA scientist.

Species list at Sea (biggest to smallest!):

Humpback whale
Sea lion
Black-footed Albatross
Northern Fullmar
Tufted Puffin

Jason Moeller: June 28, 2011

JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Whale Pass
Date: June 28-29, 2011

Ship Data
Latitude: 58.01 N
Longitude: -152.50 W
Wind: 23.95 knots
Surface Water Temperature: 9.4 degrees C
Air Temperature: 10.8 degrees C
Relative Humidity: 71%
Depth: 177.72 m

Personal Log

Welcome back, explorers!

Due to the injury to the deck hand, we are done fishing. Our trip has been cut a day short and we are now headed back to Kodiak. We should arrive tomorrow morning, and I will fly back home on the 30th.

The shortest route to Kodiak was through Whale Pass, a break in Kodiak Island. The pass made for some spectacular scenery.

The entrance to Whale Pass

The entrance to Whale Pass, from the back of the Oscar Dyson

Steep hills rolling down into the water were a common sight in the pass.

Steep hills rolling down into the water were a common sight in the pass.

nav point

An island with a navigational marker in whale pass.

mountain 1

There were some spectacular views of the mountains in the pass as well.

Mountains 2

Another view of the mountains.

Mountain 3

Another view of the mountains.


And another...


Last one, I promise! We all liked the shape of this one.


A waterfall drops away into the ocean.

The coolest part of the pass, though, is definitely the wildlife. We saw sea otters everywhere! Unfortunately, they were so fast and at a great enough distance that the following shot is the only decent one I was able to take.


A sea otter at Whale Pass.

We also saw an animal that I have been hoping to see for a long time.

killer whales

Sorry about the grainy image, but it is the only one of the Orcas we were able to get.

We also saw a puffin, but it moved so quickly that there was no hope at a photo for it. Bummer. Several humpback whales were also spotted, along with numerous gulls and other seabirds.

Science and Technology Log

Today, lets talk about krill!

What are krill, you ask? They’re animals in the Phylum Arthropoda, which means they’re related to insects, spiders, crabs, lobsters, etc. They have jointed legs and an exoskeleton, are usually a couple of centimeters in length, and are reddish/orange-ish in color. They can often be found in dense schools near the surface of the water, and play an important role in the ecosystem as a source of food for lots of larger animals (like fish, whales, & penguins).

I’ve mentioned the two types of trawl gear that we use to catch fish, but if we want to catch smaller things like plankton, the mesh on those nets is way too small. Therefore, we use a third type of trawl called the Methot which has very fine mesh to corral the plankton down into a collection container at the end of the net. In addition to having a hard container at the end — as opposed to just a bag/codend that you see in the fish trawls — the Methot trawl also has a large metal frame at the beginning of the net. Check out the photos below.

The Methot trawl being taken from the water. Note the square frame.


The container that collects all of the plankton in the net.

After the net is brought back on deck, one of the fishermen or deck hands brings the container of krill into the fish lab. The first thing we do is dump the container into a sieve or a bucket and start picking out everything that isn’t krill. The two most common things that are collected (besides krill) are gelatinous animals (like jellyfish & salps) and larval fish. The fish get weighed (as one big unit, not individually) and then frozen for someone to look at later on.


The larval fish that we separated from one plankton tow.

After sorting the catch, we’re left with a big pile of krill, which gets weighed. We then take a small subsample from the big pile of krill (it’s a totally random amount depending on how much we scoop out!) and then weigh the subsample. Then the fun begins, as I’m the one that does this job; I get to count every single individual krill in the subsample. Tedious work. All of the data is then entered into the computer system, and the krill and anything else that we’ve caught (besides the larval fish) are thrown back into the water.

Tammy sorts through the pile of krill.

Tammy sorts through the pile of krill.

counting krill

How many individual krill are in this picture?

Species Seen

Northern Fulmar
Humpback Whales
Killer Whale!!!
Sea Otters!!!

Reader Question(s) of the Day!

Q. What has been your favorite thing about this trip so far?

A. I’ve been asked this question several times over the course of the last few weeks, but I’ve waited until the end to answer it.

Truth be told, it’s almost impossible to pick a favorite thing that I’ve seen or done. There are so many candidates! Exploring the Buskin River and seeing bald eagles before we set sail was a blast! Eating fresh caught salmon for the first time was a great experience, as it just melted in my mouth. Leaving shore for the first time was a lot of fun, as there is no feeling like the salt air blowing past your face at the front of a boat. Trying to take pictures of flying birds with a digital camera was a challenge, and we all had a good time laughing at the blurred images. Getting better at photography is something I’ve always wanted to do, and I feel like I have improved that. The first fish lab with the sleeper shark was great! Working in the fish lab, as messy as it was, was also a lot of fun! The XBT prank that was pulled on me was one of the best executed pranks I’ve ever seen, and it was hilarious! Hanging out and reading Martin’s Game of Throne series during breaks with my fellow scientists was a lot of fun as well, as it was just like a book club. Today’s ride through Whale Pass with the otters, whales, and mountains was exactly what I dreamed Alaska would be like.

The scientists sense of humor also made it an enjoyable trip. For example, this is what happens when you play around with the net camera for too long.

Cam Trawl Dinner

See what I mean?

That being said, if I was absolutely forced to pick a favorite memory, it would probably the impromptu fishing trip at Sand Point. You know you love your job when you decide to keep going at it on your day off.

There will be one last log posted, so if you have questions please send them to me at!

Richard Chewning, June 10, 2010

NOAA Teacher at Sea
Richard Chewning
Onboard NOAA Ship Oscar Dyson
June 4 – 24, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska (Kodiak) to eastern Bering Sea (Dutch Harbor)
Date: June 10, 2010

Weather Data from the Bridge

Position: Bering Sea
Time: 2147 hours
Latitude: N 56 48.280
Longitude: W 161 48.549
Cloud Cover: Overcast with fog
Wind: 9.2 knots from NE
Temperature: 4.6 C
Barometric Pressure: 1010.8 mbar

Science and Technology Log

In addition to hosting fish biologists studying walleye pollock, the NOAA ship Oscar Dyson also has groups of researchers studying birds and marine mammals aboard. Both the birders and marine mammal observers are conducting supplementary projects taking advantage of the Dyson’s cruise track. As the Dyson sails back and forth across the Bearing Sea along equally spaced parallel transects, these researchers are able to survey a wide area of habitat, investigating not only what animals are present and absent in these waters, but also how many are present (called abundance). These surveys are considered passive since these researchers are not actively directing the ship’s movements but are surveying along the cruise track laid out by the fish biologists.

Our migratory bird observers are Liz Labunsky and Paula Olson from the United States Fish and Wildlife Service (USFWS). They are members of the North Pacific Pelagic Seabird Observer Program and are providing data for the Bering Sea Integrated Ecosystem Research Project. Pelagic seabirds are birds found away from the shore on the open ocean. Liz is from Anchorage, Alaska and has been involved with this project since 2006. Calling Gloucester, Massachusetts home, Paula is new to these waters but has spent years studying the birds of Prince William Sound as part of the ecosystem monitoring efforts resulting from Exxon Valdez oil spill.

Liz and Paula: an office with a view

Liz and Paula work for two-hour alternating shifts from the bridge. They continuously survey an area of water 300 meters by 300 meters in size. They are looking for birds both on the water’s surface and flying through the air. Liz and Paula must have quick eyes and be very familiar with a wide variety of birds. Identifying birds on the move can be very challenging. Often you only have only a few seconds to train your binoculars on your target before your query becomes a spot on the horizon. In addition, the same species of bird can vary greatly in appearance. Liz and Patti may only see a handful of birds over an entire morning but can also witness hundreds at any given moment!

Black-footed albatross

Northern fulmar

One constant challenge for observers aboard moving vessels is counting the same bird multiple times. For example, you will often spot northern fulmars flying laps around the Dyson when underway. To avoid introducing this bias (or error) in their survey, flying birds are only counted at certain time intervals called scan intervals. The frequency of these scan intervals are determined by the speed at which the Dyson is traveling. For example, when the Dyson is traveling 12 knots, birds flying are counted every 49 seconds. If the Dyson is traveling slower, the time is reduced.



While very familiar with the coastal birds of Georgia, I have been introduced to several new species of birds found in the Bering Sea. I have become a big fan of the tufted puffin. Easily identified by their reddish orange bills, tufted puffins resemble little black footballs when flying. These birds dive in the frigid waters to catch fish, their favorite prey. The black-footed albatross is another bird new to me identified by the white markings around the base of the beak and below the eye along with its large black feet. One of my favorite observations with Liz and Patti was identifying a group of northern fulmars so tightly packed on a piece of driftwood that it showed up on the ship’s radar!

Personal Log

Just before my shift ended around 1545 hours, a call came over the radio from Yin, one of the Dyson’s three marine mammal observers. She reported that a large number of humpback whale blows had been spotted on the horizon. A blow refers to the spray of water observed when a whale surfaces for a breath of air. Like all mammals, whales have lungs and must surface to breath. The humpback whale is a baleen whale that feeds on krill (small marine invertebrates that are similar to shrimp) and small fish in the summer. Krill is a major link in the marine food web, providing food for birds, marine mammals, and fish such as pollock. Baleen whales have plates made of baleen instead of teeth that are used to separate food from the water. Baleen resembles a comb with thick stringy teeth. Think of the movie Finding Neo when Marlin and Dory are caught in the whale’s mouth.

There be whales here!

Not sure how many whales constitute a large group, I eagerly headed to the bridge to see if I could catch a glimpse of this well-known marine mammal. I quickly climbed four companionways (a stair or ladder on a ship) up to the flying bridge from the main deck where the acoustics lab is located. Upon reaching the highest point on the vessel, I was told that I was in for a treat as we were approaching a massive aggregation (a group consisting of many distinct individuals or groups) of humpback whales. Whales often travel in small social groups called pods, but this gathering was much larger than usual. This gathering was more than a single pod of whales as there were so many blows you didn’t know which way to look!

The Dyson’s CO (Commanding Officer), Commander Michael Hoshlyk, carefully maneuvered through the whales affording the growing gathering of onlookers a great view. Observations from the Dyson’s fish biologists and birders supported the hypothesis from marine mammal observers that these whales were almost certainly gathered together to feed. Evidence to support this conclusion included acoustic data and the presence of large numbers of seabirds. The Dyson’s transducers showed large acoustic returns that were most likely from plankton (organisms that drift in the water) such as krill. There were also countless numbers of shearwaters (medium-sized long winged sea birds) gathered where the whales were swimming. Estimating the number of whales and shearwaters proved difficult because of their large numbers. The first group of whales numbered at least 50, and we later encountered a second group of humpbacks that numbered around 30. The shearwaters numbered in the thousands! I was able to capture some great pictures of the flukes (the horizontal tail of the whale used for propulsion) and blows of the humpbacks by holding my camera up to the powerful BIG EYES binoculars. Looking through the BIG EYES gave me the sensation being so close that I almost expected to feel the spray of water every time the whales surfaced for a breath. I counted myself fortunate to see this inspiring and unforgettable sight. Along with the beautiful weather, the opportunity to see these amazing creatures of the deep made for a very enjoyable cruise to the beginning of the pollock survey.

Viewing humpback whales equals a Kodak moment!

New Word of the Day – Bearing

You will often hear the word ‘bearing’ used on the bridge of the Dyson. A bearing is a term for direction that relates the position of one object to another. For example, the Dyson’s lookout might call out, “Fishing vessel, bearing three one five degrees (315°)”. This means the fishing vessel is in front of and to the left of the ship when facing toward the bow. A bearing does not relate distance, only direction. The area around the Dyson is divided into 360 equal parts called degrees. One degree is equal to 1/360th of a circle. When calling out a bearing, degrees allow for precise communication of an object’s relative position to that of the Dyson. The Dyson always has a member of the deck crew stationed on the bridge serving as lookout when underway. The lookout’s responsibility is to monitor the water around the Dyson for boat traffic, hazards in the water, or any other object important to the safe navigation of the ship.

Blue sky and blue water

Sunrise over the Aleutians

Jill Stephens, June 18, 2009

NOAA Teacher at Sea
Jill Stephens
Onboard NOAA Vessel Rainier 
June 15 – July 2, 2009 

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, AK
Date: June 18, 2009

Weather Data from the Bridge 
Position 55° 10.089’N 161° 52.801’W
Broken cloud cover
Wind variable and light
Pressure 995.9
Temperature: Sea; 6.1°C;  Dry Bulb; 8.3°C; Wet Bulb; 7.8°C

The Reson monitor displays the sonar return captured by the receiver on the bottom of the boat.

The Reson monitor displays the sonar return captured by the receiver on the bottom of the boat.

Science and Technology Log 

The launch leaves the ship every day to go to spots within the survey area to collect data regarding the bottom for depth, possible anchorage sites and potential navigational hazards.  Our boat was responsible for covering the long area referred to as the fairway, which is necessary in this uncharted area so that the launches can transit to and from the working areas safely, and move on to another area upon completion.

The chart of the area is “painted” with color depicting the depth of the area based upon the return form the sonar.  The goal is to “paint” your assigned area.  The numbers in the lower right of the screen indicate the depth in meters.

The chart of the area is “painted” with color depicting the depth of the area based upon the return form the sonar. The goal is to “paint” your assigned area. The numbers in the lower right of the screen indicate the depth in meters.

The inside of the cabin of the launch reminds me of Star Wars. There are pieces of electronic equipment everywhere!  One of the survey team members sits in the command center to monitor and control the Reson collection and additional software that displays a 3-D image of the sea floor surface. As the coxswain pilots the boat over the surface of the water, low frequency sonar is emitted from the transducers.  The sonar hits the sea floor and is then bounced back to a receiver on the underside of the boat.  The pings are recorded by the equipment and stored in the computer. 

The CTD is attached to a cable operated by a winch.  The CTD acclimates to the water surface temperature before being lowered steadily to the bottom.  The equipment is raised to the surface using the winch and then brought aboard.  The CTD is connected to the computer for data retrieval.

The CTD is attached to a cable operated by a winch. The CTD acclimates to the water surface temperature before being lowered steadily to the bottom. The equipment is raised to the surface using the winch and then brought aboard. The CTD is connected to the computer for data retrieval.

There are factors that affect the accuracy and quality of the information.  Boat speed, conductivity of the water, pitch and roll, yaw, and tides must be accounted for in order obtain usable data. There is equipment on board that collects the pitch, roll, yaw, and geographic position information to correct merge with the data to make corrections.  The CTD apparatus is placed into the water while the boat is stopped. The cast of the CTD will collect salinity, temperature, and pressure information at depths from the surface to the bottom. This information is also sent to the computer to provide a more accurate reading of the sonar data received by the Reson system.  Casts of the CTD must be made a minimum of every four hours to account for any changes between points in the survey area.

Personal Log 

Here I am manning the computers onboard the launch used to collect sonar depth and bottom information in the Pavlof Islands, Alaska.

Here I am manning the computers onboard the launch used to collect sonar depth and bottom information in the Pavlof Islands, Alaska.

Shawn, Todd, and Dennis were on my launch today. Once the equipment was powered up and the software programs selected, I was able to sit at command center and control collection and storage of data. The raw data is merged with the corrective information and submitted to Caris, another software program that also creates models of the findings. We were using a laptop to merge the data and begin field processing of the data. I was able to assist with this process too.

Two whales surfaced near the survey launch early in the morning near Bluff Point in the Pavlof Islands.

Two whales surfaced near the survey launch early in the morning near Bluff Point in the Pavlof Islands.

Animal Sightings 

This morning was a great day to see whales!! We spotted 5 blows!  We were then able to see the whales breach the surface at a distance.  Three of the whales moved closer to us. There were two adults and a juvenile. The juvenile was very playful and kept poking his head above the surface.  The two adults came closer to the launch and we were able to get some great shots of their bodies!! On the way back to the ship, we saw four more blows. Total sightings of whales: 9 Puffins as always are out there. They are very strange, somewhat silly birds…. 

New Vocabulary Gain: how hard an object is listening to the sound emitted by the sonar Sound Speed: speed at which sound is able to travel (This will vary in water depending upon the factors like salinity and temperature.)

Absorption: refers to how much of the sound is absorbed by the medium and varies with the medium’s composition and other factors including temperature. 

Terry Welch, June 28, 2008

NOAA Teacher at Sea
Terry Welch
Onboard NOAA Ship Rainier
June 23-July 3, 2008

Mission: Hydrographic Survey
Geographical Area: Pavlov Islands, Gulf of Alaska
Date: June 28, 2008

A self-contained breathing apparatus

A self-contained breathing apparatus

Weather Data from the Bridge 
Wind: West/Southwest/10
Precipitation: rainy, drizzle, clearing
Temperature:  High 48
Seas 1-3’

Science and Technology Log 

Yesterday, I was able to go out on a launch and continue with the hydrographic survey around Belkofski Point with Ensign (ENS) Tim Smith as the Hydrographer in charge (HIC), Jodie, our Coxswain, and Fernando, a Hydrographer in training.  They use a lot of acronyms here on the ship that I’m learning.  We worked a long day until about 5:30 p.m. since the weather was nice and seas calm. The weather can change quickly in this area, so the survey team tries to work as much as possible when it’s nice out.

Ship Log 

A 10-minute air supply system

A 10-minute air supply system

Captain Don Haines and the crew are very safely conscious and we have already practiced several drills and we have a morning safely meeting before going out on the launches. On the first day out, I was issued a hard hat, survival suit (sometimes called a Mustang suite), life vest or PFD (personal floatation device) and float jacket.  When boarding the launches in the morning, we don the float jacket and hard hat. Once the launches are in the water and we have moved safely away from the Rainier ship, we can switch to our life vests (PFD), which are more comfortable to wear on the small boats.

Drills:  We practiced three drills while in route (or transit) to the Pavlof Islands; man-overboard, abandon ship, and fire. There is a different ship bell ring pattern for each event. When theses drills or event occur, all hands (crew) meet (muster) at a pre-assigned location.  The person in charge at our muster locations marks off if we are there. This system of accountability ensures that all personal is accounted for and safe.

The fire drill was interesting to me since I’m a volunteer fire fighter/EMT on Whidbey Island where I live. They use much of the same equipment as we do to fight fire including bunker gear (fire pants/coat/helmet), SCBA’s (self-contained breathing apparatus) and masks.  One of the crew demonstrated how to put on the SCBA and mask. Another safety air supply device is called an OCENCO EEBD. These 10 minute air supply systems are located all over the ship and would give someone enough clean air to exit the ship if an accident occurred.

Engine Room Tour 

Josh gave me a tour of the engine room and explained the basics of how the ships power is produced and maintained.  From a control room, the ship’s engine controls can be monitored by computer.  Every hour, the crew inspects the engine and support components and ensures that everything is running smoothly.  The area was loud, so we wore protective earplugs and it was also very clean considering all the oil that is used in the system. 

Garret in control room, control room gauges, and the main engine

Garret in control room, control room gauges, and the main engine 

Desalination System: Another interesting aspect of the ship is how the process water.  All fresh or potable water is made from salt water in an apparatus called an “Evaporator”.  Salt water is pumped into the evaporator and heated up to about 175 degrees.  Because it’s under pressure, the water boils at this lower temperature instead of the usual 212 degrees. The heat comes from generators that help create the electricity on the ship.  So, the whole system is very efficient.  Large 8000 gallon storage tanks hold the fresh water afterwards.  The evaporator produces about 500-550 gallons of fresh water per hour, so there is always plenty to use and it tastes good. 



Personal Log 

It was very informative for me to get a tour of the engine room today and learn how the ship’s power is produced.  Josh has the job of an “Oilier” and is only 23 years old.  He had an interest in welding and mechanics and has a high school degree.  Garret is the “First Engineer” and also has a high school degree. Both men enjoy working for NOAA and explained that many men and women learn skills on the job.  They stressed that you don’t need a college degree to work for NOAA, but it helps to have an aptitude for the job they are interested in such as working the engines.

Aleutian Islands

Aleutian Islands

Yesterday, several of us were able to scout out an abandoned settlement near to where the Rainier is anchored after dinner.  It is called “Native Village of Belkosfski”. Originally built for the fur trade in the 1860’s, it later became home to native Americans There were several old wooden structures and one larger cement and brick building that was the school.  Judging from the date on one of the food items in a kitchen, this area was inhabited in the early 1980’s last.  It’s amazing to see that many structures were still standing given the harsh climate around here.  More information can be found here. The teacher who taught there in the 60’s/70’s talks about his life there.

Dust and ash spew from the volcano .

Dust and ash spew from the volcano

Habitat Log 

According to the Global Volcanism Program, Pavlof volcano erupted in August 2007. NOAA’s satellite imagery recorded ash plumes and lava spewing from Pavlof and lahars or mudflows occurred.  The attached pictures are from Global Volcanism’s website, listed on the next page.

Questions of the Day: How do volcanoes shape the southeast strip of Alaska?  How active are they and why are they active?

Animals Seen Today: 

  • One young Grizzly bear
  • Humpback whales
Another map indicating the location of Pavlof

Another map indicating the location of Pavlof