Mary Anne Pella-Donnelly, September 16, 2008

NOAA Teacher at Sea
Mary Anne Pella-Donnelly
Onboard NOAA Ship David Jordan Starr
September 8-22, 2008

Mission: Leatherback Use of Temperate Habitats (LUTH) Survey
Geographical Area: Pacific Ocean –San Francisco to San Diego
Date: September 16, 2008

Weather Data from the Bridge 
Latitude: 3720.718 N Longitude: 12230.301
Wind Direction: 69 (compass reading) NW
Wind Speed: 12.0 knots
Surface Temperature: 15.056

Scott measures a moon jelly as Amy records data.
Scott measures a moon jelly as Amy records data.

Science and Technology Log 

The LUTH Survey is a collaborative effort to gather as much oceanographic data from this small part of the Pacific Ocean as possible.  Although the primary objective is to characterize this area for its potential as leatherback habitat, it is also an opportunity for other scientists to gather data that reinforces their studies. Everyone on this cruise, aside from myself, is employed by the National Oceanographic and Atmospheric Administration’s National Marine Fisheries Service.  The regional area that this group works in is the Southwest Fisheries Science Center.  There are nine scientists who have very different specializations.  The following flow chart outlines how each department is related to the others.

Crewmembers practice suction cup tagging of leatherbacks from a Rigid Hull Inflatable Boat (RHIB).
Crewmembers practice suction cup tagging of leatherbacks from a Rigid Hull Inflatable Boat (RHIB).

Every division is focused on different aspects of oceanography.  Scott Benson is our chief scientist and leatherback specialist.  Karin Forney is the research biologist on the team whose expertise is marine mammals and regulations out to the limit of United States waters.  This limit is the EEZ – Exclusive Economic Zone – and extends for 200 miles west of the coast. Peter Dutton is currently the leader of the Marine Turtle Genetics Program, here to gain additional insight into foraging habitats of the leatherback.  Liz Zele, oceanographer, and Justin Garver as oceanography intern, manage the collection and processing of oceanographic data from the CTDs and XBTs. Steven Bograd is supporting the data collection as a research oceanographer. Both George (Randy) Cutter and Juan Zwolinski collect and interpret the acoustic data.  Randy’s area of expertise is with fisheries acoustics, seafloor mapping and autonomous underwater vehicles.  Juan’s specialty is in acoustic estimation of small pelagic fish.  Amy Hapeman is aboard as a permit analyst to gain a better understanding of how the science data are collected.  Together, this dynamic group will work to put together a better picture of what habitat might be available to leatherback turtles here off the continental shelf of California. They are all excited to be here, greatly enjoy their professions, and hope to assist in leatherback turtle protection.

Justin prepares to collect head and organs for research.
Justin prepares to collect head and organs for research.

The night of September 13, a few members of the research team, with assistance from crewmembers, took advantage of the relatively warm water the Jordan was crossing and tried to fish for squid. Not really expecting much more than a short fight with a 12 inch mollusk, we were in for a surprise. Using a fluorescent lure, and a 50lb test, the line was dropped about 200m into the dark sea. Within 5 minutes, the line began to tug, and tug, AND TUG!!  The oceanographer/fisher used a tremendous amount of strength to reel in the organism on the other end of the line. Victor, crewmember and experienced squid fisher, gaffed the squid as soon as it surfaced in the water. Shock was on every face as we acknowledged we were not expecting a 65cm long, 30-40lb animal!  As soon as the tentacles that it grabbed the lure with were detached from the lure, Justin was ready to go again!  And within 5 minutes another squid was caught, easily the same size as the first.  This brought another three scientists and one crewmember out with additional reels. 

Two Humboldt squid fresh from the Pacific!
Two Humboldt squid fresh from the Pacific!

Within an hour, eight squid were aboard, plans were made for a calamari feast and measuring began. Karin Forney, after observing the commotion, quickly retrieved an email from a colleague who is conducting research on this species of squid, and who requested that we preserve the head and internal organs for later genetic analysis.  Several Ziplock bags were readied and the cleaning began. In the end there were calamari steaks for everyone and their 10 best friends, tentacles for several pots of soup and research samples collected for additional analysis. This species of squid is of concern since it had been uncommon off the central California coast until after the 1998 El Nino event, which brought warm waters up from the tropical Pacific side. Now it is much more abundant. The Humboldt squid is a voracious predator and there is great interest in understanding its potential impact on other species, especially those of commercial value.

Randy and Mary Anne cleaning Humboldt Squid.
Randy and Mary Anne cleaning Humboldt Squid.

Animals Seen Today 
Blue shark Prionace glauca, Humboldt squid Dosidicus gigas, Arctic tern Sterna paradisaea, and Common redpoll Carduelis flammea.

Words of the Day 
Gaff: hook attached to a long pole used to bring in a catch Characterize: to decide what the parts are that together create something Acoustic: sound wave information El Nino: a cyclic climate event originating in the tropical Pacific that is associated with unusually warm waters that impact the west coast of North and South America.

Joao preparing his secret calamari marinade.
Joao preparing his secret calamari marinade.

Questions of the Day 

  1. A squid is classified as a mollusk, which is a single shelled marine animal.  Where is the single shell on this animal?
  2. What are some of the reasons the study of leatherback turtles is so complex?

Screen shot 2013-04-20 at 1.46.35 AM

Sue White, June 7, 2008

NOAA Teacher at Sea
Terry Welch
Onboard NOAA Ship David Starr Jordan
May 27 – June 7, 2008

Mission: Juvenile Rockfish Assessment
Geographical Area: Central California Coast
Date: June 7, 2008

Weather Data from the Bridge for Sat. 06-07-08 19:00 GMT 

Screen shot 2013-05-24 at 7.34.30 AM

The DAVID STARR JORDAN Deck crew watches from the bow
The DAVID STARR JORDAN Deck crew watches from the bow

Science and Technology Log 

Heading for San Francisco!

The weather has again had an effect on the scheduled research tasks. As the week went on the weather deteriorated so that some nights we could only do one trawl before the waves crashing over the aft deck made it too dangerous to be out there. Safety was the primary issue in everyone’s mind on the ship – bridge officers and the scientists discussed weather conditions and forecasts and the deck crew were careful to point out safety concerns involving equipment or wearing protective clothing. Even with the ship feeling like it was doing a wild tango at one point, I felt very secure.  Last night was a complete wash as far as doing the scheduled work.  By evening the ship officers decided to stay out the night in Drake’s Bay since the peninsula would give some shelter from the wind and waves.  We used the time to prepare for a new group to come aboard in San Francisco, cleaning our staterooms and doing laundry.    

I sorted through notes and organized the dozens of photos taken over the last 12 days.  Here are some squid facts Ken Baltz, the cruise leader told me about earlier in the cruise:

  • The Humboldt squid we caught were probably around 5 months old and will only live about 1 year
  • These squid are one of the fastest growing organism
  • They have a very rapid metabolism, eating about 20% of their body weight daily vs. our human requirement of 0.5 to 1%
Keith not only can tell you the scientific name of this big cephalopod, he can identify an incredible number of ocean animals
Keith not only can tell you the scientific name of this big cephalopod, he can identify an incredible number of ocean animals

The bongo plankton tow ties in with the squid sampling in an interesting way.  It shows how all of the research coordinated on the DAVID STARR JORDAN this cruise (and really all NOAA projects) is working towards understanding what life is like in the ocean and how the distribution of organisms is changing.  One plankton sample from each bongo tow was preserved in ethanol. The other sample was preserved in formalin (a formaldehyde solution).  The rationale behind this was that formalin denatures or destroys the structure of an organism’s DNA.  The ethanol sample could be used to do genetic testing. When the samples are examined back in the lab, the researchers are hoping to find paralarvae of the Humboldt squid in the same location as the adults collected this cruise. This would give credence to the idea that they are now breeding off the coast of California, rather than in the tropics as has been the accepted understanding.  Bill and Robert (two of the volunteers on this leg of the cruise) had great questions while Ken was explaining this part of his research. Bill (and the others) had been using a fluorescent lure to “jig” for squid. Squid are attracted to the bioluminescence found in some ocean animals, like the “headlights” on a California Headlight fish.

NOAA Teacher at Sea Sue White shows how gripping life at sea can be.
NOAA Teacher at Sea Sue White shows how gripping life at sea can be.

He asked if the squid are caught in the nets because they are hoping to feed on the small fish being concentrated there. His hypothesis was to see if luminescent lures in the net would increase the number of squid caught.  Robert asked about using radioactive isotopes to label squid and then look for the radioactive label in the paralarvae as a way to see patterns in breeding. Such intriguing thinking.  I was not alone in wanting to be awake for our entry into San Francisco Bay.  We enjoyed a hot breakfast for the first time in days (and for some the first time ever on the ship!) and were invigorated by bright sunshine. Well, the sun seemed bright through the San Francisco haze after being on the night shift! Everyone was outside by the time land was sighted and we enjoyed watching the Golden Gate Bridge get closer. For days I had not noticed much traffic at sea (especially at night)  so it felt like driving into a major city in that the traffic kept increasing the closer we got to the Bay.  Huge shipping barges and small personal sailboats were all out on a beautiful Saturday morning.

The map distance from Drake’s Bay was not far, but our speed entering the bay was such that it took several hours to get around the bend and in to where the piers are in San Francisco. Just as in leaving San Diego, the ship officers were busy piloting the ship to its place at the pier.  Staff from the Santa Cruz lab were waiting to help offload specimens, some ship personnel were already off duty and looking forward to a day in the city, and my husband was patiently waiting on the pier to hear my stories of life at sea.

Personal Log 

After almost two weeks at sea it was interesting to adjust to life on land. I did feel the ground moving as I walked and especially felt phantom ocean waves when I tried to sleep or take a shower (no grab bars to steady yourself on land though!). The sounds were so different too with less of the ongoing sound of the ship engine or the air system in my stateroom and more collective noise of traffic and airplanes. I had missed the simple sounds of my backyard birds, but did not notice this until I realized how wonderful the familiar can sound.  I am brimming with new information and connections to make with classroom labs and activities.  I (and my husband) can  hardly wait until school starts so I have a new audience for my Teacher at Sea stories.

Challenge Yourself 

  • Think about the area where you live. How many people in your neighborhood can you name?  List the types of dogs that live in your neighborhood, too.
  • Name any of the birds that may fly into your area.  (Is this naming business getting harder?)
  • Name any other wildlife that may inhabit your neighborhood.  (Remember that wildlife can be small and not all will be mammals!)
  • How many insects can you identify?  Can you name specific types of one kind of insect? In other words, can you tell the difference between a monarch and swallowtail butterfly? What about a skipper and a sulfur butterfly?
  • Scientists, from experience, can name an incredible number of organisms.  Often they can even give the scientific name for exactly one species that differs only slightly from another. You can also increase your naming ability with practice… what would you like to become an expert in identifying???
A unique view below the Golden Gate Bridge
A unique view below the Golden Gate Bridge

“We can only sense that in the deep and turbulent recesses of the sea are hidden mysteries far greater than any we have solved.”     ~Rachel Carson

What mysteries will I see next?

Sue

Sue White, June 1, 2008

NOAA Teacher at Sea
Terry Welch
Onboard NOAA Ship David Starr Jordan
May 27 – June 7, 2008

Mission: Juvenile Rockfish Assessment
Geographical Area: Central California Coast
Date: June 1, 2008

Weather Data from the Bridge for Sun. 06-01-08 04:00 GMT 

Screen shot 2013-05-24 at 7.22.35 AM

Joao Alves treats us to squid and salsa, Brazilian style.
Joao Alves treats us to squid and salsa, Brazilian style.

Science and Technology Log 

It’s shrimp night!  We continue on up the coast of California.  The transect schedule for tonight is off Point Reyes, north of San Francisco. The catch tonight surprised us (again) by being completely unique from earlier trawls. Usually the largest part of what we sort is krill.  The first night it was very strange to see all of those eyes, but now the krill just seem like background to look past as you see other colors and textures. When we spread the catch out on our trays tonight, it was an orange pink instead of the typical brownish color. The nets were loaded with market shrimp!  Joao took off with some after we sorted and came back later with boiled shrimp and cocktail sauce. This was the second time he had acted as a seafood chef for everyone. Friday night Joao brought down the squid he had saved from Tuesday and Wednesday night.  He had been marinating it in his special recipe and spent the time before his shift sautéing squid strips for us.  He had also made some salsa that was perfect with it . . . and the saltine crackers some of us were needing tonight due to the waves. It brought to mind this passage from John Steinbeck’s introduction to The Log from the Sea of Cortez: “…we could see the fish alive and swimming, feel it plunge against the lines, drag it threshing over the rail, and even finally eat it.”

Vlad Zgutnitski, Sam Brandal, and Jose' Coito ready to do a trawl
Vlad Zgutnitski, Sam Brandal, and Jose’ Coito ready to do a trawl

We have a pattern down for the nights now. The scientists, deck crew and bridge are seamless in their coordination of a trawl. Everyone knows their job now and down to who turns the deck lights off once the nets are in the water seems to be done intuitively.  As soon as the nets are brought in, the sorting starts. Big fish, or worse the big jellyfish, are caught as the nets are being rolled up.  Some fish and the jellies are measured and added to a database by location.  Jellyfish are especially hard on the nets because of their weight.  If they become too plentiful, trawls can be cancelled to keep the nets from being destroyed.

Looking for rockfish - Gabe, Ben, Keith, Bill, and Robert (left to right)
Looking for rockfish – Gabe, Ben, Keith, Bill, and
Robert (left to right)

Here is my count from one tray of catch tonight:

  • 38 Myctophid (fish)
  • 22 Californian Headlight (fish)
  • 8 Sergestid ( tiny red dot shrimp)
  • 5 Black Smelt (fish)
  • 3 Black-tip (squid)
  • 1 Blue Lantern (fish)
  • 1 Gonatus (squid)

The fish are more familiar by now.  The Myctophid and Headlight fish looked so similar at first, but now I can see the two bioluminescent dots between the eyes on the Headlight fish. With more experience, it became even more obvious that there were many differences differences, but harder when they are hidden behind the more generic krill, or in the case of tonight’s haul, the pinkish shrimp.  The rockfish (Fig. 4) also have to been identified as separate from other fish also similar in size and color.  Side by side it is easy to see that these fish that are both dark in color.

Personal Log 

Juvenile Rockfish Sebastes saxicola
Juvenile Rockfish Sebastes saxicola

The waves just keep getting rougher as the cruise progresses.  The motion onboard varies with different activities. The bars to grasp in the shower and at various places around the ship are very practical, to say the least. Sleep is an interesting process where you can wake up with tired muscles from trying to keep yourself in place! Those with more experience have said that it is physically tiring to be onboard and that we should expect to need more sleep.  It is amazing how I have adjusted to sleeping during the day now.  The volunteers have been great to work with. They are now bringing their music down to play as we sort the catch from each trawl.

Unsorted catch (krill, Sergestid shrimp, fish, squid)
Unsorted catch (krill, Sergestid shrimp, fish, squid)

It is fun to hear the eclectic playlists they have.  I have also been impressed with how well-read they are.  We have been able to talk about books that range from Steinbeck to environmental awareness.  They also enjoy the oddities we find on our sorting trays… anything with suckers must be stuck on your finger to see how long it will hold on (little squid or octopi require peeling off!)  One night we had double tailed fish.  Somehow several of the fish that night managed to get one head caught in the other’s to the point that it looked like the head was in the center with a tail going off each side.

Challenge Yourself 

  • Look at Figure 6 above. How many different types of animals do you see? (Hint: Different colors are easy to spot, but also look for different eyes since some of the animals we found were transparent!  )
  • Can you find any animals that are not fish?  We found tiny squid and octopi most nights.  Squid tended to have really big eyes for their overall size.  Most of what you see in Figure 2 is krill.
  • Describe what makes the juvenile rockfish different from the sand dab shown above.

“We can only sense that in the deep and turbulent recesses of the sea are hidden mysteries far greater than any we have solved.”     ~Rachel Carson

What mysteries will I see next?

Sue

Sue White, May 28, 2008

NOAA Teacher at Sea
Terry Welch
Onboard NOAA Ship David Starr Jordan
May 27 – June 7, 2008

Mission: Juvenile Rockfish Assessment
Geographical Area: Central California Coast
Date: June 28, 2008

Weather Data from the Bridge for Wed. 05-28-08 04:00 GMT 

Screen shot 2013-05-24 at 7.07.39 AM

This is the second night of collecting data for this leg of the cruise.  Last night was a real learning curve for those of us new to the work involved. As soon as they were aboard, the scientists in charge of the rockfish survey (Ken Baltz – the Chief Scientist, Keith Sakuma, and Brian Wells) were busy organizing equipment so they could begin at sunset. Each night the plan is to start by gathering plankton using the bongo nets. The plankton is processed and preserved for later study back at the scientist’s lab in Santa Cruz.  CTD (conductivity, water temperature, and depth) data is gathered throughout the day and night, and on the first night there was an electronics problem between the collection equipment that goes into the water and the computer.  Since weather has become such a factor on this cruise, the scientists did not want to lose any opportunity to gather data or specimens.  After sunset, the main focus through each night is to conduct mid-water trawls to collect data on fish populations and preserve samples for later study. All of this data goes into an ongoing database.

Screen shot 2013-05-24 at 7.10.46 AM
Bongo Plankton Tow

Each volunteer had specific jobs associated with the different specimens or data being collected throughout the cruise. Figure 1 shows how Robert Cimitile and Bill Matsuba worked the bongo nets. Gabe Singer was responsible for the CTD readings throughout the night shift. Ben Gire sampled krill from each trawl for a separate Euphausia study, checking for species type and numbers of gravid (“pregnant”) in an area. We all worked to sort the catch from each trawl. Last night there were a number of midshipman fish in the catch.  Tonight there is a different sort of excitement since we are finding large numbers of Humboldt squid in the nets.  These are processed for other research groups who are studying stomach contents and establishing the squid’s genome.  Between trawls the deck crew, scientists, and volunteers “jigged” for squid using fluorescent jigs on fishing line over the port side of the ship. It was impressive to see the live squid and their reaction to being out of water. Their chromatophores pulse and change colors while they hiss water out of their siphons. Some also spray ink in the process.

NOAA Teacher at Sea, Sue White, holds a live Humboldt squid!
Sue White, holds a live Humboldt squid!

These squid are huge compared to the tiny Gonatus or Loligo squid we have seen. The main fish being surveyed is the rockfish. They are few in numbers and when we do find one, it is placed in an ocean water ice bath to maintain them until Keith identifies them by species. This is also part of an ongoing, year-to-year survey to establish their distribution and numbers up the coast of California. Since they only come up to feed at night, they are the reason the trawls can only be done at night. It has been impressive to see the teamwork involved with working the cranes for the bongo nets and the CTD equipment, as well as the pulleys involved with the gates, and the trawlnet reel located on the gantry on the aft deck. Radio communication between the deck crew, the scientists, and the bridge starts each operation. The deck crew manipulates the equipment and the scientists and volunteers assist in positioning. They all have a part in collecting the specimens as they are brought up.  The bridge officers maintain the course and speed of the ship for all operations and also are vigilant about safety on the aft deck.  They maintain contact with the radio and also have visual contact with cameras.

Personal Log 

Jigging for the squid
Jigging for the squid

I feel rested tonight, but not quite used to working a night shift!  Last night was the first time I think I have ever been awake for 24 hours, so my bunk looked wonderful this morning. It was easy to sleep through the day after being so tired and now it is beginning to seem more normal to work at night. The squid are amazing the animal unit.  Seeing them alive and then being able to witness their dissection just a short time later was a singular experience that I will retell each spring now for my students.  Joao, one of the fishermen, showed me how to hold the live squid behind their eyes so the arms would not “get me”.  After seeing how they can latch on to fish even in the trawl net and how their beaks mince those fish, I have even more appreciation for what these animals can do as a predator!   I am learning how to recognize and name a great diversity of pelagic animals.  It has been an intensive learning curve for me in the last day (or should I call it night?) but I am starting to see the pattern of the trawls and it is very interesting to see how they vary according to transect location and even distance from the coast throughout the night.

Ben Gire (Volunteer) and Keith Sakuma (NOAA Scientist) with Humboldt Squid (CTD equipment is behind them to the right)
Ben Gire (Volunteer) and Keith Sakuma (NOAA Scientist) with Humboldt Squid (CTD equipment is behind them to the right)

Challenge Yourself 

  • How has the weather changed since my last log (Monday at noon)? Calculate the differences in wind speed and temperatures.  Has the ocean salinity changed?  Is the pressure rising or falling?
  • Do the temperature changes seem reasonable considering we have traveled north and the time of day is later?
  • The Humboldt squid are very well adapted for these conditions.  Would you be comfortable swimming in this water too?
Daybreak and the nets are ready for nightfall
Daybreak and the nets are ready for nightfall

“We can only sense that in the deep and turbulent recesses of the sea are hidden mysteries far greater than any we have solved.” ~Rachel Carson

What mysteries will I see next?

Sue