Heather O’Connell: Misty Eyed for Misty Fjords, June 12, 2018


NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 21, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast, Alaska

Date: 6/12/18

Weather Data from the Bridge

Latitude and Longitude: 55°33.1’ N, 133 °16.1’ W
Sky Condition: Overcast
Visibility: 10+ nautical miles
Wind Speed: 23 knots
Sea Level Pressure: 1008 millibars
Sea Wave Height: 2 feet
Sea Water Temperature: 8.9°C
Air Temperature: Dry bulb: 12.8°C, Wet bulb: 9.6°C

Science and Technology Log

After discussing geology with resident expert Amanda Finn, I developed the following understanding of the geology of Alaska. Alaska accreted, or merged with the larger continent, from the Pacific Plate colliding with the North American plate. These shifting tectonic plates created catastrophic earthquakes and many of the rock formations that you see in Alaska today. The three thousand foot metamorphic rock mountains in Misty Fjords were most likely formed from these collisions. Initially, there were sedimentary rocks that were changed from heat and pressure into metamorphic rocks. Because the sedimentary rocks were altered, the original age of these rock structures cannot be determined.

While tectonic plates created the landmass, glaciers contributed to the structure of the mountains in Southeast Alaska, creating fjords. A fjord is a narrow inlet of the sea created by a glacial valley with steep cliffs. Seventeen thousand years ago, Misty Fjord was covered in ice. As the ice melted, long narrow inlets were created that filled with ocean water. Mineral springs and volcanic activity still exist around these areas where they are closer to fault lines. It was determined by NOAA scientists in 2013 that Misty Fjord has a sunken cinder cone volcano that must have formed after the glaciers created the fjords thirteen thousand years ago. As Amanda explains, “The disappearance of all the pressure from the overlying ice caused Earth’s crust to bounce back in the area, uplifting rock and carrying magma chambers closer to the surface, causing the volcano to form. This added traces of igneous rocks to the metamorphosed sedimentary rock in the form of quartz deposits. As more ice melted and the water level rose, the cinder cone was eventually submerged underwater.”



Alaska Geology

Connor, Cathy. Roadside Geology of Alaska.

Adjusting a Compass

I met a compass adjuster who was picked up in a launch from San Juan islands who learned his skill from an apprentice. He carried a wooden box with his equipment and seemed like he arrived from another time period. I was fortunate to witness this annual ritual that compares the direction of the ship according to the magnetic compass with true magnetic North in a process known as swinging the compass  A compass adjuster observes the difference between the ship’s compass and the four cardinal and four intercardinal directions to determine the difference. Since North and South were only one degree off, the magnets on the compass did not need to be adjusted. If there were a larger discrepancy between the two values, then magnets would be moved around until the directions came into alignment.

Captain Keith Sternberg swinging the compass from the flying bridge

Captain Keith Sternberg swinging the compass from the flying bridge

A compass functions based on the Earth’s inner molten iron core which generates a magnetic field around the Earth. The needle in a compass points towards the magnetic pole, which is not necessarily the same as the geographic pole. This difference between magnetic North and true North is known as magnetic variation. In addition to magnetic variation, each ship has a magnetic fingerprint that alters the magnetic compass slightly. If welding were done with metal, especially iron, this would change the magnetic signature of the ship. The combination of compass deviation and magnetic variation alters the true bearing of the ship and must be considered when viewing the bearing of the compass.

Since a magnetic compass differs from a true bearing, NOAA Ship Rainier has two gyrocompassses that are actually used for navigation. Each of these have a wheel spinning a gyroscope which is parallel to the Earth’s center of rotation, and do not rely on magnetism but depend on the Earth’s rotation and gravity. The spinning gyroscope, based on inertia, will always maintain its plane of rotation. Since these gyrocompasses are not altered by the magnetic signature of the ship and provide a true North reading, they are utilized in navigation. The NOAA Corps navigator plans the track lines of the course of the ship based on the true North reading of the gyroscope compass and is the bearing that is observed from the bridge of Rainier. The magnetic compass acts as a backup if the vessel were to lose power.


Gyrocompass on Rainier




Personal Log

As I was relaxing in the lounge about to watch Black Panther yesterday evening, a call came in requesting my presence on the Bridge. When I entered the fresh air, granite mountains with ridges full of melting snow waterfalls and a breathtaking view welcomed me. To say I was awe inspired would be an understatement. We were in Misty Fjords within the Tongass National Forest, part of the nation’s largest forest about 22 miles west of Ketchikan. Observing a sliver of this almost 17 million acre temperate rainforest with evergreen trees amongst misty clouds for a brief period of time includes a moment that I will treasure. I was happy to share this experience with other crew, survey technicians and NOAA Corps members who weren’t currently on shift. While appreciating  this beauty, I thought of a Japanese saying, “Iche-go Ich-e,” which means this moment only happens now. Observing the still glassy water reflecting the cloudy sky against green islands and three thousand foot mountains touched my soul. The enormity of the steep granite humbled me as I appreciated it in its untouched state. This pristine environment existed from a landscape formed ten thousand years ago by a massive glacier that created this geological phenomenon. Luckily, this Tongass National Forest was claimed to be a protected zone in 1978 by the president. I’m grateful for this natural beauty that invites a tranquil, peaceful feeling. When a blow spout of a whale appeared off the port side of the vessel, my elation couldn’t be contained and I was overwhelmed with gratitude.

Observing Misty Fjords in the Inner Passage

Misty Fjords in the Inner Passage


Did You Know?

Lookouts use a coordinate plane-like reference for directions. If you are standing at the center of the Bridge, similar to the origin of a coordinate plane, then the y-axis would be dead ahead. The x-axis, or 90 degrees to the right would be beam starboard, while to the left would be beam port. To the right forty five degrees would be broad off starboard, while to the left forty degrees would be broad port. If you count the three equidistant points leading up to forty five degrees on the right hand side of the ship, you would command one off, two off or three off starboard respectively.

Julia West: This Is What Drives Us, April 1, 2015

NOAA Teacher at Sea
Julia West
Aboard NOAA ship Gordon Gunter
March 17 – April 2, 2015

Mission:  Winter Plankton Survey
Geographic area of cruise: Gulf of Mexico
Date: April 1, 2015

Weather Data from the Bridge

Date: 3/31/2015; Time 2000; clouds 25%, cumulus and cirrus; Wind 205° (SSW), 15 knots; waves 1-2 ft; swells 1-2 ft; sea temp 23°C; air temp 23°C

Science and Technology Log

You’re not going to believe what we caught in our neuston net yesterday – a giant squid! We were able to get it on board and it was 23 feet long! Here’s a picture from after we released it:

giand squid

Giant Squid!

April Fools! (sorry, couldn’t resist) The biggest squid we’ve caught are about a half inch long. Image from http://www.factzoo.com/.

Let’s talk about something just as exciting – navigation. I visit the bridge often and find it all very interesting, so I got a 30 minute crash course on navigation. We joked that with 30 minutes of training, yes, we would be crashing!

From the bridge, you can see a long way in any direction. The visible range of a human eye in good conditions is 10 miles. Because the earth is curved, we can’t see that far. There is a cool little formula to figure out how far you can see. You take the square root of your “height of eye” above sea level, and multiply that by 1.17. That gives you the nautical miles that you can see.

So the bridge is 36 feet up. “Really?” I asked Dave. He said, “Here, I’ll show you,” and took out a tape measure.

Dave measuring height

ENS Dave Wang measuring the height of the bridge above sea level.

OK, 36 feet it is, to the rail. Add a couple of feet to get to eye level. 38 feet. Square root of 38 x 1.17, and there we have it: 7.2 nautical miles. That is 8.3 statute miles (the “mile” we are used to using). That’s assuming you are looking at something right at sea level – say, a giant squid at the surface. If something is sticking up from sea level, like a boat, that changes everything. And believe me, there are tables and charts to figure all that out. Last night the bridge watch saw a ship’s light that was 26 miles away! The light on our ship is at 76 feet, so they might have been able to see us as well.

Challenge Yourself

If you can see 7.2 nautical miles in any direction, what is the total area of the field of view? It’s a really amazing number!

Back to navigation

Below are some photos of the navigation charts. They can be zoomed in or out, and the officers use the computer to chart the course. You can see us on the chart – the little green boat.

navigation chart

This is a chart zoomed in. The green boat (center) is us, and the blue line and dot is our heading.

In the chart above, you’ll see that we seem to be off course. Why? Most likely because of that other ship that is headed our direction. We talk to them over the radio to get their intentions, and reroute our course accordingly.

navigation chart 2

Notice the left side, where it says “dump site (discontinued) organochlorine waste. There are a lot of these type dump sites in the Gulf. Just part of the huge impact humans have had on our oceans.

When we get close to a station, as in the first picture above, the bridge watch team sets up a circle with a one mile radius around the location of the station. See the circle, upper center? We need to stay within that circle the whole time we are collecting our samples. With the bongos and the neuston net, the ship is moving slowly, and with the CTD the ship tries maintain a stationary position. However, wind and current can affect the position. These factors are taken into account before we start the station. The officer on the bridge plans out where to start so that we stay within the circle, and our gear that is deployed doesn’t get pushed into or under the boat. It’s really a matter of lining up vectors to figure it all out – math and physics at work. But what is physics but an extension of common sense? Here’s a close-up:

setting up for station

Here is the setup for the station. The plan is that we will be moving south, probably into the wind, during the sampling. See the north-south line?

How do those other ships appear on the chart? This is through input from the AIS (Automated Information System), through which we can know all about other ships. It broadcasts their information over VHF radio waves. We know their name, purpose, size, direction, speed, etc. Using this and the radar system, we can plan which heading to take to give the one-mile distance that is required according to ship rules.

As a backup to the computer navigation system, every half hour, our coordinates are written on the (real paper) navigation chart, by hand.

Pete charting our course

ENS Pete Gleichauf is writing our coordinates on the paper navigation chart.

There are drawers full of charts for everywhere the Gunter travels!

Melissa and the nav charts

ENS Melissa Mathes showing me where all the navigation charts are kept. Remember, these are just backups!

Below is our radar screen. There are 3 other ships on the screen right now. The radar computer tells us the other vessels’ bearing and speed, and how close they will get to us if we both maintain our course and speed.

radar screen

The other vessels in the area, and their bearing, show up on the radar.

If the radar goes down, the officers know how to plot all this on paper.

maneuvering board

On this maneuvering board, officers are trained to plot relative positions just like the radar computer does.

Below is Dave showing me the rudder controls. The rudder is set to correct course automatically. It has a weather adjustment knob on it. If the weather is rough (wind, waves, current), the knob can allow for more rudder correction to stay on course. So when do they touch the wheel? To make big adjustments when at station, or doing course changes.

rudder controls

Dave’s arm – showing me the rudder controls.

These are the propulsion control throttles – one for each propeller. They control the propeller speed (in other words, the ship’s speed).

propeller speed throttles

Here are the throttles that control the engine power, which translates to propeller speed.

bow thruster control

This controls the bow thruster, which is never used except in really tight situations, such as in port. It moves the bow either direction.

And below is the Global Maritime Distress and Safety System (GMDSS). It prints out any nautical distress signal that is happening anywhere in the world!


Global Marine Distress and Safety System

And then, of course, there is a regular computer, which is usually showing the ships stats, and is connected to the network of computers throughout the ship.

checking the weather

ENS Kristin Johns checking the weather system coming our way.

In my post of March 17, I described the gyrocompass. That is what we use to determine direction, and here is a rather non-exciting picture of this very important tool.


This is the gyrocompass, which uses the rotation of the Earth to determine true north.

As you can see, we have two gyrocompasses, but since knowing our heading is probably the most important thing on the ship, there are backup plans in place. With every watch (every 4 hours), the gyro compass is aligned the magnetic compass to determine our declination from true north. Also, once per trip, the “gyro error” is calculated, using this nifty device:


This is called the alidade. Using the position of the sun as it rises or sets, the gyro error can be computed and used to keep our heading perfectly accurate.

The reading off of the alidade, combined with the exact time, coordinates, and some fancy math, will determine the gyro error. (Click on a picture to see full captions and full size pictures.)

You can see that we have manual backups for everything having to do with navigation. We won’t get lost, and we’ll always know where we are!

driving the ship

Here I am, “driving” the ship! Watch out! Photo by ENS Pete Gleichauf

Back to Plankton!

These past two days, we have been in transit, so no sampling has been done. But here are a couple more cool micrographs of plankton that Pam shared with me.

invertebrate plankton

This picture shows several invertebrates, along with fish eggs. Madalyn and Andy, who are invertebrate people, got excited at this collection. The fat one, top left is a Doliolid. The U-shaped one is a Lucifer shrimp, the long one in center is an amphipod, at the bottom is a mycid, etc. There are crabs in different stages of development, and the multiple little cylinders are copepods! You can also see the baby fish inside the eggs. Photo credit Pamela Bond/NOAA

red snapper larvae

These are larval red snapper, a fall spawning fish species of economic interest. Notice the scale! You have to admit baby fish are awfully cute. Photo credit: Pamela Bond/NOAA

Interesting Fish Facts

Our main fish of interest in the winter plankton sampling are the groupers. There are two main species: gag groupers and red groupers. You can learn all about them on the NOAA FishWatch Website. Groupers grow slowly and live a long time. Interestingly, some change from female to male after about seven years – they are protogynous hermaphrodites.

red grouper

Red grouper. Image credit: NOAA

In the spring plankton research cruise, which goes out for all of May, the main species of interest is the Atlantic bluefin tuna. This species can reach 13 feet long and 2000 lbs, and females produce 10 million eggs a year!

school of bluefin tuna

School of Atlantic bluefin tuna. Photo credit: NOAA

The fall plankton research focuses on red snapper. These grow up to about 50 pounds and live a long time. You can see from the map of their habitat that it is right along the continental shelf where the sampling stations are.

red snapper

Red snapper in Gray’s Reef National Marine Sanctuary. Image credit: NOAA

The NOAA FishWatch website is a fantastic resource, not only to learn about the biology, but about how they are managed and the history of each fishery. I encourage you to look around. You can see that all three of these fish groups have been overfished, and because of careful management, and research such as what we are doing, the stocks are recovering – still a long way from what they were 50 years ago, but improving.

I had a good question come in: how long before the fish larvae are adults? Well, fish are interesting creatures; they are dependent on the conditions of their environment to grow. Unlike us, fish will grow throughout their life! Have you ever kept goldfish in an aquarium or goldfish bowl? They only grow an inch or two long, right? If you put them in an outdoor pond, you’ll see that they will grow much larger, about six inches! It all depends on the environment (combined with genetics).

“Adult” generally means that they are old enough to reproduce. That will vary by species, but with groupers, it is around 4 years. They spawn in the winter, and will remain larvae for much longer than other fish, because of the cooler water.

Personal Log

I’ve used up my space in this post, and didn’t even get to tell you about our scientists! I will save that for next time. For now, I want to share just a few more pictures of the ship. (Again, click on one to get a slide show.)


Terms to Learn

What is the difference between a nautical mile and a statute mile? How about a knot?

Do you know what I mean when I say “invertebrate?” It is an animal without a backbone. Shrimp and crabs, are invertebrates; we are vertebrates!

Amanda Peretich: A Community Afloat, June 30, 2012

NOAA Teacher at Sea
Amanda Peretich
Aboard Oscar Dyson
June 30, 2012 – July 18, 2012

Mission: Pollock Survey
Geographical area of cruise: Bering Sea
Date: June 30, 2012

Location Data
Latitude: 54ºN
Longitude: 166ºW
Ship speed: 11.5 knots (13.2 mph)

Weather Data from the Bridge
Air temperature: 6.5ºC (43.7ºF)
Surface water temperature: 6.9ºC (44.42ºF)
Wind speed: 7 knots (8.05 mph)
Wind direction: 265ºT
Barometric pressure: 1011 millibar (0.998 atm, 758 mmHg)

Science and Technology Log
Not much science to discuss yet since we just left port at 0900 and I won’t be working in the fish lab until my 0400-1600 shift tomorrow (that’s 4am-4pm for anyone unfamiliar with military time). More to come on the pollock survey in a later post.

However, I did have the opportunity to spend a few hours up in the bridge today and I learned A TON thanks to NOAA Corps Officers ENS (ensign) Libby Chase and LT (lieutenant) Matt Davis! The chemistry teacher in me was amazed by all of the conversions used. Just a few of the things I learned today on the bridge:


Main control panel on the bridge

* During the majority of transiting time, the Beier Radio Dynamic Positioning System is used. This is like an auto-pilot that controls the rudder to keep the Oscar Dyson on course using a gyro compass. They have nicknamed her “Betty” because she talks to you in a female voice, kinda like Siri on the new iPhone.

* A gyro compass is different from the magnetic compass that I am more familiar with using. The wind direction is measured in degrees true, which is based on true north being at 0º. Magnetic compasses have about a 9º variation, but things on the ship can also influence the deviation in the magnetic compass reading, so it is much better to use the gyro compass.

* You can drive the ship from multiple locations on the bridge. The main location looks to the bow/forward (front) of the ship. The starboard (right) location is used when the CTD is deployed (more on this later) and also whenever the boat is docked. The aft/stern (back of the ship) location is used when setting and recovering nets during a trawl. And the port (left) location is a ghost town that is rarely used.

* I learned the distance equation used in determining something called DR, or dead reckoning. This allows you to notice any set and drift while going along your course and tells where the current may or may not be pushing you to allow you to correct the course. The equation is as follows:

D = S x T
D is distance (in nautical miles)
S is speed (in knots)
T is time (in hours)

For example, if we were traveling at 11.35 knots, after 30 mins (or 0.5 hours), we should travel a distance of 5.7 nautical miles (D = 11.35 x 0.5). The bridge officers will plot this and see after half an hour if the ship has stayed on course based on the DR and the new coordinates after 30 minutes. Also, in case you didn’t know, 1 nautical mile = 1.15 miles.

* There is no common set of units for any given measurement, so everyone has to be familiar with how to do conversions. For example, when determining barometric pressure, you can use millibar, atmospheres, millimeters of mercury, torr, etc. (1 atm = 1013.25 mbar = 760 mmHg = 760 torr). For speed, you can use knots or miles per hour (1 knot = 1.15 mph).

Personal Log
What an adventure this has already been. Long story short, it took an extra day to get to Dutch Harbor due to weather conditions, giving me an overnight stay in Anchorage. I have come to discover that this is not an uncommon occurrence. It did give me a chance to meet plenty of people from the ship at the airport before we even arrived since we were all sitting around the terminal waiting on standby for flights. But I finally made it, had an exit row seat (see photo) and all of my luggage arrived with me!

Exit Row

On my second flight to Dutch Harbor, lucky enough to get in off standby AND get an exit row seat!

I had the entire day yesterday in Dutch Harbor to explore, so I ran the 3ish miles back to town, checked out the Museum of the Aleutians (history lesson!), did some shopping, and headed back to the Oscar Dyson.

DYK? (Did You Know?): Dutch Harbor was bombed by Japanese naval aircraft on June 3 & 4, 1942 during WWII (about six months after the attack on Pearl Harbor).

I was fortunate to be in the right place at the right time eating a late lunch when the opportunity to kayak in Captains Bay came up. Four of us unloaded the ocean kayaks from the ship into the water, made our way down to the kayaks, and enjoyed breathtaking views while paddling against the current (doing it this way made our return trip much easier). This was a once-in-a-lifetime experience for me and the people I was with were amazing. I plan to introduce everyone on board in a later blog so you can get to know them a little as well. I can also now say that I have swum in the freezing Alaskan waters because at the end three of us jumped in!

Kayaking in Captains Bay

Kayaking in Captains Bay in Dutch Harbor, Alaska

I was able to watch as we left port from the flying bridge (the highest bridge on the ship). Since there isn’t much to do until we are farther out to sea, today I have just done a lot of exploring and talking to people. Basically this is a little community afloat for the next 17 days. There are two things you really need to successfully live on board in such close quarters: you need to be flexible and able to work with others and you need to do your part around the ship, both on and off your shift. Our staterooms are nice (the mattress is actually extremely comfy), the bathrooms are good, we can keep our clothes clean in the laundry room, read books in the library/conference room, watch movies in the theater/lounge (we already have the Hunger Games and other new movies), the galley (where we have food access 24/7 but meals are served at 0700, 1100, and 1700) is amazing thanks to our incredible chief steward, and there are two gym areas on board to work off all the delicious calories! Check out the photos of these areas below:

Ship Spaces

Ship spaces (clockwise from top left): stateroom, bathroom, conference room, laundry room

Ship Spaces

Ship spaces (clockwise from top left): theater, galley, gym 1, gym 2

Animal Love
Before I arrived in Alaska, I thought of the bald eagle as a majestic creature that you rarely see in the wild and mostly see in zoos. Here, they have been fondly called “sky rats” by some people – they are EVERYWHERE: in the sky and on the ship. They are still gorgeous and I can’t help but take multiple photos every time I see them. Make sure to check out the link for the bald eagle and the root of its scientific name; it really makes a lot of sense! I’ve seen more eagles in the past two days than in my entire lifetime.

Bald Eagle

Bald Eagles: the “sky rats” of Dutch Harbor

Leyf Peirce, July 11, 2004

NOAA Teacher at Sea
Leyf Peirce
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
July 11, 2004

Time: 21:00
Latitude: N 55°17.27
Longitude: W 160°32.16
Visibility: 4 nm
Wind direction: 095
Wind speed: 10 knots
Sea wave height: 0 – 1 foot
Swell wave height: —
Sea water temperature: 10.6 °C
Sea level pressure: 1017.0 mb
Air temperature: 12.8 °C
Cloud cover: 4/8

Science and Technology Log

Today was my second day aboard a launch boat. With SS Foye, ST Taylor, and ENS Samuelson, we continued to follow lines to chart the ocean floor just south of Egg Island. Today we were on launch boat 5, and luckily everything was working great! We were working with the Reson 8101 again. It should be noted that in previous journal entries I have been misnaming some of the equipment used. Today, I finally got the nomenclature correct. Here are the basics:

  1. ELAC multibeam system is used for deep water, with best resolution over 30 meters
  2. There are two shallow water mulitbeam (SWMB) systems:
    1. Reson 8125 is used with a higher frequency and has better resolution in depths of 0 – 30 meters
    2. Reson 8101 is used for “middle depths” of 0 –120 meters (mostly 30 –120 meters)

I also learned a lot more about how to use the software aboard the ship while we are taking data. For the Reson 8125 and Reson 8101, there are three computers aboard the ship that can talk to each other. Two are located in the cabin and one is located on the deck. One computer in the cabin is used primarily to navigate; the old charts are downloaded onto this computer and the lines on which we need to steer the boat (the lines for mowing the lawn) are superimposed on this chart. This computer is not only hooked up to the computer that gathers data, but is also connected to a computer that is mounted on the console so the captain can see where he or she needs to go. The navigational computer in the cabin is also directly hooked up to the other computer in the cabin. This second cabin computer is connected to the actual multibeam echo scanner system that is mounted to the hull of the ship. When instructed to do so, the second cabin computer can record the data from this system. One of the researchers uses the navigational computer to tell the second computer when to start and stop recording the data. Because the second computer is hooked up to the multibeam system, it also is used to control the parameters of this system, including filters, range, frequency of “pings”, and power. There are several different screens within the program used to control all of this, including a profile screen, which actually shows the profile of the ocean floor, a pitch/roll/heave screen to record that the POS/MV (the positioning device also hooked up to this computer that integrates with the data correcting for the gyration of the ship and it’s position), and a control screen. There are several other screens which can be displayed on this computer, however these listed here are the most important to monitor while gathering data. The power of the multibeam system can be monitored and altered according to depth and profile of the floor; if you want the device to “listen to the pings better”, you increase the power, and however, this also decreases resolution. You would want to do this in greater depths. You can also manually control the depth filter for the data. In order to do this, you change the range of the depths the multibeam system is looking for. This in turn changes the width of the footprint left by the data and thus the resolution. By doing this as you gather data, you are eliminating possible outlying points before ever having them recorded and you are allowing for better resolution at shallower depths. This makes the data processing and cleansing easier, yet it requires constant attention and anticipation while gathering data.

While this technology works relatively well in the field, it is still very expensive and time consuming. A possible design project for my students would be to analyze the existing system and brainstorm ideas for improvement. This would even include researching other systems used internationally.

Personal Log

Today was yet another beautiful day once the fog lifted by mid morning. I am still enchanted by the concept of conducting research on a boat all day—it seems like a job I would love to pursue! Not only are you contributing to society, but you get to see wonderful sights—today we saw a bald eagle, lots of puffin, and two sea lions! I cannot help but laugh at the puffin, though. They eat so much and have such little wings and huge hearts that they try with all their might to fly, but they only become air born with the nudge of a wave. And even then they only maintain an altitude of about 6 inches before they crash into another wave. They are both very amusing and very inspiring. I keep thinking that they are thinking “I think I can, I think I can, Never give up!” With so many sights and things going on both on and off the research vessel, I was not at all disappointed when we were radioed that we were going to spend an extra hour collecting data because the weather was so good (slightly chilly, but the sun was out). When we returned I learned how to download the data to the computers aboard the RAINIER, and then I saw the beginning steps for processing this data. I can’t wait to learn more tomorrow!

Question of the Day: A design problem: a gyrocompass is used to determine bearing and relies on electricity (it has an internal electromagnet). The gyrocompass on the bridge looks like this:

Peirce 7-11-04 gyrocompass

Notice that the angles visible here are 70 ° and 90 °, a difference of 20 °. However, this 20 ° difference is spread over what is actually about 100 °. How, then, does the gyrocompass span the full 360 °?