Hayden Roberts: Playing Hide and Seek with Sonar, July 16, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: July 16, 2019

Weather Data from the Bridge
Latitude: 28.51° N
Longitude: 84.40° W
Wave Height: 1 foot
Wind Speed: 6 knots
Wind Direction: 115
Visibility: 10 nm
Air Temperature: 30.8°C
Barometric Pressure: 1021 mb
Sky: Clear


Science Log

In my previous blog, I mentioned the challenges of doing survey work on the eastern side of the Gulf near Florida. I also mentioned the use of a probe to scan the sea floor in advance of trawling for fish samples. That probe is called the EdgeTech 4125 Side Scan Sonar. Since it plays a major role in the scientific research we have completed, I wanted to focus on it a bit more in this blog. Using a scanner such as this for a groundfish survey in the Gulf by NOAA is not typical. This system was added as a precaution in advance of trawling due to the uneven nature of the Gulf floor off the Florida Coast, which is not as much of a problem the further west one goes in the Gulf. Scanners such as these have been useful on other NOAA and marine conservation research cruises especially working to map and assess reefs in the Gulf.

deploying side scan
Preparing to put the side scan over board.

Having seen the side scanner used at a dozen different research stations on this cruise, I wanted to learn more about capabilities of this scientific instrument. From the manufacturer’s information, I have learned that it was designed for search and recovery and shallow water surveys. The side scanner provides higher resolution imagery. While the imagining sent to our computer monitors have been mostly sand and rock, one researcher in our crew said he has seen tanks, washing machines, and other junk clearly on the monitors during other research cruises.

This means that the side scanner provides fast survey results, but the accuracy of the results becomes the challenge. While EdgeTech praises the accuracy of its own technology, we have learned that accurate readings of data on the monitor can be more taxing. Certainly, the side scanner is great for defining large items or structures on the sea floor, but in areas where the contour of the floor is more subtle, picking out distinctions on the monitor can be harder to discern. On some scans, we have found the surface of the sea floor to be generally sandy and suitable for trawling, but then on another scan with similar data results, chunks of coral and rock have impeded our trawls and damaged the net.

Side scan readout
Sample scan from monitor in the computer lab. The light areas are sandy bottom. The dark is either seaweed or other plant material or rocks. The challenge is telling the difference.


Did You Know?

In 1906, American naval architect Lewis Nixon invented the first sonar-like listening device to detect icebergs. During World War I, a need to detect submarines increased interest in sonar. French physicist Paul Langévin constructed the first sonar set to detect submarines in 1915. Today, sonar has evolved into more sophisticated forms of digital imaging multibeam technology and side scan sonar (see https://oceanexplorer.noaa.gov/explorations/lewis_clark01/background/seafloormapping/seafloormapping.html for more information).


Personal Log

When I first arrived aboard Oregon II, the new environment was striking. I have never spent a significant amount of time on a trawling vessel or a research ship. Looking around, I took many pictures of the various features with an eye on the architectural elements of the ship. One of the most common fixtures throughout the vessel are posted signs. Lamented signs and stickers can be found all over the ship. At first, I was amused at the volume and redundancy, but then I realized that this ship is a communal space. Throughout the year, various individuals work and dwell on this vessel. The signs serve to direct and try to create consistency in the overall operation of the ship and the experience people have aboard it. Some call the ship “home” for extended periods of time such as most of the operational crew. Others, mostly those who are part of the science party, use the vessel for weeks at a time intermittently. Before I was allowed join the science party, I was required to complete an orientation. That orientation aligns with policies of NOAA and the expectation aboard Oregon II of its crew. From the training, I primarily learned that the most important policy is safety, which interestingly is emblazoned on the front of the ship just below the bridge.

Safety First!
Safety First!

The signs seem to be reflective of past experiences on the ship. Signs are not only reminders of important policies and protocols, but also remembrances of challenges confronted during past cruises. Like the additional equipment that has been added to Oregon II since its commission in 1967, the added signs illustrate the history the vessel has endured through hundreds of excursions.

Oregon II 1967
Bureau of Commercial Fisheries Ship Oregon II (1967), which was later transferred to NOAA when the administration was formed in 1970.
Oregon II 2017
NOAA Ship Oregon II in 2017 on its 50th Anniversary.

Examples of that history is latent in the location and wording of signs. Posted across from me in the computer lab are three instructional signs: “Do not mark or alter hard hats,” “Keep clear of sightglass do not secure gear to sightglass” (a sightglass is an oil gauge), and “(Notice) scientist are to clear freezers out after every survey.”

signs collage
A collage of four signs around NOAA Ship Oregon II
more signs
Another collage of four signs around NOAA Ship Oregon II
even more signs
Another collage of signs around NOAA Ship Oregon II

Author and journalist Daniel Pink talks about the importance of signs in our daily lives. His most recent work has focused on the emotional intelligence associated with signs. Emotional intelligence refers to the way we handle interpersonal relationships judiciously and empathetically. He is all about the way signs are crafted and displayed, but signs should also be thought of in relation to how informative and symbolic they can be within the environment we exist. While the information is usually direct, the symbolism comes from the way we interpret the overall context of the signs in relation to or role they play in that environment.

Hayden Roberts: Wait-and-See (or Is It Sea?) July 8, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 8, 2019

Weather Data from the Bridge

Latitude: 30.35° N 
Longitude: 88.6° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: Northwest
Visibility: 10 nm
Air Temperature: 33°C 
Barometric Pressure: 1012 mb
Sky: Few clouds


Science Log

Day one of my trip and we are delayed leaving. Growing up in Oklahoma, you think you know weather until one of the NOAA fishery biologists assigned to the ship provides you a lengthy explanation about the challenges of weather on setting sail. As he put it, the jet stream is throwing off the weather. This is true. Studies have suggested that for a few years the polar jet stream has been fluctuating more than normal as it passes over parts of the Northern Hemisphere. The jet stream is like a river of wind that circles the Northern Hemisphere continuously. That river meanders north and south along the way. When those meanders occur over the Atlantic and the Pacific Oceans, it can alter pressure systems and wind patterns at lower latitudes and that affects how warm or raining it is across North America and Europe. 

This spring in Oklahoma, it has led to record-breaking rains that have flooded low lying areas across the Great Plains and parts of the southeastern United States. Thunderstorms have generally been concentrated in the southern and middle section of the US as the jet stream dips down. The NOAA biologist also indicated that the delay in our departure could be blamed on the El Niño effect. 

El Niño is a natural climate pattern where sea water in the central and eastern tropical Pacific Ocean is warmer than average. This leads to greater precipitation originating from the ocean. According to NOAA scientists, El Niño is calculated by averaging the sea-surface temperature each month, then averaging it with the previous and following months. That number is compared to average temperatures for the same three-month period between 1986 and 2015, called the Oceanic Niño index. When the index hits 0.5 degrees Celsius warmer or more, such as right now, it’s classified as an El Niño. When it’s 0.5 degrees Celsius cooler or more, it’s a La Niña. During an El Niño, the southern part of the U.S. typically experiences wetter than average conditions, while the northern part is less stormy and milder than usual. During a La Niña, it flips, with colder and stormier conditions to the north and warmer, less stormy conditions across the south. However, the El Niño this year has been classified as weak, which means typically the wetter conditions do not push into the Gulf of Mexico region, but exceptions can occur. With the fluctuating jet stream, the El Nino has vacillated between the Plains region and the upper South and regions closer to the Gulf. Thus, the storm causing our delayed departure comes from a weather condition that has been pushed further south by the jet stream.

While these may be causes for the delayed departure, the actual sailing conditions at the time of our voyage are the main concerns. Looking at the NOAA Marine Forecast webpage (https://www.nws.noaa.gov/om/marine/zone/off/offnt4mz.htm), the decision for our delay is based on a storm producing significant wave heights, which are the average height of the highest 1/3 of the waves. Individual waves may be more than twice the average wave heights. In addition, weak high pressure appears to dominate the western Gulf and will likely last mid-week. Fortunately, we are set sail into the eastern Gulf off the coast of Florida. We should be able to sail behind the storm as it moves west. We do have to watch the surface low forming along a trough over the northeast Gulf later in the week. The National Hurricane Center in Miami (which provided weather data in the Atlantic and the Gulf for NOAA) predicts that all of this will intensify through Friday (July 12) as it drifts westward. This will produce strong to near gale force winds and building seas for the north central Gulf. Hopefully by then we will be sailing south of it. 

Gulf of Mexico weather forecasts
Digital interface map for regions of the Gulf of Mexico and its weather forecasts (National Weather Service, NOAA)


Did You Know?

The weather terms El Niño and La Niña can be translated from Spanish to English as boy and girl, respectively. El Niño originally applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador around Christmas time before it was linked to a global phenomenon now referred to as El Niño–Southern Oscillation. La Niña is sometimes called El Viejo, anti-El Niño, or simply “a cold event.” El Niño events have been occurring for thousands of years with at least 26 occurring since 1900.


Personal Log

I boarded NOAA’s Oregon II yesterday when the ship was virtually empty. It was Sunday, and we were not set to leave until mid-afternoon the following day (and now Tuesday, July 9). Spending the night on the ship was more comfortable than I had expected. While the stateroom was cramped (I share it with one other crew member), the space is surprisingly efficient. I had plenty of space to store my gear. The bunkbed was more cozy than restricted.

NOAA Pascagoula Lab
Even though it was Sunday and everything was closed, I had to stop for a selfie.
NOAA Ship Oregon II
My first look at NOAA Ship Oregon II.

My first day in Pascagoula, MS was spent learning about the town. Pascagoula is a port city with a historic shipyard. Pascagoula is home to the state’s largest employer, Ingalls Shipbuilding, the largest Chevron refinery in the world, and Signal International, an oil platform builder. Prior to World War II, the town was a small fishing community, but the population jumped with war-driven shipbuilding. The city’s population peak in the late 1970s, but today, there are less than 25,000 in the area. Pascagoula continues to be an industrial center surrounded by the growing tourism industry across the Gulf region to the east and west of the port. The population also declined when Naval Station Pascagoula was decommissioned in 2006. The old naval base is located on manmade strip of land called Singing River Island and is in the middle of the port. The port still maintains a large Coast Guard contingent as well as serving as the home portfor the NOAA Ships Gordon GunterOregon II, and Pisces. The NOAA port is actually called the Gulf Marine Support Facility and is located a block from NOAA’s National Marine Fisheries Service Mississippi Laboratory.

Betsy Petrick: Career Choice – Marine Archaeology, July 1, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
 Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: July 1, 2019

Interview with Scientist Melanie Damour

Melanie Damour is the Co-Principal Investigator and Co-Chief Scientist on the expedition.  She is responsible for directing all archaeological aspects of the investigation. We talked about her path to her career, and her advice for young people who might want to pursue ocean science.

Melaine Damour
Melanie Damour, Marine Archaeologist

When I asked her what sea creature she would choose to be, she immediately answered  “A mermaid. Mermaids have the agility of fish, but they are smart.” Melanie may not be a mermaid, but she is agile as a fish and smart.  

Melanie knew from early childhood what she wanted to be when she grew up.  Her father was a fire and rescue diver, and Melanie sometimes got to see him at work.  She was fascinated by scuba diving. With her father’s support, she learned to scuba dive when she was only eight years old.  The second event that shaped her career was a visit to the USS Constitution in Boston Harbor. This historic sailing ship is open to the public and played an important role in the war for independence from Britain. When Melanie visited this ship, she was awed by the ship and its history, and decided that somehow she was going to marry her two favorite things – diving and maritime history – for her career.  

She got her scuba diving certification when she was 14 years old, and studied history in high school.  She went to Florida State University to study anthropology. She took classes in archaeology, cultural and physical anthropology, and linguistics, all the disciplines within Anthropology.  She was offered a teaching assistantship which allowed her to get into a graduate program and study submerged paleoindian sites in Florida.  The offer was too good to refuse, so she began her graduate work at Florida State right away. Now she works for the federal Bureau of Ocean Energy Management (BOEM) as a marine archaeologist. 

Melanie reflected on what makes a good scientist.  Her first response was that good scientists are always asking questions; being curious is what leads to new understandings.   It’s also important to be open-minded. Scientists can’t expect things to turn out a certain way as this would blind them to what is actually happening.  A scientist has to be persistent in the face of problems and always be looking for different ways and better ways to attack a problem. The ability to work well in a team is key.  Each member of a good team contributes to the end goal. Taking into account different perspectives leads to a more accurate and complete picture.  

Melanie has worked on projects in the Gulf of Mexico, the Atlantic and the Pacific.  Her personal research interests led her to Guatemala, where she worked in Lake Petén Itzá  on a submerged Mayan port site.  She went to Panama to map a Spanish merchant ship that sank off the coast in 1681.  This is her favorite shipwreck so far. It is well preserved by the river sediments that poured into the Gulf there. The ship contains hundreds of wooden boxes full of supplies that Spain had sent to the colonies. The boxes contain nails and scissors, and some yet to be opened my contain books that are still preserved.  After this expedition, Melanie is heading to Mexico to dive with her husband on a site that may turn out to be her new favorite. They will be looking for the wreck of one of the ships belonging to Hernán Cortés, the Spanish explorer.  In 1519, Cortés sank his own ships to prevent his crew from leaving and returning to Cuba. This set the course for the conquest of the Aztecs. Last summer, Melanie and her husband found an anchor and wood that dated to the early 1500s. The wood was determined to be from Spain. This puts the anchor in the right time frame to be one of Cortés’ sunken ships.

Melanie pointed out that it isn’t easy to get a job as a marine archaeologist because it is a small field and there are not many permanent jobs.  But she also encourages anyone who wants to pursue this as a career to be persistent and not give up. “It’s not always a straight line from A to B,” she says; in fact, you may discover that when your plan isn’t working out, you actually prefer the new track your life takes – that Plan B option that you may not have known existed when you began your career. 

“The greatest threat to our oceans today is humans,” Melanie said.  “Our lack of consideration for the consequences of our actions is the greatest threat we face.”  

Marine archaeology is one of many subdisciplines in ocean sciences, and the future of our oceans depends on many scientists working together to reverse the trajectory of degradation we are on.   

Sunset on the Gulf of Mexico
Sunset on the Gulf of Mexico

Betsy Petrick: Core Sampling in the Lab, June 30, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
 Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 30, 2019


Science Log

When the ROV returns to the ship, the scientists jump into action.  The sediment cores are brought into the lab for sampling.

Core samples
Core samples are loaded on the ROV in crates and with luck they all come back the same way.

Dr. Justyna Hampel, an aquatic biogeochemist and postdoctoral research assistant at the University of Southern Mississippi, is researching how microorganisms colonize on and around deep sea shipwrecks.  She is taking sediment samples for DNA testing, and identifying nutrients in sediment pore water, the water trapped inside the sediment. Her study will help us learn about the relationship between microbes and shipwreck biomes. It took many hands to process the core sediments for her research.

As assistant to graduate student Rachel Mugge, I felt a bit like a nurse in an operating room. Every sample was taken carefully to ensure it was not contaminated.

Here’s how it went: Carefully remove the plug from the bottom of the core sample tube.  Slide the core onto the extruder quickly so as not to lose any sediment.  (An extruder is a wheel on a threaded bolt. It is precisely calibrated to measure 2 cm increments as you turn the wheel 4 2/3 times.  )

Remove the lid and use a siphon hose to remove the sea water on the surface.  Rachel does this by placing one end of the hose in the core tube and the other end in her mouth and sucking gently to get the flow of water going.  Once it is moving she lets the water drain into a basin. Try this at home! You can get water to flow up and over an obstacle with this technique.  

siphon
It takes finesse to get the siphon working.

Next Rachel turns the extruder wheel until the mud is exposed at the top of the tube.  She describes the mud to lab manager Anirban Ray, who writes it down next to the sample number. (“S 54, brown, unconsolidated, black streaks, tube worm burrows.”)  I snap the paper wrapping off a wooden tongue depressor and hand it to her. She uses it to dig a sample out of the center of a sediment core. I hand her an open vial and she fills it.  I cap it. Next she puts some sediment into a petri dish and Anirban seals and labels it. Then I hand her an open sterile whirl-pak for a final blob of sediment. I whirl this little baggy and twist tie it closed.  Vials and whirl-paks go in the deep freezer. We do these three steps 40 times for 120 samples. The challenge I find in this kind of repetitive task is how quick and efficient can I be while still being careful and precise?  Let me tell you. Pretty fast and efficient. 

sediment sample
Putting a sediment sample into a vial. The core is on the extruder, which pushes the sediment upward when you turn the wheel.

At the same time this was going on, Justyna was extracting pore water (water that comes from inside the sediment) to analyze it for nutrients.

Extracting pore water
Justyna attaches syringes to the peepers to extract the pore water from the sediment.


Personal Log

While we worked, I had a porthole at my station to keep an eye on the ocean as we cruised out to our third and final shipwreck.  Dolphins raced with our ship this evening. Silvery flying fish skittered over the water reminding me of hummingbirds, the way their fins were a blur of movement.  The color of the ocean now can best be described in terms of watercolors. Ultramarine. That says it all.

Calm sea
Clouds are reflected in a calm sea.

Betsy Petrick: Highs and Lows of Scientific Exploration, June 27, 2019



NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 27, 2019

Science Log

Yesterday was a doozy of a day I think everyone on the ship would agree.  One frustrating setback after another had to be overcome, but one by one each problem was solved and the day ended successfully.  If you would like to read more about this expedition, it is featured on the NOAA Ocean Exploration and Research website.

The first discovery yesterday morning was that the ship’s pole-mounted ultrashort baseline tracking system (USBL) had been zapped with electricity overnight and was unusable.  This piece of equipment is a key piece of a complex system. Without it we would not know precisely where the ROV was, nor could we control the sweeps of the ROV over the shipwrecks for accurate mapping.  The scheduled dive time of 1330 (that’s 1:30PM!) was out of the question. There was even talk of returning to port to get new equipment. Yikes. This would cost the expedition $30,000-$40,000 for a full 24 hours of operation, and no one wanted to do this. 

Max, the team’s underwater systems engineer, worked his magic, and replaced the damaged part.   This required expert knowledge and some tricky maneuvers. Once this was fixed, the next step was to send a positioning beacon down to the seafloor to calibrate the signal from the ship to the ROV so that we would be able to track it precisely.  Calibrating means that the ship and the ROV have to agree on where home is. The beacon is attached to three floats connected together to make a “lander”, and then 2 heavy weights are attached as well. The weights take the beacon down. The lander brings it back to the surface later.  The deployment went without a hitch. However, when the lander floated to the surface, we noticed it was floating in a strange way. When we hauled it aboard, we discovered that one of the glass floats had imploded – probably due to a material defect under the intense pressure at 1200m below sea level – and all we had left of that unit was a shattered mess of yellow plastic. 

imploded float
The glass float inside this yellow “hard hat” imploded. It’s a good thing there are two others to bring the transponder back to the surface.

In spite of that, the calibration was complete and we could send the ROV on its mission.  We loaded the experiments onto the back of the ROV, along with another lander and weights.  This was the exciting moment! The crane lifted the ROV off the ship deck and swung it out over the water.  But in the process, the chain holding the weights broke and, with a mighty groan from all of us watching, both of them sank into the sea.  Back came the ROV for a new set of weights. Luckily nothing was damaged. By 1745 (5:30PM), 5 hours after the scheduled time, the ROV went over the side for a second time successfully.  Once this was done the Chief Scientist was able to crack a smile and relax a bit.

mounting a new lander
The team works to mount a new lander on the ROV.
Launching the ROV
Launching the ROV off the back deck, loaded with experimental equipment and a lander.
mechanical arm
The mechanical arm on the ROV retrieved a microbial experiment left on the sea floor in 2017. We watched it all on the big screen in the lab.

Now we had an hour to wait for the ROV to reach the sea floor again, and begin its mission of deploying and retrieving experiments.  Inside the cabin of the ship, some of us sat mesmerized by the drifting phytoplankton on the big screen, hoping to see the giant squid that had been spotted on the last expedition. Up in the pilothouse the captain was on duty holding the ship in one spot for as long as it took for the ROV to return. Not an easy job!  

Yesterday I saw what scientific exploration is really like.  As someone said, “Two means one, and one means none,” meaning that when you are out at sea, you have to have a second or even a third of every critical piece of equipment because something is inevitably going to break and you will not be able to run to Walmart for a new one.  Failures and setbacks are part of the game. As a NOAA Teacher at Sea, I am looking at all that goes on on the ship through the lens of a classroom teacher. Yesterday’s successes were due to clear headed thinking, perseverance, and team work by many. These are precisely the qualities I hope I can foster in my students.  

Betsy Petrick: All Aboard! Days 1 and 2, June 25, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 24-25, 2019

Science Log

On Monday I was introduced to the R/V Point Sur in Gulfport, Mississippi.  Every nook and cranny of this vessel is packed, and it took the science crew most of the day to pack it even fuller with all the equipment they need.  The largest single item is the remotely operated vehicle (ROV) Odysseus which makes a large footprint on the back deck.   Over it hangs an enormous pulley that will be used to lift Odysseus in and out of the water.

R/V Point Sur in port
R/V Point Sur in port
This the ROV Odysseus waiting to be deployed on a shipwreck. It’s as eager as I am to see it operate. It looks like it is ready to jump in!


When I arrived at the port, I met Dr. Leila Hamdan, the Chief Scientist, and some of the crew.  We have two Rachels on board and they are both graduate students studying microbial biomes. Over time a layer of microbes form a “biofilm” on different kinds of wood and metal. This organic layer forms on the surface of a shipwrecks, and this is what the scientists are studying. They want to know how this layer speeds up or slows down the corrosion of shipwrecks and how other organisms use this habitat.

I was able to join in and help put together microbial recruitment experiment towers, or MREs for short. Each tower is a PVC pipe fitted with samples of wood, both oak and pine, and some metal samples.  Each of these pipes fits loosely inside a second pipe, and then each set is roped together and attached to a float. Each tower is rigged in such a way that it will sink to the sea floor vertically, and then the outer pipe will rise to expose the inner tower and the sample plugs.  After four months, the MREs will be retrieved, and the scientists will be studying what kinds of microbes grew on the samples. Their experiments add to our understanding of how shipwrecks act as a habitat for corals and other organisms

Microbial Recruitment Experimental tower
Here we are putting together one of the MREs which will be sent to the ocean floor near one of the shipwrecks.


Finally, at the end of the day we had to quickly load the last of the gear on the ship before a huge container ship of bananas arrived to dock in our space. We set up a “fire line” to hand the last of the gear into the ship as fast as possible. We could see the huge Chiquita banana ship heading our way. The port was already stacked four high with Chiquita banana shipping containers and more bananas were coming! Who is eating so many bananas?!

As the newbie member of the crew, I was allowed to stay on board as the crew moved the ship from the large loading dock to the smaller pier on the other side of the port.  This meant I got a taste of the ocean breezes that are going to help keep us cool once we leave land. I saw pelicans glide low over the water as I stood on the deck and imagined all the new and amazing things I am about to see and do.

Day 2

If you’ve never been to Mississippi in the summer, I can tell you it is HOT and HUMID.  It’s hard to imagine until you try to actually do something in it. If you were an egg, you would definitely fry on the sidewalk.  Despite the heat, all over the ship crew and scientists are working, bolting things together, greasing mechanical parts, putting last minute touches on their experimental equipment, organizing the lab and working at laptops. To mitigate the heat and humidity outside, the air-conditioning runs on high inside the ship. This helps to keep the humidity from damaging the equipment, as well as to keep the crew happy.   So it is actually COLD in here! 

In addition to all this activity, a group of high school students visited the ship. They are participating in The Ocean Science and Technology Camp to learn about marine science careers and they will be tracking our progress from shore. Each of our many talented scientists shared a bit about their research and their roles in the ship. I will share more about that in another blog. We are scheduled to leave tonight at 1930 hrs, that’s 7:30PM for most of us! Stay with me, it’s going to be awesome!

summer camp students
Rachel explains how core samples are taken to summer camp students.

Betsy Petrick: Hurry Up and Shape Up to Ship Out, June 13, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 13, 2019

Introduction

In just two weeks I will be shipping out of Gulfport, Mississippi on the University of Southern Mississippi Research Vessel Point Sur.  As a NOAA Teacher at Sea, I will actually be a student again, learning all I can about ocean archaeology and deep-sea microbial biomes. I feel very lucky to have this opportunity to learn what it is like to live and work at sea! In particular, I am looking forward to seeing how archaeologists work at sea.  My undergraduate degree was in archaeology and I worked in the desert of New Mexico and southern Colorado where we mapped with pencil and paper, and took samples with a shovel. Ocean archaeology will require more sophisticated technology and a different approach!  

Let me give you a little background about myself.  My husband and I live in a tiny town called Husum on the White Salmon River in Washington State. My family enjoys outdoor activities including rafting and kayaking. This year my daughter is working as a raft guide on the White Salmon. I know when the commercial raft trips are passing by because I can hear the tourists scream as their boats go over Husum Falls!   My son is studying Engineering in college and is spending this summer in Spain learning Spanish and surfing. Unfortunately for my husband, summer is the busy time for construction. As a general contractor, he will be working hard.

Petrick family rafting
The whole family rafting the Deschutes River in Oregon, hmmm… quite a few years ago, but we still love it!

During the regular school year, I teach fourth grade math and science at the local intermediate school.  One of our biggest science units each year is to raise salmon in the classroom and learn about the salmon life cycle, adaptations and the importance of protecting salmon habitat.  In addition, this year we tackled a big project around plastic pollution in the oceans and how we can make a difference in our own community through education and action. My students are rightfully indignant about the condition of our oceans, and I have also become an ocean advocate since initiating this project.

Student salmon drawings
Kids made scientific drawings of salmon, and then painted and stuffed them. They swam around the classroom ceiling all year!

Scientists on the Point Sur have several goals. First of all, they will map two shipwrecks that have never been explored.  Both are wooden-hulled historic shipwrecks that were identified during geophysical surveys related to oil and gas exploration.  Archaeologists hope to determine how old the ships are, what their purpose was, and their nationality, to determine if they are eligible for listing on the National Register of Historic Places (NRHP).   A third shipwreck we will visit is a steel-hulled, former luxury steam yacht that sank in 1944. It was previously mapped and some experiments were left there in 2014 which we will recover.

In addition to mapping, we will take samples of the sediments around the ships to see how shipwrecks shape the microbial environment.  The Gulf of Mexico is a perfect place for this work because it is rich in shipwrecks. Shipwrecks create unique reef habitats that are attractive to organisms both large and small. I wonder what kinds of sea life we will discover living around the shipwrecks we visit?

The first question my students asked me was if I was going to scuba dive. While that would be exciting, it’s not allowed for Teachers at Sea! To gather information about the shipwrecks, we will deploy a remotely operated vehicle (ROV) called Odysseus (Pelagic Research Services, Inc.) . Odysseus will have a camera, a manipulator arm to gather samples, a tray to carry all the sampling gear and SONAR and lights. I think I will be content to watch its progress on the ship’s video screens.

School is almost out, and my fourth graders are chomping at the bit to get out if the classroom and begin their own summer adventures, but I hope they will follow my blog and keep me company while I am on board ship!    Am I feeling a little intimidated? Absolutely! But also very excited to have the opportunity to participate in what is sure to be a great adventure.