Kathy Schroeder: Sharks, Sharks, and More Sharks! September 23, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/23/19

Weather Data from the Bridge (at beginning of log)

Latitude: 28.07
Longitude: 93.27.45
Temperature: 84°F
Wind Speeds: ESE 13 mph
large swells


Science and Technology Log

9/21/19-We left Galveston, TX late in the afternoon once the backup parts arrived.  After a few changes because of boat traffic near us, were able to get to station 1 around 21:00 (9:00 pm).  We baited the 100 hooks with Atlantic Mackerel.   Minutes later the computers were up and running logging information as the high flyer and the 100 hooks on 1 mile of 4mm 1000# test monofilament line were placed in the Gulf of Mexico for 60 minutes.  My job on this station was to enter the information from each hook into the computer when it was released and also when it was brought onboard.   When the hook is brought onboard they would let me know the status:  fish on hook, whole bait, damaged bait, or no bait.  Our first night was a huge success.  We had a total of 28 catches on our one deployed longline.                                                                                                                                       

Kathy and red snapper
NOAA TAS Kathy Schroeder with a red snapper caught on the Oregon II

We caught 1 bull shark (Carcharhinus leucas), 2 tiger sharks (Galeocerdo cuvier), 14 sharp nose sharks (Rhizoprionodon terraenovae), 2 black tip sharks (Carcharhinus limbatus), 7 black nose sharks (Carcharhinus acronotus), and 2 red snappers (Lutjanus campechanus).  There were also 3 shark suckers (remoras) that came along for the ride. 

sandbar shark
Sandbar shark – no tag. Oregon II

I was lucky to be asked by the Chief Scientist Kristin to tag the large tiger shark that was in the cradle.  It took me about 3 tries but it eventually went in right at the bottom of his dorsal fin.  He was on hook #79 and was 2300mm total length.  What a great way to start our first day of fishing.  After a nice warm, but “rolling” shower I made it to bed around 1:00 am.  The boat was really rocking and I could hear things rolling around in cabinets.  I think I finally fell asleep around 3:00.

9/22- The night shift works from midnight to noon doing exactly what we do during the day.  They were able to complete two stations last night.  They caught some tilefish (Lopholatilus chamaeleonticeps) and a couple sandbar sharks (Carcharhinus plumbeus).  My shift consists of Kristin, Christian, Taniya, and Ryan: we begin our daily shifts at noon and end around midnight.  The ship arrived at our next location right at noon so the night shift had already prepared our baits for us.  We didn’t have a lot on this station but we did get a Gulf smooth hound shark (Mustelus sinusmexicanus), 2 king snake eels (Ophichthus rex), and a red snapper that weighed 7.2 kg (15.87 lbs).  We completed a second station around 4:00 pm where our best catch was a sandbar shark.  Due to the swells, we couldn’t use the crane for the shark basket so Kristin tried to tag her from the starboard side of the ship. 

We were able to complete a third station tonight at 8:45 pm.  My job this time was in charge of data recording.  When a “fish  is on,” the following is written down: hook number, mortality status, genus and species, precaudal measurement, fork measurement, and total length measurement, weight, sex, stage, samples taken, and tag number/comments.  We had total of 13 Mustelus sinusmexicanus; common name Gulf smooth-hound shark.  The females are ovoviviparous, meaning the embryos feed solely on the yolk but still develop inside the mother, before being born.  The sharks caught tonight ranged in length from 765mm to 1291mm.  There were 10 females and 3 male, and all of the males were of mature status.  We took a small tissue sample from all but two of the sharks, which are used for genetic testing.  Three of the larger sharks were tagged with rototags.  (Those are the orange tags you see in the picture of the dorsal fin below).

measuring a shark
Taking the three measurements
king snake eel
King snake eel caught on a longline.


Personal Log

I spend most of my downtime between stations in the science dry lab.  I have my laptop to work on my blog and there are 5 computers and a TV with Direct TV. We were watching Top Gun as we were waiting for our first station.  I tried to watch the finale of Big Brother Sunday night but it was on just as we had to leave to pull in our longline.  So I still don’t know who won. 🙂 I slept good last night until something started beeping in my room around 4:00 am.  It finally stopped around 6:30.  They went and checked out my desk/safe where the sound was coming from and there was nothing.  Guess I’m hearing things 🙂 

Shout out! – Today’s shout out goes to the Sturgeon Family – Ben and Dillon I hope you are enjoying all the pictures – love Aunt Kathy

Hayden Roberts: What’s in a Name? July 18, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: July 18, 2019

Weather Data from the Bridge
Latitude: 29.43° N
Longitude: 86.24° W
Wave Height: 1 foot
Wind Speed: 7 knots
Wind Direction: 220
Visibility: 10 nm
Air Temperature: 31°C
Barometric Pressure: 1017.5 mb
Sky: Few clouds


Science Log

Over the course of this research experience, I have realized that I was not entirely prepared to assist on this voyage. While I think I have pulled my weight in terms of manpower and eagerness, I quickly realized that not having a background in the biological sciences limits my capacity to identify species of fish. Not growing up in the Gulf region, I am already limited in my understanding and recognition of fish variety through their common names like shrimp, grouper, and snapper. Countless other varieties exist most of which have no commercial fishing value such as boxfish, sea robin, spadefish, and scorpionfish. Fortunately, the microbiology grad student paired with me during wet lab processing has been patient and the fishery biologists assigned to this research party have been informative showing me the basics to fish identification (or taxonomy).

Sorting fish species
Sorting fish species in the wet lab.
Measuring a stingray
Measuring and weighing a specimen in the wet lab.

The wet lab aboard Oregon II is the nexus of the research team’s work. While the aft deck and the computer lab adjacent to the wet lab are important for conducting research and collecting data, the wet lab is where species are sorted, identified, and entered into the computer. The lab has a faint smell of dead fish and briny water. While the lab is kept clean, it is hard to wash the salt off the surfaces of the lab entirely after every research station.

Alongside the buckets and processing equipment are textbooks, quick reference guides, and huge laminated charts of fish species. Most of the reference material has distinctive color photographs of each fish species with its scientific name listed as the caption. The books in this lab are focused on Gulf and Atlantic varieties as these are what are likely to be found during the surveys. Fishery biologists have a wealth of knowledge, and they pride themselves on knowing all the species that come through the lab. However, occasionally a variety comes through the lab they cannot identify. Some species are less common than others. Even the experts get stumped from time to time and have to rely on the books and charts for identification. To get experience in this process, the biologists have given me crustaceans to look up. I struggle to make matches against pictures, but I have gotten better at the process over the weeks.

Calappa flammea
Calappa flammea.

As I have learned more about the scientific names of each species we have caught, I have also learned that scientists use a two-name system called a Binomial Nomenclature. Scientists name animals and plants using the system that describes the genus and species of the organism (often based on Latin words and meaning. The first word is the genus and the second is the species. Some species have names that align close to the common name such as scorpionfish (Scorpaena brasiliensis). Others seem almost unrelated to their common name such as scrawled cowfish (Acanthostracion quadricornis).

scrawled cowfish
Acanthostracion quadricornis

Fortunately for those of us who do not identify fish for a living, technology has provided resources to aid in learning about and identifying species of fish we encounter. The FishVerify app, for example, can identify a species, bring up information on its habitat and edibility, and tell you its size and bag limits in area based on your phone’s Global Positioning System (GPS). The app is trained on over a thousand different species with the beta version of the app focused on 150 species caught in the waters of Florida. On our research cruise, we have encountered over 150 species so far.

Hayden and red grouper
Me and a large specimen of Epinephelus moiro.


Did You Know?

The naming system for plant and animal species was invented by the Swedish botanist Carl Linnaeus in the 1700s. It is based on the science of taxonomy, and uses a hierarchical system called binomial nomenclature. It started out as a naming system for plants but was adapted to animals over time. The Linnaean system has progressed to a system of modern biological classification based on the evolutionary relationships between organisms, both living and extinct.


Personal Log

Nearly two weeks into this experience and the end of my time with NOAA aboard Oregon II, I find that I have settled into a routine. Being assigned to the “dayshift,” I have seen several sunsets over my shoulder as I have helped deploy research equipment or managed the bounty of a recent trawls. I have missed nearly all the sunrises as the sun comes up five hours after I have gone to bed.

However, these two features along the horizon cannot match the view I have in the morning or late at night. After breakfast and a shower midmorning, I like to spend about 30 minutes gazing at the water from one of the upper decks. The clean light low along the water accentuates its blueish-green hue. In my mind, I roll through an old pack of crayons trying to figure out what color the water most closely represents. Then I realize it’s the Green-Blue one. It is not Blue-Green, which is a lighter, brighter color. The first part of the crayon color name is an adjective describing the second color name on the crayon. Green-blue is really blue with a touch of green, while blue-green is really green with some blue pigment in the crayon. Green-Blue in the crayon world is remarkably blue with a hint of green. The water I have admired on this cruise is that color.

Hayden on fore deck
View from fore deck of NOAA Ship Oregon II.

The Gulf in the east feels like an exotic place when cruising so far away from shore. While I have been to every Gulf state in the U.S. and visited their beaches, the blue waters off Florida seem like something more foreign than I am accustomed. When I think of beaches and seawater in the U.S., I think of algae and silt mixed with the sand creating water with a brown or greenish hue: sometimes opaque if the tide is rough such as the coast of Texas and sometimes clear like the tidal pools in Southern California. Neither place has blue water, which is okay. Each place in this world is distinct, but to experience an endless sea of blue is exotic to me.

Retrieving the trawling net
Retrieving the trawling net at night.

In contrast to vibrant colors of the morning, the late evening is its own special experience. Each night I have been surprised at how few stars I can see. Unfortunately, the tropic storm earlier in the week has produced sparse, lingering clouds and a slight haze. At night the horizon shows little distinction between the water and the sky. The moon has glided in and out of cover. However, the lights atop the ship’s cranes provide a halo around the ship as it cruises across the open water. What nature fails to illuminate, the ship provides. The water under this harsh, unnatural light is dark. It churns with the movement of the boat like thick goo. Yet that goo teems with life. Every so often a crab floats by along the ships current. Flying fish leap from the water and skip along the surface. Glimpses of larger inhabitants dancing on the edge of the ship’s ring: creatures that are much larger than we work up in the wet lab but illusive enough that it can be hard to determine if they are fish or mammal. (I am hopeful they are pods of dolphins and not a frenzy of sharks).

Hayden Roberts: Playing Hide and Seek with Sonar, July 16, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: July 16, 2019

Weather Data from the Bridge
Latitude: 28.51° N
Longitude: 84.40° W
Wave Height: 1 foot
Wind Speed: 6 knots
Wind Direction: 115
Visibility: 10 nm
Air Temperature: 30.8°C
Barometric Pressure: 1021 mb
Sky: Clear


Science Log

In my previous blog, I mentioned the challenges of doing survey work on the eastern side of the Gulf near Florida. I also mentioned the use of a probe to scan the sea floor in advance of trawling for fish samples. That probe is called the EdgeTech 4125 Side Scan Sonar. Since it plays a major role in the scientific research we have completed, I wanted to focus on it a bit more in this blog. Using a scanner such as this for a groundfish survey in the Gulf by NOAA is not typical. This system was added as a precaution in advance of trawling due to the uneven nature of the Gulf floor off the Florida Coast, which is not as much of a problem the further west one goes in the Gulf. Scanners such as these have been useful on other NOAA and marine conservation research cruises especially working to map and assess reefs in the Gulf.

deploying side scan
Preparing to put the side scan over board.

Having seen the side scanner used at a dozen different research stations on this cruise, I wanted to learn more about capabilities of this scientific instrument. From the manufacturer’s information, I have learned that it was designed for search and recovery and shallow water surveys. The side scanner provides higher resolution imagery. While the imagining sent to our computer monitors have been mostly sand and rock, one researcher in our crew said he has seen tanks, washing machines, and other junk clearly on the monitors during other research cruises.

This means that the side scanner provides fast survey results, but the accuracy of the results becomes the challenge. While EdgeTech praises the accuracy of its own technology, we have learned that accurate readings of data on the monitor can be more taxing. Certainly, the side scanner is great for defining large items or structures on the sea floor, but in areas where the contour of the floor is more subtle, picking out distinctions on the monitor can be harder to discern. On some scans, we have found the surface of the sea floor to be generally sandy and suitable for trawling, but then on another scan with similar data results, chunks of coral and rock have impeded our trawls and damaged the net.

Side scan readout
Sample scan from monitor in the computer lab. The light areas are sandy bottom. The dark is either seaweed or other plant material or rocks. The challenge is telling the difference.


Did You Know?

In 1906, American naval architect Lewis Nixon invented the first sonar-like listening device to detect icebergs. During World War I, a need to detect submarines increased interest in sonar. French physicist Paul Langévin constructed the first sonar set to detect submarines in 1915. Today, sonar has evolved into more sophisticated forms of digital imaging multibeam technology and side scan sonar (see https://oceanexplorer.noaa.gov/explorations/lewis_clark01/background/seafloormapping/seafloormapping.html for more information).


Personal Log

When I first arrived aboard Oregon II, the new environment was striking. I have never spent a significant amount of time on a trawling vessel or a research ship. Looking around, I took many pictures of the various features with an eye on the architectural elements of the ship. One of the most common fixtures throughout the vessel are posted signs. Lamented signs and stickers can be found all over the ship. At first, I was amused at the volume and redundancy, but then I realized that this ship is a communal space. Throughout the year, various individuals work and dwell on this vessel. The signs serve to direct and try to create consistency in the overall operation of the ship and the experience people have aboard it. Some call the ship “home” for extended periods of time such as most of the operational crew. Others, mostly those who are part of the science party, use the vessel for weeks at a time intermittently. Before I was allowed join the science party, I was required to complete an orientation. That orientation aligns with policies of NOAA and the expectation aboard Oregon II of its crew. From the training, I primarily learned that the most important policy is safety, which interestingly is emblazoned on the front of the ship just below the bridge.

Safety First!
Safety First!

The signs seem to be reflective of past experiences on the ship. Signs are not only reminders of important policies and protocols, but also remembrances of challenges confronted during past cruises. Like the additional equipment that has been added to Oregon II since its commission in 1967, the added signs illustrate the history the vessel has endured through hundreds of excursions.

Oregon II 1967
Bureau of Commercial Fisheries Ship Oregon II (1967), which was later transferred to NOAA when the administration was formed in 1970.
Oregon II 2017
NOAA Ship Oregon II in 2017 on its 50th Anniversary.

Examples of that history is latent in the location and wording of signs. Posted across from me in the computer lab are three instructional signs: “Do not mark or alter hard hats,” “Keep clear of sightglass do not secure gear to sightglass” (a sightglass is an oil gauge), and “(Notice) scientist are to clear freezers out after every survey.”

signs collage
A collage of four signs around NOAA Ship Oregon II
more signs
Another collage of four signs around NOAA Ship Oregon II
even more signs
Another collage of signs around NOAA Ship Oregon II

Author and journalist Daniel Pink talks about the importance of signs in our daily lives. His most recent work has focused on the emotional intelligence associated with signs. Emotional intelligence refers to the way we handle interpersonal relationships judiciously and empathetically. He is all about the way signs are crafted and displayed, but signs should also be thought of in relation to how informative and symbolic they can be within the environment we exist. While the information is usually direct, the symbolism comes from the way we interpret the overall context of the signs in relation to or role they play in that environment.

Hayden Roberts: Wait-and-See (or Is It Sea?) July 8, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 8, 2019

Weather Data from the Bridge

Latitude: 30.35° N 
Longitude: 88.6° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: Northwest
Visibility: 10 nm
Air Temperature: 33°C 
Barometric Pressure: 1012 mb
Sky: Few clouds


Science Log

Day one of my trip and we are delayed leaving. Growing up in Oklahoma, you think you know weather until one of the NOAA fishery biologists assigned to the ship provides you a lengthy explanation about the challenges of weather on setting sail. As he put it, the jet stream is throwing off the weather. This is true. Studies have suggested that for a few years the polar jet stream has been fluctuating more than normal as it passes over parts of the Northern Hemisphere. The jet stream is like a river of wind that circles the Northern Hemisphere continuously. That river meanders north and south along the way. When those meanders occur over the Atlantic and the Pacific Oceans, it can alter pressure systems and wind patterns at lower latitudes and that affects how warm or raining it is across North America and Europe. 

This spring in Oklahoma, it has led to record-breaking rains that have flooded low lying areas across the Great Plains and parts of the southeastern United States. Thunderstorms have generally been concentrated in the southern and middle section of the US as the jet stream dips down. The NOAA biologist also indicated that the delay in our departure could be blamed on the El Niño effect. 

El Niño is a natural climate pattern where sea water in the central and eastern tropical Pacific Ocean is warmer than average. This leads to greater precipitation originating from the ocean. According to NOAA scientists, El Niño is calculated by averaging the sea-surface temperature each month, then averaging it with the previous and following months. That number is compared to average temperatures for the same three-month period between 1986 and 2015, called the Oceanic Niño index. When the index hits 0.5 degrees Celsius warmer or more, such as right now, it’s classified as an El Niño. When it’s 0.5 degrees Celsius cooler or more, it’s a La Niña. During an El Niño, the southern part of the U.S. typically experiences wetter than average conditions, while the northern part is less stormy and milder than usual. During a La Niña, it flips, with colder and stormier conditions to the north and warmer, less stormy conditions across the south. However, the El Niño this year has been classified as weak, which means typically the wetter conditions do not push into the Gulf of Mexico region, but exceptions can occur. With the fluctuating jet stream, the El Nino has vacillated between the Plains region and the upper South and regions closer to the Gulf. Thus, the storm causing our delayed departure comes from a weather condition that has been pushed further south by the jet stream.

While these may be causes for the delayed departure, the actual sailing conditions at the time of our voyage are the main concerns. Looking at the NOAA Marine Forecast webpage (https://www.nws.noaa.gov/om/marine/zone/off/offnt4mz.htm), the decision for our delay is based on a storm producing significant wave heights, which are the average height of the highest 1/3 of the waves. Individual waves may be more than twice the average wave heights. In addition, weak high pressure appears to dominate the western Gulf and will likely last mid-week. Fortunately, we are set sail into the eastern Gulf off the coast of Florida. We should be able to sail behind the storm as it moves west. We do have to watch the surface low forming along a trough over the northeast Gulf later in the week. The National Hurricane Center in Miami (which provided weather data in the Atlantic and the Gulf for NOAA) predicts that all of this will intensify through Friday (July 12) as it drifts westward. This will produce strong to near gale force winds and building seas for the north central Gulf. Hopefully by then we will be sailing south of it. 

Gulf of Mexico weather forecasts
Digital interface map for regions of the Gulf of Mexico and its weather forecasts (National Weather Service, NOAA)


Did You Know?

The weather terms El Niño and La Niña can be translated from Spanish to English as boy and girl, respectively. El Niño originally applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador around Christmas time before it was linked to a global phenomenon now referred to as El Niño–Southern Oscillation. La Niña is sometimes called El Viejo, anti-El Niño, or simply “a cold event.” El Niño events have been occurring for thousands of years with at least 26 occurring since 1900.


Personal Log

I boarded NOAA’s Oregon II yesterday when the ship was virtually empty. It was Sunday, and we were not set to leave until mid-afternoon the following day (and now Tuesday, July 9). Spending the night on the ship was more comfortable than I had expected. While the stateroom was cramped (I share it with one other crew member), the space is surprisingly efficient. I had plenty of space to store my gear. The bunkbed was more cozy than restricted.

NOAA Pascagoula Lab
Even though it was Sunday and everything was closed, I had to stop for a selfie.
NOAA Ship Oregon II
My first look at NOAA Ship Oregon II.

My first day in Pascagoula, MS was spent learning about the town. Pascagoula is a port city with a historic shipyard. Pascagoula is home to the state’s largest employer, Ingalls Shipbuilding, the largest Chevron refinery in the world, and Signal International, an oil platform builder. Prior to World War II, the town was a small fishing community, but the population jumped with war-driven shipbuilding. The city’s population peak in the late 1970s, but today, there are less than 25,000 in the area. Pascagoula continues to be an industrial center surrounded by the growing tourism industry across the Gulf region to the east and west of the port. The population also declined when Naval Station Pascagoula was decommissioned in 2006. The old naval base is located on manmade strip of land called Singing River Island and is in the middle of the port. The port still maintains a large Coast Guard contingent as well as serving as the home portfor the NOAA Ships Gordon GunterOregon II, and Pisces. The NOAA port is actually called the Gulf Marine Support Facility and is located a block from NOAA’s National Marine Fisheries Service Mississippi Laboratory.

Betsy Petrick: Career Choice – Marine Archaeology, July 1, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
 Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: July 1, 2019

Interview with Scientist Melanie Damour

Melanie Damour is the Co-Principal Investigator and Co-Chief Scientist on the expedition.  She is responsible for directing all archaeological aspects of the investigation. We talked about her path to her career, and her advice for young people who might want to pursue ocean science.

Melaine Damour
Melanie Damour, Marine Archaeologist

When I asked her what sea creature she would choose to be, she immediately answered  “A mermaid. Mermaids have the agility of fish, but they are smart.” Melanie may not be a mermaid, but she is agile as a fish and smart.  

Melanie knew from early childhood what she wanted to be when she grew up.  Her father was a fire and rescue diver, and Melanie sometimes got to see him at work.  She was fascinated by scuba diving. With her father’s support, she learned to scuba dive when she was only eight years old.  The second event that shaped her career was a visit to the USS Constitution in Boston Harbor. This historic sailing ship is open to the public and played an important role in the war for independence from Britain. When Melanie visited this ship, she was awed by the ship and its history, and decided that somehow she was going to marry her two favorite things – diving and maritime history – for her career.  

She got her scuba diving certification when she was 14 years old, and studied history in high school.  She went to Florida State University to study anthropology. She took classes in archaeology, cultural and physical anthropology, and linguistics, all the disciplines within Anthropology.  She was offered a teaching assistantship which allowed her to get into a graduate program and study submerged paleoindian sites in Florida.  The offer was too good to refuse, so she began her graduate work at Florida State right away. Now she works for the federal Bureau of Ocean Energy Management (BOEM) as a marine archaeologist. 

Melanie reflected on what makes a good scientist.  Her first response was that good scientists are always asking questions; being curious is what leads to new understandings.   It’s also important to be open-minded. Scientists can’t expect things to turn out a certain way as this would blind them to what is actually happening.  A scientist has to be persistent in the face of problems and always be looking for different ways and better ways to attack a problem. The ability to work well in a team is key.  Each member of a good team contributes to the end goal. Taking into account different perspectives leads to a more accurate and complete picture.  

Melanie has worked on projects in the Gulf of Mexico, the Atlantic and the Pacific.  Her personal research interests led her to Guatemala, where she worked in Lake Petén Itzá  on a submerged Mayan port site.  She went to Panama to map a Spanish merchant ship that sank off the coast in 1681.  This is her favorite shipwreck so far. It is well preserved by the river sediments that poured into the Gulf there. The ship contains hundreds of wooden boxes full of supplies that Spain had sent to the colonies. The boxes contain nails and scissors, and some yet to be opened my contain books that are still preserved.  After this expedition, Melanie is heading to Mexico to dive with her husband on a site that may turn out to be her new favorite. They will be looking for the wreck of one of the ships belonging to Hernán Cortés, the Spanish explorer.  In 1519, Cortés sank his own ships to prevent his crew from leaving and returning to Cuba. This set the course for the conquest of the Aztecs. Last summer, Melanie and her husband found an anchor and wood that dated to the early 1500s. The wood was determined to be from Spain. This puts the anchor in the right time frame to be one of Cortés’ sunken ships.

Melanie pointed out that it isn’t easy to get a job as a marine archaeologist because it is a small field and there are not many permanent jobs.  But she also encourages anyone who wants to pursue this as a career to be persistent and not give up. “It’s not always a straight line from A to B,” she says; in fact, you may discover that when your plan isn’t working out, you actually prefer the new track your life takes – that Plan B option that you may not have known existed when you began your career. 

“The greatest threat to our oceans today is humans,” Melanie said.  “Our lack of consideration for the consequences of our actions is the greatest threat we face.”  

Marine archaeology is one of many subdisciplines in ocean sciences, and the future of our oceans depends on many scientists working together to reverse the trajectory of degradation we are on.   

Sunset on the Gulf of Mexico
Sunset on the Gulf of Mexico

Betsy Petrick: Core Sampling in the Lab, June 30, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
 Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 30, 2019


Science Log

When the ROV returns to the ship, the scientists jump into action.  The sediment cores are brought into the lab for sampling.

Core samples
Core samples are loaded on the ROV in crates and with luck they all come back the same way.

Dr. Justyna Hampel, an aquatic biogeochemist and postdoctoral research assistant at the University of Southern Mississippi, is researching how microorganisms colonize on and around deep sea shipwrecks.  She is taking sediment samples for DNA testing, and identifying nutrients in sediment pore water, the water trapped inside the sediment. Her study will help us learn about the relationship between microbes and shipwreck biomes. It took many hands to process the core sediments for her research.

As assistant to graduate student Rachel Mugge, I felt a bit like a nurse in an operating room. Every sample was taken carefully to ensure it was not contaminated.

Here’s how it went: Carefully remove the plug from the bottom of the core sample tube.  Slide the core onto the extruder quickly so as not to lose any sediment.  (An extruder is a wheel on a threaded bolt. It is precisely calibrated to measure 2 cm increments as you turn the wheel 4 2/3 times.  )

Remove the lid and use a siphon hose to remove the sea water on the surface.  Rachel does this by placing one end of the hose in the core tube and the other end in her mouth and sucking gently to get the flow of water going.  Once it is moving she lets the water drain into a basin. Try this at home! You can get water to flow up and over an obstacle with this technique.  

siphon
It takes finesse to get the siphon working.

Next Rachel turns the extruder wheel until the mud is exposed at the top of the tube.  She describes the mud to lab manager Anirban Ray, who writes it down next to the sample number. (“S 54, brown, unconsolidated, black streaks, tube worm burrows.”)  I snap the paper wrapping off a wooden tongue depressor and hand it to her. She uses it to dig a sample out of the center of a sediment core. I hand her an open vial and she fills it.  I cap it. Next she puts some sediment into a petri dish and Anirban seals and labels it. Then I hand her an open sterile whirl-pak for a final blob of sediment. I whirl this little baggy and twist tie it closed.  Vials and whirl-paks go in the deep freezer. We do these three steps 40 times for 120 samples. The challenge I find in this kind of repetitive task is how quick and efficient can I be while still being careful and precise?  Let me tell you. Pretty fast and efficient. 

sediment sample
Putting a sediment sample into a vial. The core is on the extruder, which pushes the sediment upward when you turn the wheel.

At the same time this was going on, Justyna was extracting pore water (water that comes from inside the sediment) to analyze it for nutrients.

Extracting pore water
Justyna attaches syringes to the peepers to extract the pore water from the sediment.


Personal Log

While we worked, I had a porthole at my station to keep an eye on the ocean as we cruised out to our third and final shipwreck.  Dolphins raced with our ship this evening. Silvery flying fish skittered over the water reminding me of hummingbirds, the way their fins were a blur of movement.  The color of the ocean now can best be described in terms of watercolors. Ultramarine. That says it all.

Calm sea
Clouds are reflected in a calm sea.

Betsy Petrick: Highs and Lows of Scientific Exploration, June 27, 2019



NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 27, 2019

Science Log

Yesterday was a doozy of a day I think everyone on the ship would agree.  One frustrating setback after another had to be overcome, but one by one each problem was solved and the day ended successfully.  If you would like to read more about this expedition, it is featured on the NOAA Ocean Exploration and Research website.

The first discovery yesterday morning was that the ship’s pole-mounted ultrashort baseline tracking system (USBL) had been zapped with electricity overnight and was unusable.  This piece of equipment is a key piece of a complex system. Without it we would not know precisely where the ROV was, nor could we control the sweeps of the ROV over the shipwrecks for accurate mapping.  The scheduled dive time of 1330 (that’s 1:30PM!) was out of the question. There was even talk of returning to port to get new equipment. Yikes. This would cost the expedition $30,000-$40,000 for a full 24 hours of operation, and no one wanted to do this. 

Max, the team’s underwater systems engineer, worked his magic, and replaced the damaged part.   This required expert knowledge and some tricky maneuvers. Once this was fixed, the next step was to send a positioning beacon down to the seafloor to calibrate the signal from the ship to the ROV so that we would be able to track it precisely.  Calibrating means that the ship and the ROV have to agree on where home is. The beacon is attached to three floats connected together to make a “lander”, and then 2 heavy weights are attached as well. The weights take the beacon down. The lander brings it back to the surface later.  The deployment went without a hitch. However, when the lander floated to the surface, we noticed it was floating in a strange way. When we hauled it aboard, we discovered that one of the glass floats had imploded – probably due to a material defect under the intense pressure at 1200m below sea level – and all we had left of that unit was a shattered mess of yellow plastic. 

imploded float
The glass float inside this yellow “hard hat” imploded. It’s a good thing there are two others to bring the transponder back to the surface.

In spite of that, the calibration was complete and we could send the ROV on its mission.  We loaded the experiments onto the back of the ROV, along with another lander and weights.  This was the exciting moment! The crane lifted the ROV off the ship deck and swung it out over the water.  But in the process, the chain holding the weights broke and, with a mighty groan from all of us watching, both of them sank into the sea.  Back came the ROV for a new set of weights. Luckily nothing was damaged. By 1745 (5:30PM), 5 hours after the scheduled time, the ROV went over the side for a second time successfully.  Once this was done the Chief Scientist was able to crack a smile and relax a bit.

mounting a new lander
The team works to mount a new lander on the ROV.
Launching the ROV
Launching the ROV off the back deck, loaded with experimental equipment and a lander.
mechanical arm
The mechanical arm on the ROV retrieved a microbial experiment left on the sea floor in 2017. We watched it all on the big screen in the lab.

Now we had an hour to wait for the ROV to reach the sea floor again, and begin its mission of deploying and retrieving experiments.  Inside the cabin of the ship, some of us sat mesmerized by the drifting phytoplankton on the big screen, hoping to see the giant squid that had been spotted on the last expedition. Up in the pilothouse the captain was on duty holding the ship in one spot for as long as it took for the ROV to return. Not an easy job!  

Yesterday I saw what scientific exploration is really like.  As someone said, “Two means one, and one means none,” meaning that when you are out at sea, you have to have a second or even a third of every critical piece of equipment because something is inevitably going to break and you will not be able to run to Walmart for a new one.  Failures and setbacks are part of the game. As a NOAA Teacher at Sea, I am looking at all that goes on on the ship through the lens of a classroom teacher. Yesterday’s successes were due to clear headed thinking, perseverance, and team work by many. These are precisely the qualities I hope I can foster in my students.  

Betsy Petrick: All Aboard! Days 1 and 2, June 25, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 24-25, 2019

Science Log

On Monday I was introduced to the R/V Point Sur in Gulfport, Mississippi.  Every nook and cranny of this vessel is packed, and it took the science crew most of the day to pack it even fuller with all the equipment they need.  The largest single item is the remotely operated vehicle (ROV) Odysseus which makes a large footprint on the back deck.   Over it hangs an enormous pulley that will be used to lift Odysseus in and out of the water.

R/V Point Sur in port
R/V Point Sur in port
This the ROV Odysseus waiting to be deployed on a shipwreck. It’s as eager as I am to see it operate. It looks like it is ready to jump in!


When I arrived at the port, I met Dr. Leila Hamdan, the Chief Scientist, and some of the crew.  We have two Rachels on board and they are both graduate students studying microbial biomes. Over time a layer of microbes form a “biofilm” on different kinds of wood and metal. This organic layer forms on the surface of a shipwrecks, and this is what the scientists are studying. They want to know how this layer speeds up or slows down the corrosion of shipwrecks and how other organisms use this habitat.

I was able to join in and help put together microbial recruitment experiment towers, or MREs for short. Each tower is a PVC pipe fitted with samples of wood, both oak and pine, and some metal samples.  Each of these pipes fits loosely inside a second pipe, and then each set is roped together and attached to a float. Each tower is rigged in such a way that it will sink to the sea floor vertically, and then the outer pipe will rise to expose the inner tower and the sample plugs.  After four months, the MREs will be retrieved, and the scientists will be studying what kinds of microbes grew on the samples. Their experiments add to our understanding of how shipwrecks act as a habitat for corals and other organisms

Microbial Recruitment Experimental tower
Here we are putting together one of the MREs which will be sent to the ocean floor near one of the shipwrecks.


Finally, at the end of the day we had to quickly load the last of the gear on the ship before a huge container ship of bananas arrived to dock in our space. We set up a “fire line” to hand the last of the gear into the ship as fast as possible. We could see the huge Chiquita banana ship heading our way. The port was already stacked four high with Chiquita banana shipping containers and more bananas were coming! Who is eating so many bananas?!

As the newbie member of the crew, I was allowed to stay on board as the crew moved the ship from the large loading dock to the smaller pier on the other side of the port.  This meant I got a taste of the ocean breezes that are going to help keep us cool once we leave land. I saw pelicans glide low over the water as I stood on the deck and imagined all the new and amazing things I am about to see and do.

Day 2

If you’ve never been to Mississippi in the summer, I can tell you it is HOT and HUMID.  It’s hard to imagine until you try to actually do something in it. If you were an egg, you would definitely fry on the sidewalk.  Despite the heat, all over the ship crew and scientists are working, bolting things together, greasing mechanical parts, putting last minute touches on their experimental equipment, organizing the lab and working at laptops. To mitigate the heat and humidity outside, the air-conditioning runs on high inside the ship. This helps to keep the humidity from damaging the equipment, as well as to keep the crew happy.   So it is actually COLD in here! 

In addition to all this activity, a group of high school students visited the ship. They are participating in The Ocean Science and Technology Camp to learn about marine science careers and they will be tracking our progress from shore. Each of our many talented scientists shared a bit about their research and their roles in the ship. I will share more about that in another blog. We are scheduled to leave tonight at 1930 hrs, that’s 7:30PM for most of us! Stay with me, it’s going to be awesome!

summer camp students
Rachel explains how core samples are taken to summer camp students.

Betsy Petrick: Hurry Up and Shape Up to Ship Out, June 13, 2019

NOAA Teacher at Sea

Betsy Petrick

Aboard R/V Point Sur

June 24 – July 3, 2019


Mission:
Microbial Stowaways: Exploring Shipwreck Microbiomes in the deep Gulf of Mexico

Geographic Area: Gulf of Mexico

Date: June 13, 2019

Introduction

In just two weeks I will be shipping out of Gulfport, Mississippi on the University of Southern Mississippi Research Vessel Point Sur.  As a NOAA Teacher at Sea, I will actually be a student again, learning all I can about ocean archaeology and deep-sea microbial biomes. I feel very lucky to have this opportunity to learn what it is like to live and work at sea! In particular, I am looking forward to seeing how archaeologists work at sea.  My undergraduate degree was in archaeology and I worked in the desert of New Mexico and southern Colorado where we mapped with pencil and paper, and took samples with a shovel. Ocean archaeology will require more sophisticated technology and a different approach!  

Let me give you a little background about myself.  My husband and I live in a tiny town called Husum on the White Salmon River in Washington State. My family enjoys outdoor activities including rafting and kayaking. This year my daughter is working as a raft guide on the White Salmon. I know when the commercial raft trips are passing by because I can hear the tourists scream as their boats go over Husum Falls!   My son is studying Engineering in college and is spending this summer in Spain learning Spanish and surfing. Unfortunately for my husband, summer is the busy time for construction. As a general contractor, he will be working hard.

Petrick family rafting
The whole family rafting the Deschutes River in Oregon, hmmm… quite a few years ago, but we still love it!

During the regular school year, I teach fourth grade math and science at the local intermediate school.  One of our biggest science units each year is to raise salmon in the classroom and learn about the salmon life cycle, adaptations and the importance of protecting salmon habitat.  In addition, this year we tackled a big project around plastic pollution in the oceans and how we can make a difference in our own community through education and action. My students are rightfully indignant about the condition of our oceans, and I have also become an ocean advocate since initiating this project.

Student salmon drawings
Kids made scientific drawings of salmon, and then painted and stuffed them. They swam around the classroom ceiling all year!

Scientists on the Point Sur have several goals. First of all, they will map two shipwrecks that have never been explored.  Both are wooden-hulled historic shipwrecks that were identified during geophysical surveys related to oil and gas exploration.  Archaeologists hope to determine how old the ships are, what their purpose was, and their nationality, to determine if they are eligible for listing on the National Register of Historic Places (NRHP).   A third shipwreck we will visit is a steel-hulled, former luxury steam yacht that sank in 1944. It was previously mapped and some experiments were left there in 2014 which we will recover.

In addition to mapping, we will take samples of the sediments around the ships to see how shipwrecks shape the microbial environment.  The Gulf of Mexico is a perfect place for this work because it is rich in shipwrecks. Shipwrecks create unique reef habitats that are attractive to organisms both large and small. I wonder what kinds of sea life we will discover living around the shipwrecks we visit?

The first question my students asked me was if I was going to scuba dive. While that would be exciting, it’s not allowed for Teachers at Sea! To gather information about the shipwrecks, we will deploy a remotely operated vehicle (ROV) called Odysseus (Pelagic Research Services, Inc.) . Odysseus will have a camera, a manipulator arm to gather samples, a tray to carry all the sampling gear and SONAR and lights. I think I will be content to watch its progress on the ship’s video screens.

School is almost out, and my fourth graders are chomping at the bit to get out if the classroom and begin their own summer adventures, but I hope they will follow my blog and keep me company while I am on board ship!    Am I feeling a little intimidated? Absolutely! But also very excited to have the opportunity to participate in what is sure to be a great adventure.

Anne Krauss: Farewell and Adieu, November 11, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: November 11, 2018

Weather Data from home

Conditions at 1615

Latitude: 43° 09’ N

Longitude: 77° 36’ W

Barometric Pressure: 1027 mbar

Air Temperature: 3° C

Wind Speed: SW 10 km/h

Humidity: 74%

 

Science and Technology Log

 

Participating in the Shark/Red Snapper Longline Survey provided a porthole into several different career paths. Each role on board facilitated and contributed to the scientific research being conducted. Daily longline fishing activities involved working closely with the fishermen on deck. I was in awe of their quick-thinking adaptability, as changing weather conditions or lively sharks sometimes required a minor change in plan or approach. Whether tying intricate knots in the monofilament or displaying their familiarity with the various species we caught, the adept fishermen drew upon their seafaring skill sets, allowing the set and haulback processes to go smoothly and safely.

Chief Boatswain Tim Martin deploying the longline gear. The sun is shining in the background.
Chief Boatswain Tim Martin deploying the longline gear.

Chief Boatswain Tim Martin is preparing to retrieve the longline gear. A grapnel and his hand are visible against the water.
Chief Boatswain Tim Martin preparing to retrieve the longline gear with a grapnel

Even if we were on opposite work shifts, overlapping meal times provided the opportunity to gain insight into some of the careers on board. As we shared meals, many people spoke of their shipboard roles with sentiments that were echoed repeatedly: wanted a career that I could be proud ofa sense of adventureopportunity to see new places and give backcombining adventure and sciencewanted to protect the resources we have

I had the opportunity to speak with some of the engineers and fishermen about their onboard roles and career paths. It was interesting to learn that many career paths were not direct roads, but winding, multilayered journeys. Some joined NOAA shortly after finishing their education, while others joined after serving in other roles. Some had experience with commercial fishing, and some had served on other NOAA vessels. Many are military veterans. With a name fit for a swashbuckling novel set on the high seas, Junior Unlicensed Engineer Jack Standfast, a United States Navy veteran, explained how the various departments on board worked together. These treasured conversations with the Engineering Department and Deck Department were enlightening, a reminder that everyone has a story to tell. I very much appreciate their patience, kindness, and willingness to share their expertise and experiences.

Hard hats, PFDs, and gloves belonging to the Deck Department are hanging on hooks.
Hard hats, PFDs, and gloves belonging to the Deck Department

Skilled Fisherman Mike Conway standing on deck.
The ship had a small library of books, and several crew members mentioned reading as a favorite way to pass the time at sea. Skilled Fisherman Mike Conway shared several inspiring and philosophical websites that he enjoyed reading.

 

Lead Fisherman and Divemaster Chris Nichols:

In an unfamiliar setting, familiar topics surfaced in conversations, revealing similarities and common interests. Despite working in very different types of jobs, literacy was a popular subject in many of the conversations I had on the ship. I spoke to some of the crew members about how literacy factored into their daily lives and career paths. Some people described their family literacy routines at home and shared their children’s favorite bedtime stories, while others fondly remembered formative stories from their own childhood. Lead Fisherman Chris Nichols recalled the influence that Captains Courageous by Rudyard Kipling had on him as a young reader. He described how exciting stories such as Captains Courageous and The Adventures of Tom Sawyer inspired a sense of adventure and contributed to pursuing a unique career path. Coming from a family of sailors, soldiers, and adventurers, Chris conveyed the sense of pride that stems from being part of “something bigger.” In this case, a career that combines adventure, conservation, and preservation. His experiences with the United States Navy, commercial fishing, NOAA, and scuba diving have taken him around the world.

Echoing the themes of classic literature, Chris recommended some inspiring nonfiction titles and podcasts that feature true stories about human courage, overcoming challenges, and the search for belonging. As a United States Navy veteran, Chris understood the unique reintegration needs that many veterans face once they’ve completed their military service. He explained the need for a “tribe” found within the structure of the military or a ship. Chris described the teamwork on the ship as “pieces of a puzzle” in a “well-oiled machine.”

A pre-dive safety briefing takes place on the ship's bridge.
Led by Divemaster Chris Nichols, also the Oregon II’s Lead Fisherman and MedPIC (Medical Person in Charge), the team gathered on the bridge (the ship’s navigation and command center) to conduct a pre-dive operation safety briefing. Nichols appears in a white t-shirt, near center.

Chris also shared some advice for students. He felt it was easier for students to become good at math and to get better at reading while younger and still in school. Later in life, the need for math may resurface outside of school: “The things you want to do later…you’ll need that math.” As students grow up to pursue interests, activities, and careers, they will most likely need math and literacy to help them reach their goals. Chris stressed that attention to detail—and paying attention to all of the details—is extremely important. Chris explained the importance of remembering the steps in a process and paying attention to the details. He illustrated the importance of knowing what to do and how to do it, whether it is in class, during training, or while learning to dive.

Chris’ recommendations:

  • Tribe: On Homecoming and Belonging by Sebastian Junger
  • Team Never Quit Podcast with Marcus Luttrell & David Rutherford

The sun rises over the Gulf of Mexico.
Sunrise over the Gulf of Mexico

Skilled Fisherman Chuck Godwin:

Before joining NOAA, Skilled Fisherman Chuck Godwin served in the United States Coast Guard for fifteen years (active duty and reserves). After serving in the military, Chuck found himself working in education. While teaching as a substitute teacher, he saw an ad in the newspaper for NOAA careers and applied. Chuck joined NOAA in 2000, and he has served on NOAA Ships Bell M. Shimada, Pisces, Gordon Gunter, and Oregon II.

Echoing Chris Nichols’ description of puzzle pieces in a team, Chuck further explained the hierarchy and structure of the Deck Department on the Oregon II. The Deck Department facilitates the scientific research by deploying and retrieving the longline fishing gear while ensuring a safe working environment. From operating the winches and cranes, to hauling in some of the larger sharks on the shark cradle, the fishermen perform a variety of tasks that require both physical and mental dexterity. Chuck explained that in the event of an unusual situation, the Deck Department leader may work with the Bridge Officer and the Science watch leader and step in as safety dictates.

Skilled Fisherman Chuck Godwin
Skilled Fisherman Chuck Godwin. Photo courtesy of Chuck Godwin.

In addition to his ability to make a fantastic pot of coffee, Chuck has an impish sense of humor that made our twelve-hour work shifts even more interesting and entertaining. Over a late-night cup of coffee, I found out that we shared some similar interests. Chuck attended the University of Florida, where he obtained his bachelor’s degree in Wildlife Management and Ecology. He has an interest in writing and history, particularly military history. He co-authored a published paper on white-tailed deer. An avid reader, Chuck usually completes two or three books during a research cruise leg. He reads a wide range of genres, including sci-fi, westerns, biographies, military history, scientific texts, and gothic horror. Some of his favorite authors include R.A. Salvatore, Ernest Hemingway, and Charles Darwin. In his free time, he enjoys roleplaying games that encourage storytelling and creativity. For Chuck, these adventures are not about the end result, but the plotlines and how the players get there. Like me, Chuck has done volunteer work with veterans. He also values giving back and educating others about the importance of science and the environment, particularly water and the atmosphere. Chuck’s work with NOAA supports the goal of education and conservation to “preserve what we have.”

 

 

Personal Log

Far from home, these brief conversations with strangers seemed almost familiar as we discussed shared interests, goals, and experiences. As I continue to search for my own tribe and sense of belonging, I will remember these puzzle pieces in my journey.

A high flyer and buoy float on the surface of the water.
A high flyer and buoy mark one end of the longline.

My path to Teacher at Sea was arduous; the result of nearly ten years of sustained effort. The adventure was not solely about the end result, but very much about plotlines, supporting (and supportive) characters, and how I got there: hard work, persistence, grit, and a willingness to fight for the opportunity. Every obstacle and roadblock that I overcame. As a teacher, the longline fishing experience allowed me to be a student once again, learning new skills and complex processes for the first time. Applying that lens to the classroom setting, I am even more aware of the importance of clear instructions, explanations, patience, and encouragement. Now that the school year is underway, I find myself spending more time explaining, modeling, demonstrating, and correcting; much of the same guidance I needed on the ship. If grading myself on my longline fishing prowess, I measured my learning this way:

If I improved a little bit each day by remembering one more thing or forgetting one less thing…

If I had a meaningful exchange with someone on board…

If I learned something new by witnessing natural phenomena or acquired new terminology…

If I encountered an animal I’d never seen in person, then the day was a victory.

And I encountered many creatures I’d never seen before. Several species of sharks: silky, smooth-hound, sandbar, Atlantic sharpnose, blacknose, blacktip, great hammerhead, lemon, tiger, and bull sharks. A variety of other marine life: groupers, red snapper, hake, and blueline tilefish. Pelicans and other seabirds. Sharksuckers, eels, and barracudas.

The diminutive creatures were just as interesting as the larger species we saw. Occasionally, the circle hooks and monofilament would bring up small hitchhikers from the depths. Delicate crinoids and brittle stars. Fragments of coral, scraps of seaweed and sponges, and elegant, intricate shells. One particularly fascinating find: a carrier shell from a marine snail (genus: Xenophora) that cements fragments of shells, rocks, and coral to its own shell. The evenly spaced arrangement of shells seems like a deliberately curated, artistic effort: a tiny calcium carbonate collage or shell sculpture. These tiny hints of what’s down there were just as thrilling as seeing the largest shark because they assured me that there’s so much more to learn about the ocean.

A spiral-shaped shell belonging to a marine snail.
At the base of the spiral-shaped shell, the occupant had cemented other shells at regular intervals.

The spiral-shaped shell belonging to a marine snail.
The underside of the shell.

Like the carrier snail’s shell collection, the small moments and details are what will stay with me:

Daily activities on the ship, and learning more about a field that has captivated my interest for years…

Seeing glimpses of the water column and the seafloor through the GoPro camera attached to the CTD…

Hearing from my aquatic co-author while I was at sea was a surreal role reversal…

Fishing into the middle of the night and watching the ink-black water come alive with squid, jellies, flying fish, dolphins, sailfish, and sharks…

Watching the ever-shifting moon, constellations, clouds, sunsets, and sunrise…

Listening to the unique and almost musical hum of the ship’s machinery and being lulled to sleep by the waves…

And the sharks. The breathtaking, perfectly designed sharks. Seeing and handling creatures that I feel strongly about protecting reinforced my mission to educate, protect, and conserve. The experience reinvigorated my connection to the ocean and reiterated why I choose to reduce, reuse, and recycle. Capturing the experience through the Teacher at Sea blog reinforced my enjoyment of writing, photography, and creative pursuits.

 

Teacher at Sea Anne Krauss looks out at the ocean.
Participating in Teacher at Sea provided a closer view of some of my favorite things: sharks, ships, the sea, and marine science.

The Gloucester Fisherman's Memorial Statue
The Gloucester Fisherman’s Memorial Statue

In my introductory post, I wrote about formative visits to New England as a young child. Like so many aspects of my first glimpses of the ocean and maritime life, the Gloucester Fisherman’s Memorial statue intrigued me and sparked my young imagination. At that age, I didn’t fully grasp the solemn nature of the tribute, so the somber sculpture and memorial piqued my interest in fishing and seafaring instead. As wild as my imagination was, my preschool self could never imagine that I would someday partake in longline fishing as part of a Shark/Red Snapper Survey. My affinity for marine life and all things maritime remains just as strong today. Other than being on and around the water, docks and shipyards are some of my favorite places to explore. Living, working, and learning alongside fishermen was an honor.

Teacher at Sea Anne Krauss visiting a New England dock as a young child.
I was drawn to the sea at a young age.

Teacher at Sea Anne Krauss in Gloucester
This statue inspired an interest in fishing and all things maritime. After experiencing longline fishing for myself, I revisited the statue to pay my respects.

A commercial longline fisherman's hand holds on to a chain, framed against the water.
A New England commercial longline fisherman’s hand

Water and its fascinating inhabitants have a great deal to teach us. The Atlantic and the Gulf of Mexico reminded me of the notion that: “Education is not the filling of a pail, but the lighting of a fire.” Whether misattributed to Plutarch or Yeats or the wisdom of the Internet, the quote conveys the interest, curiosity, and appreciation I hope to spark in others as I continue to share my experience with my students, colleagues, and the wider community.

I am very grateful for the opportunity to participate in Teacher at Sea, and I am also grateful to those who ignited a fire in me along the way. Thank you to those who supported my journey and adventure. I greatly appreciate your encouragement, support, interest, and positive feedback. Thank you for following my adventure!

A collage of images from the ship. The shapes of the images spell out "Oregon II."
Thank you to NOAA Ship Oregon II and Teacher at Sea!

The sun shines on the water.
The sun shines on NOAA Ship Oregon II.

Did You Know?

Xenophora shells grow in a spiral, and different species tend to collect different items. The purpose of self-decoration is to provide camouflage and protection from predators. The additional items can also strengthen the snail’s shell and provide more surface area to prevent the snail from sinking into the soft substrate.

Recommended Reading

Essentially two books in one, I recommend the fact-filled Under Water, Under Earth written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski. The text was translated from Polish by Antonia Lloyd-Jones.

Cover of Under Earth
Under Earth written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski; published by Big Picture Press, an imprint of Candlewick Press, Somerville, Massachusetts, 2016

One half of the book burrows into the Earth, exploring terrestrial topics such as caves, paleontology, tectonic plates, and mining. Municipal matters such as underground utilities, water, natural gas, sewage, and subways are included. Under Earth is a modern, nonfiction, and vividly illustrated Journey to the Center of the Earth.

Cover of Under Water
Under Water written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski; published by Big Picture Press, an imprint of Candlewick Press, Somerville, Massachusetts, 2016

Diving deeper, Under Water explores buoyancy, pressure, marine life, ocean exploration, and several other subjects. My favorite pages discuss diving feats while highlighting a history of diving innovations, including early diving suit designs and recent atmospheric diving systems (ADS). While Under Earth covers more practical topics, Under Water elicits pure wonder, much like the depths themselves.

Better suited for older, more independent readers (or enjoyed as a shared text), the engaging illustrations and interesting facts are easily devoured by curious children (and adults!). Fun-fact finders and trivia collectors will enjoy learning more about earth science and oceanography. Information is communicated through labels, cross sections, cutaway diagrams, and sequenced explanations.

 

 

 

 

 

Anne Krauss: Tooth Truth and Tempests, September 30, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: September 30, 2018

Weather Data from Home

Conditions at 1515

Latitude: 43° 09’ N

Longitude: 77° 36’ W

Barometric Pressure: 1026.3 mbar

Air Temperature: 14° C

Wind Speed: S 10 km/h

Humidity: 71%

 

Science and Technology Log

My students sent me off with many shark questions before I left for the Shark/Red Snapper Longline Survey. Much of their curiosity revolved around one of the most fear-inducing features of a shark: their teeth! Students wanted to know:

Why do sharks eat fish?
How and why do sharks have so many teeth?
Why do sharks have different kinds of teeth?
Do sharks eat each other? What hunts sharks, besides other sharks?
And one of my favorite student questions: Why do sharks eat regular people, but not scientists?

Most people think of sharks as stalking, stealthy, steel-grey hunters. With a variety of colors, patterns, fin shapes, and body designs, sharks do not look the same. They do not eat the same things, or even get their food the same way. Instead, they employ a variety of feeding strategies. Some gentle giants, like the whale shark (Rhincodon typus), are filter feeders. They strain tiny plants and animals, as well as small fish, from the water. Others, such as the angel shark (Squatina spp.), rely on their flattened bodies, camouflage, and the lightning-fast element of surprise. Instead of actively pursuing their prey, they wait for food to come to them and ambush their meal. These suction-feeding sharks have tiny, pointed, rearward-facing teeth to trap the prey that has been sucked into the shark’s mouth. This video demonstrates how the angel shark uses clever camouflaging and special adaptations to get a meal:

https://www.nationalgeographic.com.au/videos/shark-kill-zone/angel-shark-stealth-2838.aspx

A circle hook is held up against the sky. The horizon is in the background.
Circle hooks are used in longline fishing. Each hook is baited with mackerel (Scomber scombrus).

A pile of frozen mackerel used as bait.
Frozen mackerel (Scomber scombrus) is used as bait.

Circle hooks are placed along the edges of plastic barrels. The hooks are connected to thick, plastic fishing line called monofilament.
The circle hooks and gangions are stored in barrels. The hooks are attached to thick, plastic fishing line called monofilament.

100 circle hooks baited with mackerel. The baited hooks are placed on the edges of barrels, which are sitting on deck.
All 100 circle hooks were baited with mackerel, but sharks also eat a variety of other fish.

The sharks we caught through longline fishing methods were attracted to the Atlantic mackerel (Scomber scombrus) that we used as bait. Depending on the species of shark and its diet, shark teeth can come in dozens of different shapes and sizes. Instead of just two sets of teeth like we have, a shark has many rows of teeth. Each series is known as a tooth file. As its teeth fall out, the shark will continually grow and replace teeth throughout its lifetime—a “conveyor belt” of new teeth. Some sharks have 5 rows of teeth, while the bull shark (Carcharhinus leucas) may have as many as 50 rows of teeth!

The sandbar shark (Carcharhinus plumbeus) usually has about 14 rows of teeth. They may lose teeth every ten days or so, and most sharks typically lose at least one tooth a week. Why? Their teeth may get stuck in their prey, which can be tough and bony. When you don’t have hands, and need to explore the world with your mouth, it’s easy to lose or break a tooth now and then. Throughout its lifetime, a shark may go through over 30,000 teeth. The shark tooth fairy must be very busy!

A sandbar shark (Carcharhinus plumbeus) tooth with serrated edges.
Sandbar shark (Carcharhinus plumbeus) tooth. The sandbar shark is distinguishable by its tall, triangular first dorsal fin. Sharks’ teeth are equally as hard as human teeth, but they are not attached to the gums by a root, like human teeth. Image credit: Apex Predators Program, NEFSC/NOAA

Similar to our dining utensils, sharks’ teeth are designed for cutting, spearing, and/or crushing. The tooth shape depends upon the shark’s diet. Sharks’ teeth are not uniform (exactly the same), so the size and shape of the teeth vary, depending on their location in the upper and lower jaws. Some sharks have long, angled, and pointed teeth for piercing and spearing their food. Similar to a fork, this ensures that their slippery meals don’t escape. Other sharks and rays have strong, flattened teeth for crushing the hard shells of their prey. These teeth work like a nutcracker or shellfish-cracking tool. Still others, like the famously fierce-looking teeth of the great white, are triangular and serrated. Like a steak knife, these teeth are used for tearing, sawing, and cutting into their prey.

A shortfin mako shark (Isurus oxyrinchus) tooth is narrow and pointed.
A shortfin mako shark (Isurus oxyrinchus) tooth is narrow and pointed. Image credit: Apex Predators Program, NEFSC/NOAA

Smooth dogfish (Mustelus canis) teeth are flattened for crushing prey.
Smooth dogfish (Mustelus canis) teeth are flattened for crushing prey. Image credit: Apex Predators Program, NEFSC/NOAA

A silky shark (Carcharhinus falciformis) tooth has serrated edges.
A silky shark (Carcharhinus falciformis) tooth has serrated edges. Image credit: Apex Predators Program, NEFSC/NOAA

A tiger shark (Galeocerdo cuvier) tooth is jagged and serrated.
A tiger shark (Galeocerdo cuvier) tooth is jagged and serrated. Image credit: Apex Predators Program, NEFSC/NOAA

Link to more shark tooth images: https://www.nefsc.noaa.gov/rcb/photogallery/shark_teeth.html

Beyond their teeth, other body features contribute to a shark’s ability to bite, crush, pursue, or ambush their prey. The powerful muscles that control their jaws and swimming ability, the position of their mouth, and the shape of their caudal (tail) fin all influence how a shark gets its food. Unlike humans, sharks do not chew their food. They swallow their food whole, or use their teeth to rip, shred, crush, and tear their food into smaller chunks that the shark can swallow. No need to floss or brush after a meal: sharks’ teeth contain fluoride, which helps to prevent cavities and decay.

Some people may find it hard to swallow the idea that sharks aren’t mindless menaces, but shark encounters are quite rare. Sharks have many extraordinary adaptations that make them efficient swimmers and hunters of other marine life, not humans. Whenever sharks come up in conversation, I am careful to dispel myths about these captivating creatures, trying to replace fear with facts (and hopefully, curiosity and respect). Since sharks can’t talk, I’m happy to advocate for them. Despite the way sharks are negatively portrayed in the media, I assure my students that sharks far prefer to eat bony fish, smaller sharks, skates, rays, octopus, squid, bivalves, crustaceans, marine mammals, plankton, and other marine life over humans. Instead of fear, I try to instill awareness of the vital role sharks fulfill in the ecosystem. We are a far greater threat to them, and they require our respect and protection.

For more information on sharks: https://oceanservice.noaa.gov/facts/sharkseat.html

 

Personal Log

As storms and hurricanes tear across the Gulf of Mexico, causing destruction and devastation, my thoughts are with the impacted areas. Before my Teacher at Sea placement, I never thought I’d spend time in the region, so it’s interesting to see now-familiar locations on the news and weather maps. One of my favorite aspects of being at sea was watching the sky: recognizing constellations while fishing at night, gazing at glorious, melting sunsets, and observing storm clouds gathering in the distance. The colors and clouds were ever-changing, a reminder of the dynamic power of nature.

A colorful sunset on the Gulf of Mexico.
The sky was vibrant.

Storm clouds gather over Tampa, Florida.
Storm clouds gathered over Tampa, Florida.

Darkening clouds over the water.
The clouds clustered around Tampa. The city looked very small on the horizon.

Darkening clouds over the water.
As the rain started, the clouds darkened.

Darkening clouds over the water.
The colors changed and darkened as lightning started in the distance.

Darkening clouds over the water.
Dramatic dark clouds and lightning.

Watching the recent storm coverage on TV reinforced the importance of strong and accurate communication skills. Similar to a sidebar on the page, much of the supplementary storm information was printed on the screen. For someone who needed to evacuate quickly or was worried about loved ones in the area, this printed information could be crucial. As I listened to the reporters’ updates on the storm damage, aware that they were most likely reading from scripted notes, I was reminded of the challenge of conveying complex science through everyday language.

Two maps show the Gulf of Mexico.
The top image from Google Maps shows one research station where we were longline fishing in August (marked in red). The bottom satellite image shows Hurricane Michael moving through the same area. Image credits: Map of the Gulf of Mexico. Google Maps, 17 August 2018, maps.google.com; satellite image: NOAA via Associated Press.

One might assume that a typical day at sea only focused on science, technology, and math. In fact, all school subjects surfaced at some point in my experience at sea. For example, an understanding of geography helped me to understand where we were sailing and how our location influenced the type of wildlife we were seeing. People who were more familiar with the Gulf of Mexico shared some facts about the cultural, economic, and historical significance of certain locations, shedding light on our relationship with water.

Fishing is an old practice steeped in tradition, but throughout the ship, modern navigation equipment made it possible to fish more efficiently by plotting our locations while avoiding hazards such as natural formations and other vessels. Feats of engineering provided speed, power, drinkable water, and technological conveniences such as GPS, air conditioning, and Wi-Fi. In contrast to the natural evolution of sharks, these artificial adaptations provided many advantages at sea. To utilize the modern technology, however, literacy was required to input data and interpret the information on the dozens of monitors on board. Literacy and strong communication skills were required to understand and convey data to others. Reading and critical thinking allowed us to interpret maps and data, understand charts and graphs, and access news articles about the red tide we encountered.

I witnessed almost every person on board applying literacy skills throughout their day. Whether they were reading and understanding crucial written communication, reading instructions, selecting a dinner option from the menu, or referencing a field guide, they were applying reading strategies. In the offices and work spaces on board, there was no shortage of instructional manuals, safe operating procedures, informational binders, or wildlife field guides.

Writing helped to organize important tasks and schedules. To manage and organize daily tasks and responsibilities, many people utilized sticky notes and checklists. Computer and typing skills were also important. Some people were inputting data, writing research papers and projects, sharing their work through social media, or simply responding to work-related emails. The dive operation that I observed started as a thoroughly written dive plan. All of these tasks required clear and accurate written communication.

Junior Unlicensed Engineer (JUE) Jack Standfast holds a small notebook used for recording daily tasks and responsibilities.
Junior Unlicensed Engineer (JUE) Jack Standfast carried a small notebook in his pocket, recording the various engineering tasks he’d completed throughout the day.

Each day, I saw real-life examples of the strong ties between science and language arts. Recording accurate scientific data required measurement, weight, and observational skills, but literacy was required to read and interpret the data recording sheets. Neat handwriting and careful letter spacing were important for recording accurate data, reinforcing why we practice these skills in school. To ensure that a species was correctly identified and recorded, spelling could be an important factor. Throughout the experience, writing was essential for taking interview notes and brainstorming blog ideas, as well as following the writing process for my blog posts. If I had any energy left at the end of my day (usually around 2:00 AM), I consulted one of my shark field guides to read more about the intriguing species we saw.

 

Did You Know?

No need for a teething ring: Sharks begin shedding their teeth before they are even born. Shark pups (baby sharks) are born with complete sets of teeth. Sharks aren’t mammals, so they don’t rely upon their mothers for food after they’re born. They swim away and must fend for themselves, so those born-to-bite teeth come in handy.

Recommended Reading

Smart About Sharks written and illustrated by Owen Davey

Appropriate for older readers, the clever, comprehensive text offers interesting facts, tidbits, and trivia. The book dives a bit deeper to go beyond basic shark facts and knowledge. I’ve read hundreds of shark books, and I appreciated learning something new. The text doesn’t shy away from scientific terminology and concepts, such as phylogeny (eight orders of sharks and representative species). The facts reflect recent research findings on shark behavior. Lesser-known species are included, highlighting the diversity in body shapes, sizes, and specialized features. From a design standpoint, the aesthetically appealing illustrations are stylized, colorful, and engaging. Simple infographics provide explanations of complex ideas. Fact meets fiction in a section about shark mythology from around the world. The book concludes with a discussion of threats to sharks, as well as ocean conservation tips.

The cover of Smart About Sharks by Owen Davey.
Smart About Sharks written and illustrated by Owen Davey; published by Flying Eye Books, New York, 2016

 

Andria Keene: Let the fun begin! October 17, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 17, 2018

Weather Data from the Bridge
Date: 2018/10/17
Time: 13:10
Latitude: 027 39.81 N
Longitude 096 57.670 W
Barometric Pressure 1022.08mbar
Air Temperature: 61 degrees F

Those of us who love the sea wish everyone would be aware of the need to protect it.
– Eugenie Clark

Science and Technology Log

After our delayed departure, we are finally off and running! The science team on Oregon II has currently completed 28 out of the 56 stations that are scheduled for the first leg of this mission. Seventy-five stations were originally planned but due to inclement weather some stations had to be postponed until the 2nd leg. The stations are pre-arranged and randomly selected by a computer system to include a distributions of stations within each shrimp statistical zone and by depth from 5-20 and 21-60 fathoms.

Planned stations and routes
Planned stations and routes

At each station there is an established routine that requires precise teamwork from the NOAA Corps officers, the professional mariners and the scientists. The first step when we arrive at a station, is to launch the CTD. The officers position the ship at the appropriate location. The mariners use the crane and the winch to move the CTD into the water and control the decent and return. The scientists set up the CTD and run the computer that collects and analyzes the data. Once the CTD is safely returned to the well deck, the team proceeds to the next step.

science team with the CTD
Some members of the science team with the CTD

Step two is to launch the trawling net to take a sample of the biodiversity of the station. Again, this is a team effort with everyone working together to ensure success. The trawl net is launched on either the port or starboard side from the aft deck. The net is pulled behind the boat for exactly thirty minutes. When the net returns, the contents are emptied into the wooden pen or into baskets depending on the size of the haul.

red snapper haul
This unusual haul weighed over 900 pounds and contained mostly red snapper. Though the population is improving, scientists do not typically catch so many red snapper in a single tow.

The baskets are weighed and brought into the wet lab. The scientists use smaller baskets to sort the catch by species. A sample of 20 individuals of each species is examined more closely and data about length, weight, and sex is collected.

The information gathered becomes part of a database and is used to monitor the health of the populations of fish in the Gulf. It is used to help make annual decisions for fishing regulations like catch and bag limits. In addition, the data collected from the groundfish survey can drive policy changes if significant issues are identified.

Personal Log

I have been keeping in touch with my students via the Remind App, Twitter, and this Blog. Each class has submitted a question for me to answer. I would like to use the personal log of this blog to do that.

3rd Period - Marine Science II
3rd Period – Marine Science II: What have you learned so far on your expedition that you can bring back to the class and teach us?

The thing I am most excited to bring back to Marine 2 is the story of recovery for the Red Snapper in the Gulf of Mexico. I learned that due to improved fishing methods and growth in commercial fishing of this species, their decline was severe. The groundfish survey that I am working with is one way that data about the population of Red Snapper has been collected. This data has led to the creation of an action plan to help stop the decline and improve the future for this species.

4th Period - Marine Science I
4th Period – Marine Science I: What challenges have you had so far?

Our biggest challenge has been the weather! We left late due to Hurricane Michael and the weather over the past few days has meant that we had to miss a few stations. We are also expecting some bad weather in a couple of days that might mean we are not able to trawl.

5th Period - Marine Science I
5th Period – Marine Science I: How does the NOAA Teacher at Sea program support or help our environment?

The number one way that the NOAA Teacher at Sea program supports our environment is EDUCATION! What I learn here, I will share with my students and hopefully they will pass it on as well. If more people know about the dangers facing our ocean then I think more people will want to see changes to protect the ocean and all marine species.

7th Period - Marine Science I
7th Period – Marine Science I: What is the rarest or most interesting organism you have discovered throughout your exploration?

We have not seen anything that is rare for the Gulf of Mexico but I have seen two fish that I have never seen before, the singlespot frogfish and the Conger Eel. So for me these were really cool sightings.

 

 

 

 

 

 

 

 

 

 

8th Period - Marine Science I
8th Period – Marine Science I: What organism that you have observed is by far the most intriguing?

I have to admit that the most intriguing organism was not anything that came in via the trawl net. Instead it was the Atlantic Spotted Dolphin that greeted me one morning at the bow of the boat. There were a total of 7 and one was a baby about half the size of the others. As the boat moved through the water they jumped and played in the splashing water. I watched them for over a half hour and only stopped because it was time for my shift. I could watch them all day!

Do you know …

What the Oregon II looks like on the inside?
Here is a tour video that I created before we set sail.

 

Transcript: A Tour of NOAA Ship Oregon II.

(0:00) Hi, I’m Andria Keene from Plant High School in Tampa, Florida. And I’d like to take you for a tour aboard Oregon II, my NOAA Teacher at Sea home for the next two weeks.

Oregon II is a 170-foot research vessel that recently celebrated 50 years of service with NOAA. The gold lettering you see here commemorates this honor.

As we cross the gangway, our first stop is the well deck, where we can find equipment including the forecrane and winch used for the CTD and bongo nets. The starboard breezeway leads us along the exterior of the main deck, towards the aft deck.

Much of our scientific trawling operations will begin here. The nets will be unloaded and the organisms will be sorted on the fantail.

(1:00) From there, the baskets will be brought into the wet lab, for deeper investigation. They will be categorized and numerous sets of data will be collected, including size, sex, and stomach contents.

Next up is the dry lab. Additional data will be collected and analyzed here. Take notice of the CTD PC.

There is also a chemistry lab where further tests will be conducted, and it’s located right next to the wet lab.

Across from the ship’s office, you will find the mess hall and galley. The galley is where the stewards prepare meals for a hungry group of 19 crew and 12 scientists. But there are only 12 seats, so eating quickly is serious business.

(2:20) Moving further inside on the main deck, we pass lots of safety equipment and several staterooms. I’m currently thrilled to be staying here, in the Field Party Chief’s stateroom, a single room with a private shower and water closet.

Leaving my room, with can travel down the stairs to the lower level. This area has lots of storage and a large freezer for scientific samples.

There are community showers and additional staterooms, as well as laundry facilities, more bathrooms, and even a small exercise room.

(3:15) If we travel up both sets of stairs, we will arrive on the upper deck. On the starboard side, we can find the scientific data room.

And here, on the port side, is the radio and chart room. Heading to the stern of the upper deck will lead us to the conference room. I’m told that this is a great place for the staff to gather and watch movies.

Traveling back down the hall toward the bow of the ship, we will pass the senior officers’ staterooms, and arrive at the pilot house, also called the bridge.

(4:04) This is the command and control center for the entire ship. Look at all the amazing technology you will find here to help keep the ship safe and ensure the goals of each mission.

Just one last stop on our tour: the house top. From here, we have excellent views of the forecastle, the aft winch, and the crane control room. Also visible are lots of safety features, as well as an amazing array of technology.

Well, that’s it for now! Hope you enjoyed this tour of NOAA Ship Oregon II.  

 

Challenge Question of the Day
Bonus Points for the first student in each class period to come up with the correct answer!
We have found a handful of these smooth bodied organisms which like to burrow into the sediment. What type of animal are they?

Challenge Question
What type of animal are these?

Today’s Shout Out:  To my family, I miss you guys terribly and am excited to get back home and show you all my pictures! Love ya, lots!

Kristin Hennessy-McDonald: Apex Predators, September 20, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15-September 30, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 20, 2018

 

Weather Data from the Bridge

Latitude: 2759.75N

Longitude: 09118.52W

Sea Wave Height: 0m

Wind Speed: 3.72 knots

Wind Direction: 166.48֯

Visibility: 10 nautical miles

Air Temperature: 31.1

Sky: 5% cloud cover

 

Science and Technology Log

We’ve been out at sea for three full days now and have traveled along the Gulf coast from Alabama to Texas.  The Science Team has run mostly shallow longline sets during this time, meaning that we have fished in depths from 9 to 55 meters.  As we move forward, we will fish stations at these depths and stations at depths of 55 to 183 meters, and from 183 to 366 meters.  The locations of the stations are randomized based on depth and the area that is being fished.  Due to the weather that hit south Texas the week before we joined this leg of the survey, we have been fishing the area that was impassable on the last leg of the survey.

As a member of the science team, there are five jobs that need to be done on each side of the set.  When the line is being cast, someone needs to release the highflyer, clip numbers, sling the bait, work the computer, or cleanup.  When the line comes in, there is a data collector, 2 fish handlers, a hook collector, and the computer person.  The highflyer is the marker that is put on either end of the line, so that the line can be seen from the bridge.  The data that is collected on paper and on the computer on each fish includes the number of the hook that they are on, species, length, and gender.  Additionally, some sharks are tagged and a fin clip is taken.

After a line is set, we check the water using a CTD (Conductivity Temperature Depth) Probe.  It has a GoPro video recorder that takes a video of the water and the sea floor at the site of the line.

IMG_20180917_110752563_HDR
Field Party Chief Kristin Hannan setting up the CTD

 

IMG_20180919_124813824
CTD ready for deployment

A few of the highlights from the catches so far:  We had one catch that was coming up with mostly empty hooks, but then we caught a scalloped hammerhead shark (Sphyrna lewini).  The shark was large enough that we used a cradle to pull it up to deck level.  I got to insert the tag right below the dorsal fin.

OLYMPUS DIGITAL CAMERA
Kristin Hennessy-McDonald tagging a scalloped hammerhead Photo Credit: Caroline Collatos

We had another survey that caught 49 sharks, including Atlantic Sharpnose Sharks (Rhizoprionodon terraenovae), Blacknose Sharks (Carcharhinus acronotus), Spinner Sharks (Carcharhinus brevipinna), and Blacktip Sharks (Carcharhinus limbatus).  Between these, we had a number of lines that brought up some sharks and a few Red Snapper (Lutjanus campechanus).  I have been able to dissect some of the Red Snapper, and collect their otoliths, which are their ear bones.

IMG_20180919_184623530_HDR
Kristin Hennessy-McDonald holding a Red Snapper

In the time between setting and retrieving lines, one of the ways we kept ourselves busy was by cleaning shark jaws that we had collected.  I look forward to using these in my classroom as an example of an apex predator species adaptation.

Personal Log

During much the 12 hours of off time, I spend my time in my bunk.  Working for 12 hours in the hot sun is exhausting, and it’s nice to have the room to myself while I try to get some rest.  Though I share a bunk with another member of the Science Team, we work opposite shifts.  So, while I’m on deck, she’s sleeping, and visa versa.  As you can see, my daughter sent me with her shark doll, which I thought was appropriate, given that I was taking part in shark research on this ship.

IMG_20180917_094650080
Kristin’s bunk on the Oregon II

While we were going slow one day, we had a pod of dolphins who swam along with us for a while.  They were right beside the ship, and I was able to get a video of a few of them surfacing next to us.

Did You Know?

Many shark species, including the Atlantic Sharpnose shark, are viviparous, meaning they give birth to live young.  These sharks form a placenta from the yolk sac while the embryo develops.

Quote of the Day

Without sharks, you take away the apex predator of the ocean, and you destroy the entire food chain

~Peter Benchley

Question of the Day

While it is a common misconception that sharks do not get cancer, sharks have been found to get cancer, including chondromas.  What type of cancer is that?

Anne Krauss: The Oregon II Trail, August 16, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 16, 2018

Weather Data from the Bridge

Conditions at 1106

Latitude: 25° 17.10’ N

Longitude: 82° 53.58’ W

Barometric Pressure: 1020.17 mbar

Air Temperature: 29.5° C

Sea Temperature: 30.8° C

Wind Speed: 12.98 knots

Relative Humidity: 76%

 

Science and Technology Log

Before getting into the technology that allows the scientific work to be completed, it’s important to mention the science and technology that make daily life on the ship safer, easier, and more convenient. Electricity powers everything from the powerful deck lights used for working at night to the vital navigation equipment on the bridge (main control and navigation center). Whether it makes things safer or more efficient, the work we’re doing would not be possible without power. Just in case, several digital devices have an analog (non-electronic) counterpart as a back-up, particularly those used for navigation, such as the magnetic compass.

 

This slideshow requires JavaScript.

To keep things cool, large freezers are used for storing bait, preserving scientific samples, and even storing ice cream (no chumsicles for dessert—they’re not all stored in the same freezer!). After one particularly sweltering shift, I was able to cool off with some frozen coffee milk (I improvised with cold coffee, ice cream, and milk). More importantly, without the freezers, the scientific samples we’re collecting wouldn’t last long enough to be studied further back at the lab on land.

Electricity also makes life at sea more convenient, comfortable, and even entertaining. We have access to many of the same devices, conveniences, and appliances we have at home: laundry machines, warm showers, air conditioning, home cooked meals, a coffee maker, TVs, computers with Wi-Fi, and special phones that allow calls to and from sea. A large collection of current movies is available in the lounge. During my downtime, I’ve been writing, exploring, enjoying the water, and learning more about the various NOAA careers on board.

To use my computer, I first needed to meet with Roy Toliver, Chief Electronics Technician, and connect to the ship’s Wi-Fi. While meeting with him, I asked about some of the devices I’d seen up on the flying bridge, the top deck of the ship. The modern conveniences on board are connected to several antennae, and Roy explained that I was looking at important navigation and communication equipment such as the ship’s GPS (Global Positioning System), radar, satellite, and weather instrumentation.

I was also intrigued by the net-like item (called a Day Shape) that communicates to other ships that we are deploying fishing equipment. This lets nearby ships know that the Oregon II has restricted maneuverability when the gear is in the water. At night, lights are used to communicate to other ships. Communication is crucial for safety at sea.

When I stopped by, Roy had just finished replacing some oxygen sensors for the CTD (that stands for Conductivity, Temperature, and Depth). For more information about CTDs click here: https://oceanexplorer.noaa.gov/facts/ctd.html

Without accurate sensors, it’s very difficult for the scientists to get the data they need. If the sensors are not working or calibrated correctly, the information collected could be inaccurate or not register at all. The combination of salt water and electronics poses many interesting problems and solutions. I noticed that several electronic devices, such as computers and cameras, are built for outdoor use or housed in durable plastic cases.

On this particular day, the ship sailed closer to an algal bloom (a large collection of tiny organisms in the water) responsible for red tide. Red tide can produce harmful toxins, and the most visible effect was the presence of dead fish drifting by. As I moved throughout the ship, the red tide was a red hot topic of conversation among both the scientists and the deck department. Everyone seemed to be discussing it. One scientist explained that dissolved oxygen levels in the Gulf of Mexico can vary based on temperature and depth, with average readings being higher than about 5 milligrams per milliliter. The algal bloom seemed to impact the readings by depleting the oxygen level, and I was able to see how that algal bloom registered and affected the dissolved oxygen readings on the electronics Roy was working on. It was fascinating to witness a real life example of cause and effect. For more information about red tide in Florida, click here: https://oceanservice.noaa.gov/news/redtide-florida/

Chief Electronics Technician Roy Toliver in his office on the Oregon II.
Chief Electronics Technician Roy Toliver in his office on the Oregon II. The office is like the ship’s computer lab. When he’s not working on the ship’s electronics, Roy enjoys reading out on the stern. It’s a great place for fresh air, beautiful views, and a good book!

Personal Log

Preparing and packing for my time on the Oregon II reminded me of The Oregon Trail video game. How to pack for a lengthy journey to the unfamiliar and unknown?

A video game screenshot
I had a hard time finding bib overalls and deck boots at the general store.

I didn’t want to run out of toiletries or over pack, so before leaving home, I tracked how many uses I could get out of a travel-sized tube of toothpaste, shampoo bottle, and bar of soap, and that helped me to ration out how much to bring for fifteen days (with a few extras, just in case). The scientists and crew of the Oregon II also have to plan, prepare, and pack all of their food, clothing, supplies, tools, and equipment carefully. Unlike The Oregon Trail game, I didn’t need oxen for my journey, but I needed some special gear: deck boots, foul weather gear (rain jacket with a hood and bib overalls), polarized sunglasses (to protect my eyes by reducing the sun’s glare on the water), lots of potent sunscreen, and other items to make my time at sea safe and comfortable.

I was able to anticipate what I might need to make this a more efficient, comfortable experience, and my maritime instincts were accurate. Mesh packing cubes and small plastic baskets help to organize my drawers and shower items, making it easier to find things quickly in an unfamiliar setting.

berths on ship show blue privacy curtains
This is where we sleep in the stateroom. The blue curtains can be closed to darken the room when sleeping during the day. On the left is a sink.

My own shark cradle
Reading and dreaming about sharks!

Dirt, guts, slime, and grime are part of the job. A bar of scrubby lemon soap takes off any leftover sunscreen, grime, or oceanic odors that leaked through my gloves. Little things like that make ship life pleasant. Not worrying about how I look is freeing, and I enjoy moving about the ship, being physically active. It reminds me of the summers I spent as a camp counselor working in the woods. The grubbier and more worn out I was, the more fun we were having.

The NOAA Corps is a uniformed service, so the officers wear their uniforms while on duty. For everyone else, old clothes are the uniform around here because the work is often messy, dirty, and sweaty. With tiny holes, frayed seams, mystery stains, cutoff sleeves, and nautical imagery, I am intrigued by the faded t-shirts from long-ago surveys and previous sailing adventures. Some of the shirts date back several years. The well-worn, faded fabric reveals the owner’s experience at sea and history with the ship. The shirts almost seem to have sea stories to tell of their own.

Sunset over water showing orange, pink, and blue hues.
As we sail, the view is always changing and always interesting!

Being at sea is a very natural feeling for me, and I haven’t experienced any seasickness. One thing I didn’t fully expect: being cold at night. The inside of the ship is air-conditioned, which provides refreshing relief from the scorching sun outside. I expected cooler temperatures at night, so I brought some lightweight sweatshirts and an extra wool blanket from home. On my first night, I didn’t realize that I could control the temperature in my stateroom, so I shivered all night long.

A folded grey hooded sweatshirt
It’s heavy, tough, and grey, but it’s not a shark!

My preparing and packing didn’t end once I embarked (got on) on the ship. Every day, I have to think ahead, plan, and make sure I have everything I need before I start my day. This may seem like the least interesting aspect of my day, but it was the biggest adjustment at first.

To put yourself in my shoes (well, my deck boots), imagine this:

Get a backpack. Transport yourself to completely new and unfamiliar surroundings. Try to adapt to strange new routines and procedures. Prepare to spend the next 12+ hours working, learning, exploring, and conducting daily routines, such as eating meals. Fill your backpack with anything you might possibly need or want for those twelve hours. Plan for the outdoor heat and the indoor chill, as well as rain. If you forgot something, you can’t just go back to your room or run to the store to get it because

  1. Your roommate is sleeping while you’re working (and vice versa), so you need to be quiet and respectful of their sleep schedule. That means you need to gather anything you may need for the day (or night, if you’re assigned to the night watch), and bring it with you. No going back into the room while your roommate is getting some much-needed rest.
  2. Land is not in sight, so everything you need must be on the ship. Going to the store is not an option.

Just some of the items in my backpack: sunscreen, sunglasses, a hat, sweatshirt, a water bottle, my camera, my phone, my computer, chargers for my electronics, an extra shirt, extra socks, snacks, etc.

I am assigned to the day watch, so my work shift is from noon-midnight. During those hours, I am a member of the science team. While on the day watch, the five of us rotate roles and responsibilities, and we work closely with the deck crew to complete our tasks. The deck department is responsible for rigging and handling the heavier equipment needed for fishing and sampling the water: the monofilament (thick, strong fishing line made from plastic), cranes and winches for lifting the CTD, and the cradle used for safely bringing up larger, heavier sharks. In addition to keeping the ship running smoothly and safely, they also deploy and retrieve the longline gear.

A pulley in front of water
Pulleys, winches, and cranes are found throughout the boat.

Another adjustment has been learning the routines, procedures, and equipment. For the first week, it’s been a daily game of What-Am-I-Looking-At? as I try to decipher and comprehend the various monitors displayed throughout the ship. I follow this with a regular round of Now-What-Did-I-Forget? as I attempt to finesse my daily hygiene routine. The showers and bathroom (on a ship, it’s called the head) are down the hall from my shared stateroom, and so far, I’ve managed to forget my socks (day one), towel (day two), and an entire change of clothes (day four). With the unfamiliar setting and routine, it’s easy to forget something, and I’m often showering very late at night after a long day of work.

Showers and changing stalls on ship
I’m more than ready to cool off and clean up after my shift.

One thing I never forget? Water. I am surrounded by glittering, glistening water or pitch-black water; water that churns and swells and soothingly rocks the ship. Swirling water that sometimes looks like ink or teal or indigo or navy, depending on the conditions and time of day.

Another thing I’ll never forget? This experience.

A water bottle in the sun
In case I forget, the heat of the sun reminds me to drink water all day long.

Did You Know?

The Gulf of Mexico is home to five species, or types, or sea turtles: Leatherback, Loggerhead, Green, Hawksbill, and Kemp’s Ridley.

Recommended Reading

Many of my students have never seen or experienced the ocean. To make the ocean more relevant and relatable to their environment, I recommend the picture book Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene. A young girl’s grandfather moves to the city and notices there’s nowhere to fish. She and her grandfather imagine fishing from their high-rise apartment fire escape. The “fish” they catch are inspired by the vibrant ecosystem around them: the citizens and bustling activity in an urban environment. The catch of the day: “Flying Litterfish,” “Laundry Eels,” a “Constructionfish,” and many others, all inspired by the sights and sounds of the busy city around them.

The book could be used to make abstract, geographically far away concepts, such as coral ecosystems, more relatable for students in urban, suburban, and rural settings, or as a way for students in rural settings to learn more about urban communities. The young girl’s observations and imagination could spark a discussion about how prominent traits influence species’ common names, identification, and scientific naming conventions.

The cover of the book Skyfishing
Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene (Abrams Books for Young Readers, 2017)

 

Jeff Peterson: The Work in the Eastern Gulf, July 19, 2018

NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – 20, 2018

 

Mission: Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 19, 2018

 

Weather Data from the Bridge

Date: 2018/07/19

Time: 16:34:47

Latitude: 29 57.6 N

Longitude: 087 02.60 W

Speed over ground: 7.3 knots

Barometric pressure: 1014.49

Relative humidity: 84%

Air temperature: 26.8 C

Sea wave height: 1 m

 

Science and Technology Log

We arrived off the coast of Florida on the evening of Sunday, July 15, and sampled stations in the eastern Gulf until the afternoon of Thursday, July 19. We used the same fishing method during this part of the cruise (bottom trawling), but added a step in the process, deploying side scan sonar in advance of every trawl. This measure was taken both to protect sea life on the ocean floor (sponges and corals) and to avoid damaging equipment. The sea bottom in this part of the Gulf—east of the DeSoto Canyon—is harder (less muddy) and, in addition to coral and sponge, supports a number of species markedly different than those seen in the western Gulf.

 

Side Scan Sonar

In contrast to single-beam sonar, which bounces a single focused beam of sound off the bottom to measure depth, side scan sonar casts a broader, fan-like signal, creating nuanced readings of the contour of the ocean floor and yielding photo-like images.

Towed Side Scan
How side scan sonar works: The harder the object, the stronger the image returned. See: https://oceanservice.noaa.gov/education/seafloor-mapping/how_sidescansonar.html#

 

Side scan sonar device
Side scan sonar device in its cradle.

 

 

Rigged and ready for deployment.
Rigged and ready for deployment. Signals from the sonar are conducted up the cable and picked up by the electrically powered lead on the block.

 

on its way in
Side scan sonar on its way in astern.

 

descending
Side scan sonar just beneath the surface & descending.

 

When we arrive a station in this part of the Gulf, we begin by traversing, covering the usual distance (1.5 miles), but then turn around, deploy the side scan sonar, and retrace our course. Once we’ve returned to our starting point, we recover the sonar, turn around again, and—provided the path on the sea bottom looks clear—resume our course through the station, this time lowering the trawl. If the side scan reveals obstructions, it’s a no-go and the station is “ditched.”

 

Coming about
Coming about before deploying the side scan sonar.

 

 

And Now for Something Completely Different . . . Fish of the Eastern Gulf

Panama City, Florida
Off Panama City, Florida – Tuesday morning, July 17, 2018

We spent the first half of this leg of the survey in the western Gulf of Mexico, going as far west as the Texas-Louisiana border. The second half we’re spending in the eastern Gulf, going as far east as Panama City. From here we’ll work our way westward, back to our homeport in Pascagoula.

Thanks to different submarine terrain in the northeastern Gulf—not to mention the upwelling of nutrients from the DeSoto Canyon—it’s a different marine biological world off the coast of Florida.

Here’s a closer look at the submarine canyon that, roughly speaking, forms a dividing line between characteristic species of the western Gulf and those of the eastern Gulf:

Bathymetric map of the Gulf of Mexico
Bathymetric map of the Gulf of Mexico, with proposed dive sites for Operation Deep-Scope 2005 indicated by red arrows and yellow numbers. Site #1 is on the southwest Florida Shelf in the Gulf of Mexico, where deep-water Lophilia coral lithoherms are found. #2 is DeSoto Canyon, a deep erosional valley where upwelling of deep nutrient rich water means greater animal abundances. #3 is Viosca Knoll, the shallowest site, where spectacular stands of Lophelia provide abundant habitat for other species. See: https://oceanexplorer.noaa.gov/explorations/05deepscope/background/geology/media/map.html

 

And here’s a selection of the weird and wonderful creatures we sampled in the eastern Gulf. As this basket suggests, they’re a more brightly colored, vibrant bunch:

Basket of catch
A basket of fish. Upper right: Lane Snapper, Lutjanus synagris. On the left: Sand Perch, Diplectrum formosum. The plentiful scallops? Argopecten gibbus.

 

 

Sand Perch, Diplectrum formosum
Sand Perch, Diplectrum formosum

Razorfish, Xyrichtys novacula
Razorfish, Xyrichtys novacula

A basket of Xyrichtys novacula
A basket of Xyrichtys novacula

 

Angelfish, Holacanthus bermudensis
Angelfish, Holacanthus bermudensis

Angelfish closeup
Holacanthus bermudensis details: tail fins (front specimen), pectoral fin & gill (behind)

 

Jackknife Fish, Equetus lanceolatus
Jackknife Fish, Equetus lanceolatus

Lined Seahorse, Hippocampus erectus
Lined Seahorse, Hippocampus erectus

 

 

Argopecten gibbus
Argopecten gibbus (all 2,827 of them)

Pink Shrimp, Farfantepenaeus duorarum.
Pink Shrimp, Farfantepenaeus duorarum. Note the signature “pink” spot by my thumb.

 

Calamus
Calamus

 

Lionfish, Pterois volitans
Invasive scourge of the Gulf: Lionfish, Pterois volitans

Lionfish, Pterois volitans
Lionfish, Pterois volitans

 

Burrfish, Chilomycterus schoepfii
Burrfish, Chilomycterus schoepfii

 

 

Scorpionfish (aka Barbfish), Scorpaena brasiliensis
Scorpionfish (aka Barbfish), Scorpaena brasiliensis

 

Southern Stargazer, Astroscopus y-graecum (juvenile)
Southern Stargazer, Astroscopus y-graecum (juvenile)

 

Ocellated Moray Eels, Gymnothorax saxicola
Ocellated Moray Eels, Gymnothorax saxicola

 

Trumpetfish, Aulostomus maculatus
Trumpetfish, Aulostomus maculatus

 

 

Video credit: Will Tilley

 

debris
Mysterious debris: A bottom-dwelling payphone?

 

Personal Log

Our move into the eastern Gulf marks the midpoint of the cruise, and we’ll be back to Pascagoula in a few short days. The seas haven’t been as serenely flat as they were in the eastern Gulf, nor has the sky (or sea) been its stereotypically Floridian blue, but I’ve found life aboard ship just as pleasurable and stimulating.

storm
A squall on Monday morning, July 16, 2018. Off the stern there to starboard, Blackfin Tuna were jumping.

 

In my final blog post, I’ll have more to say about all the great folks I’ve met aboard NOAA Ship Oregon II—from its Deck Department members and Engineers, to its Stewards and NOAA Corps officers and inimitable Captain—but here want to reiterate just how thoughtful and generous everybody’s been. The “O2” is a class act—a community of professionals who know what they’re about and love what they do—and I couldn’t be more grateful to have visited their world for a while and shared their good company.

Busy as we’ve been, I haven’t had much time for sketching during this part of the cruise, and, as the selection of photos above suggests, I’ve concentrated more on taking pictures than making them. Still, I’ve begun a small sketch of the ship that I hope to complete before we reach Pascagoula. It’s based on a photograph that hangs in the galley, and that I’m going to attempt to reproduce actual size (3 3/8” x 7”) . Here’s where things stand early on in the process:

IMG_8230 2.jpg
Work in progress: sketch of NOAA Ship Oregon II

 

Did You Know?

Any of the western Gulf fish in the basket from my last blog post? Here it is again:

Basket of Fish from Western Gulf
Basket of Fish from Western Gulf

And here is a visual key to the four species I was fishing for, each figuring prominently in my blog post for July 15:

Basket of fish revision
Basket of Fish from Western Gulf: now color-coded

1: Red Snapper, Lutjanus campechanus

2: Longspined Porgy, Stenotomus caprinus

3: Gulf Butterfish, Peprilus burti

4: Brown Shrimp, Farfantepenaeus aztecus

A few Stenotomus caprinus and Peprilus burti have been left unhighlighted. Can you find them?

Anne Krauss: Once Upon a Maritime, August 4, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 4, 2018

Introductory Personal Log

I’m thrilled to be joining NOAA Ship Oregon II for the second leg of the Shark/Red Snapper Longline Survey. The adventure of a lifetime begins in Canaveral, Florida and concludes in Pascagoula, Mississippi. For two weeks, we’ll be studying sharks, red snapper, and other marine life in the Atlantic Ocean and Gulf of Mexico. Scientists will collect data on fish populations to find out more about their distribution, age, weight, length, reproduction, and other important information. Along the way, we’ll also sample water quality and collect other environmental data. Learning more about these creatures and their surroundings can help to keep their habitats safe and thriving.

This exciting opportunity is the next chapter in my lifelong appreciation for sharks and the sea. During a formative visit to the ocean at age three, I quickly acquired a taste for salt water, seafaring, and sharks. I saw my first shark, a hammerhead, in the New England Aquarium, and I was transfixed. I wanted to know everything about the water and what lived beneath the surface.

After discovering nonfiction in fourth grade, I could access the depths through reading. I was riveted to books about deep-sea creatures and pioneering undersea explorers. The more I learned, the more curious I became. As a younger student, I never indulged my aquatic interests in any formal academic sense beyond prerequisites because of my epic, giant-squid-versus-whale-like struggle with math. Because I was much stronger in humanities and social sciences, I pursued a predictable path into writing, literature, and education.

As a Literacy Specialist, I support developing readers and writers in grades K-5 by providing supplemental Language Arts instruction (Response to Intervention). To motivate and inspire my students, I share my zeal for the ocean, incorporating developmentally appropriate topics to teach requisite Language Arts skills and strategies.

In 2011, I initiated an ocean literacy collaboration with undersea explorer Michael Lombardi and Ocean Opportunity Inc. so that I could better answer my students’ questions about marine science careers and marine life. Our first meeting involved swimming with blue sharks offshore, and I knew I needed more experiences like that in my life. From chumming to helping with the equipment to observing pelagic sharks without a cage, I loved every aspect. This life-changing experience (both the collaboration and the shark encounter) transformed my instruction, reigniting my curiosity and ambition. Our educator-explorer partnership has inspired and motivated my students for the past seven years. After supporting and following my colleague’s field work with my students, I wanted a field experience of my own so that I can experience living, researching, and working at sea firsthand.

Although my fascination with all things maritime began at an early age, working closely with someone in the field transformed my life. Instead of tumbling, I feel like Alice plunging into a watery wonderland, chasing after a neoprene-clad rabbit to learn more. Finding someone who was willing to share their field experience and make it accessible gave me the confidence to revisit my childhood interests through any available, affordable means: online courses, documentaries, piles of nonfiction books, social media, workshops, symposiums, aquaria, snorkeling, and the occasional, cherished seaside visit.

We co-authored and published a case study about our collaboration in Current: The Journal of Marine Education, the peer-reviewed journal of the National Marine Educators Association (Fall/Winter 2016). We wrote about bringing the discovery of a new species of mesophotic clingfish to fourth and fifth grade struggling readers. Since a student-friendly text about the fish did not exist, I wrote one for my students at their instructional reading level, incorporating supportive nonfiction text features.

It’s reinvigorating to switch roles from teacher to student. Ultimately, this unconventional path has made me a more effective, empathetic educator. My students witness how I employ many of the same literacy skills and strategies that I teach. By challenging myself with material outside my area of expertise, I am better able to anticipate and accommodate my students’ challenges and misconceptions in Language Arts. When comprehension of a scientific research paper does not come to me easily on the first, second, or even third attempt, I can better understand my students’ occasional reluctance and frustration in Language Arts. At times, learning a different field reminds me of learning a second language. Because I’m such a word nerd, I savor learning the discourse and technical terminology for scientific phenomena. Acquiring new content area vocabulary is rewarding and delicious. It requires word roots and context clues (and sometimes, trial and error), and I model this process for my students.

Being selected for Teacher at Sea is an incredible opportunity that required determination, grit, and perseverance. Although my curiosity and excitement come very naturally, the command over marine science content has not. I’ve had to be an active reader and work hard in order to acquire and understand new concepts. Sometimes, the scientific content challenges me to retrain my language arts brain while simultaneously altering my perception of myself as a learner. Ultimately, that is what I want for my students: to see themselves as ever-curious, ever-improving readers, writers, critical thinkers, and hopefully, lifelong learners.

I am so grateful for the opportunities to learn and grow. I deeply appreciate the support, interest, and encouragement I’ve received from friends, family, and colleagues along the way. I will chronicle my experiences on NOAA Ship Oregon II while also capturing how the scientific research may translate to the elementary school classroom. Please share your questions and comments in the comments section below, and I will do my best to reply from sea. My students sent me off with many thoughtful questions to address, and I’ll share the answers in subsequent posts.

Did You Know?

Pelagic fish have bodies designed for long-distance swimming. With their long pectoral fins, the blue shark (Prionace glauca) is highly migratory, traveling great distances across oceans.

A blue shark swims near the surface.
Look carefully: This graceful blue shark was the first shark I saw in the open ocean. Swimming with them was exhilarating!

Recommended Reading

The cover of a children's nonfiction book shows a scientist diving near a shark and coral reef with an autonomous underwater vehicle in the background.
An engaging read-aloud for younger readers.

For a simplified introduction to how scientists study sharks, I recommend the picture book How to Spy on a Shark written by Lori Haskins Houran and illustrated by Francisca Marquez. This read-aloud science book portrays the process of catching, tagging, and releasing mako sharks. The book includes shark facts as well as an introduction to tagging and tracking technology. For more information on how scientists use underwater robots such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) to study sharks: https://oceanexplorer.noaa.gov/explorations/18whitesharkcafe/welcome.html

Angela Hung: Fortitude, July 23, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 23, 2018

 

Weather Data from Home

Conditions at 2101

Latitude: 41.54°N

Longitude: 87.53°W

Temperature: 21° C

Wind Speed: N 3 mph

 

Science and Technology Log

Back at home but there’s still so much to share! I’ll wrap up my amazing experience as a Teacher at Sea by introducing three more members of the NOAA Ship Oregon II family: Alonzo Hamilton, Executive Officer Andrew Ostapenko and Commanding Officer Captain Dave Nelson. At the start of my adventure, I wrote about flexibility. The Teacher at Sea Program also stresses that cruises “require high-intensity work that demands physical adeptness, endurance, and fortitude”. These three exemplify how fortitude, the ability to endure through life’s challenges and change, brings rewards throughout life.

 

Fishery Biologist Alonzo Hamilton

Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.
Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.

Alonzo Hamilton has been a fishery biologist for 34 years! He likes to say that he stumbled into NOAA. He graduated from community college before enrolling at Jackson State University, a historically black university in Mississippi with a full scholarship. Actually, he was offered two scholarships, one for minority biomedical researchers to become a surgeon and the other for general studies. He arrived on campus to discuss his options in the science department. It turned out that the biomedical research scholarship was given to another recipient. On the bright side, it made the decision to accept the general studies funding much simpler. Now he had to make a choice of which field to pursue. As he explored the halls of the science building, he happened upon the office of the head of the marine science program and popped in to ask some questions. After learning about the program, he decided to apply his scholarship toward coursework in this field.

After college, he began working on a research project for the Navy which paid for a master’s degree. Soon after, President Reagan froze research funding for the Navy. Fortunately, Alonzo was tipped off that NOAA did very similar research with an active, albeit smaller budget. So began a 34 year career as a NOAA fishery biologist.

Being an African American scientist in the deep south came with challenges, but he reminded his supervisors and others around him that, “I won’t limit myself to your box”, which has carried him through a long and storied career. Today, he is happy that he gets “paid to play in the ocean”, which sounds like a pretty good deal to me.

 

Executive Officer (XO) Andrew Ostapenko

Andrew Ostapenko
Andrew Ostapenko

Most of the NOAA Corp officers you meet have a degree in science. I had the fortune of sailing with one of the few who doesn’t— the XO, LCDR Andrew Ostapenko. XO has a degree in political science from the University of St. Thomas in St. Paul, Minnesota. His goal was to become a lawyer, but after considering the job prospects and the lifestyle—”no one ever calls lawyers when they are happy”, and they never retire —he looked into some other options. In 2005 he applied for the NOAA Corps. Although he didn’t have a science degree, the general education requirements at the University of St. Paul, which included calculus, chemistry and physics, met the NOAA Corps requirements.

Since joining NOAA, LCDR Ostapenko has held a variety of assignments. In Maryland he managed budgets and projects for the National Centers for Environmental Prediction, a part of the National Weather Service that provides forecasts for the nation. He worked in small boat life cycle management as a Port engineer/small boat officer in Norfolk, Virginia, disseminating policies across the NOAA fleet.

His sailing experience began on NOAA Ship Thomas Jefferson which performs hydrographic surveys that map the oceans to continuously update and improve nautical charts. He was a member of the first crew on NOAA Ship Reuben Lasker, accompanying her from Wisconsin where she was built to her homeport of San Diego. Last but not least, XO has been an augmenting officer for three months on NOAA Ship Oscar Dyson, another fisheries survey vessel based in Alaska where high seas and storms are a part of a normal day’s work.

NOAA assignments are three years for shore tours and two years for sea tours. LCDR Ostapenko currently has about a year left with Oregon II. As XO shows, there is no danger of getting stuck in mundane office job as a NOAA Corps officer.

 

The Captain

Captain Dave Nelson of NOAA Ship Oregon II
Captain Dave Nelson of NOAA Ship Oregon II

“Lunch is on me!” invites the captain if you arrive to the galley after him. Captain Dave Nelson is the commanding officer (CO) of NOAA Ship Oregon II, and he’s gone a long way to realize that title. This is his 10th year as the captain of Oregon II, but he’s worked onboard since 1993. He refers to himself as a “hawsepiper”, urging me to look it up on the internet. Informally, it means to have started at the bottom as a deckhand and working up to becoming a captain. Captain Nelson is a Mississippi native and grew up shrimping and fishing with his dad. After high school he went to work on commercial boats that bring supplies to oil rigs. After over a decade, he felt that he needed a plan for the future– a stable pensioned job. He serendipitously stopped into the NOAA office as he was driving by on a day that someone had just quit and there was an opening to fill. The rest is Oregon II history.

The progression as a civilian begins with being a deckhand and progressing to Chief Boatswain. It takes 750 days at sea to qualify for the first license, the 3rd Mate license administered by the U.S. Coast Guard. It then takes 1100 more days to be eligible to test for the Masters license to become a captain. In 2008 the prospective captain lived in Seattle on a NOAA ship for 12 weeks for a prep course for the Masters exam. At this point, it’d be almost 30 years since he had been a student; not only did he have to learn the material for the test, he also had to learn how to study again.  Soon-to-be Captain Nelson committed seven days a week for the entire 12 weeks to study and reviewing material to pass. He knew he wanted it.

CO Nelson’s joking attitude belies the pressure of being the captain of a ship. It’s a tremendous responsibility because he is accountable for everything, particularly the safety of everyone onboard. Every decision is made or approved by the captain and he sends reports to his supervisors every day.

He is one of a few captains in the NOAA fleet who is a civilian; most NOAA Commissioned officers rotate between boats every two years. This means that he is always training the new officers joining Oregon II from ensigns like Andy Fullerton and Chelsea Parrish to XO’s like Andrew Ostapenko. It takes a lot of patience; everyone comes in with different strengths, weaknesses and of course, personalities. The key, he says, is to “treat people like people” no matter who they are.

 

Personal Log

I somehow made it through almost three weeks living on Oregon II without falling down any stairs or tripping and landing on my face over a bulkhead door. Sure enough, it was hard to fall asleep at home without the rocking of the boat, but I’m happy to have my own shower again.

I’m so excited to show my students photos of so many of the things that I cover in class, or that they ask about, such as starfish regenerating lost arms and a video of wiggling tube feet on a severed arm (I accidently broke it off). I imagine they’ll also get to see critters they haven’t imagined-arrow and calico crabs, triggerfish, batfish…

A sea star that is regenerating its lower right arm.
A sea star that is regenerating its lower left arm.

I can’t believe how much I learned in such a short time about life and work at sea, careers, seafood, NOAA and its online resources. What I’ve shared in blogs is such a small fraction of everything I’ve experienced. I’m extremely grateful to everyone on Oregon II for being so welcoming and friendly, and for being so willing to speak with me. Although there were some setbacks, I got the chance to visit the lab and meet the wonderful scientists who showed me around. It’s hard work, but everyone agrees that it’s meaningful, rewarding and exciting.

Since coming home, my colleagues have commented that this is a once in a lifetime opportunity; that thought has crossed my mind as well. But watching everyone work, this is the everyday life of NOAA crew. I can’t help but think how few decisions it might have taken, maybe only 2-3 different choices, that might have made this my regular life too.

 

Did You Know?

NOAA Ship Oregon II earned the Gold Medal Award for rescuing three people off the coast of Cape Canaveral on Florida’s east coast. (This is where NASA’s Kennedy Space Center is located.) In 1998 when Captain Nelson was still a deckhand, he was woken from sleep between his watches. At about 2:30pm, a small overturned boat was spotted with a man, woman, and young girl on top. Captain Nelson was a small boat driver then; he launched a boat from Oregon II to rescue them and bring them to the Coast Guard.

NOAA Ship Oregon II earned the Gold Medal Award in 1998 for rescuing three people off of the coast of Florida.
NOAA Ship Oregon II earned the Gold Medal Award in 1998 for rescuing three people off of the coast of Florida.

Captain Dave surmises that they left port in Miami almost 200 miles south and got swept up in the Gulf Stream, a strong current of water that originates in the Gulf of Mexico and flows to Canada, affecting the climate even to Europe. It can create choppy conditions that capsized their boat.

The Gulf Stream is visible in red as it carries warm water from the south into the northern Atlantic. Photo from: https://en.wikipedia.org/wiki/Gulf_Stream#/media/File:Golfstrom.jpg
The Gulf Stream is visible in red as it carries warm water from the south into the northern Atlantic. Photo from: https://en.wikipedia.org/wiki/Gulf_Stream#/media/File:Golfstrom.jpg

They were extraordinarily lucky; the ocean is vast so the chances of Oregon II coming by and being spotted were slim. Their boat was too small to be detected by radar; if it had been dark, they might have been run over. Those are three people who are alive today because of NOAA Ship Oregon II.

David Tourtellot: Draggin’ The Line, July 21st, 2018

NOAA Teacher at Sea

David Tourtellot

Aboard NOAA Ship Thomas Jefferson

July 9-26, 2018

Mission:  Hydrographic Survey – Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 21st, 2018

Weather Data from the Bridge

Latitude: 29° 11.6357’ N

Longitude: 093° 55.9746’W

Visibility: 10+ Nautical Miles

Sky Condition: 6/8

Wind: Direction: 224°    Speed: 8.5 knots

Temperature:

Seawater: 30.4°C

Air: Dry bulb:31.5°C          Wet bulb: 28.5°C

 

Science and Technology Log

In my previous post, I discussed the ship’s sonar. This time, I’ll go into more detail about the tools the Thomas Jefferson is using to complete its mission. The sonar that the ship uses is multi-beam echosounder sonar, which sends the pings down to the seafloor and receives echoes in a fan shape, allowing the ship to survey a wide swath beneath the ship.

Multibeam Sonar
An illustration of a ship using multi-beam sonar. Image courtesy of NOAA

In addition to the multi-beam sonar, NOAA Ship Thomas Jefferson utilizes two towfish, or devices that are towed in the water behind the ship.

The first is the side scan sonar. Like the multi-beam, this device uses pings of soundwaves to create images of its surroundings. However unlike the multi-beam, the side scan doesn’t capture any data from the area underneath it. Instead, it collects data to its sides.  The side scan is connected to the ship via a cable, and is dragged through the water 6-15 meters above the seafloor. It is great for measuring the intensity of the return of the ping, which provides insights into the makeup of the seafloor.

The side scan towfish
The side scan towfish

The second towfish that the Thomas Jefferson is using is the MVP (like many things on the ship, MVP is an acronym, for Moving Vessel Profiler). The MVP truly gives the ship some of its most valuable data. As I discussed in my previous blog post, in order for us to accurately calculate the distance that the sonar’s pings are traveling, we need to know the amount of time it takes them to travel, as well as the velocity, or the speed, at which they’re moving. The singarounds I mentioned in my last post measure sound velocity, but only at the face of the sonar. Water conditions are not uniform – at the surface, water tends to be warmer, with less salinity. As you get deeper, however, the water tends to be colder and saltier. This means that the velocity of sound changes the deeper you get. Most of the time, the MVP rides just under the surface of the water, but periodically it will get cast down, to approximately 1 meter above the seafloor. It measures the water conditions of the entire water column from the surface to the seafloor, allowing us to calculate sound velocity all the way down.

MVP
The MVP towfish as it is being lowered into the water

The MVP measures the same water qualities as the CTD (a device I discussed in an earlier blog post), however, the MVP has a distinct advantage over the CTD. In order to use a CTD, the ship has to come to a stop while the CTD is lowered into the water. The MVP, however, can be used while the ship is in motion, which greatly increases productivity.

When surveying, many on the crew say it’s like mowing the lawn. The ship will capture a long stretch of data, called a line, and then turn around, and capture another stretch. 4% of these lines are cross lines, which run perpendicular, across a wide swath of lines of captured data. Cross lines allow the survey department to double check that the data they’ve captured is accurate.

Mowing the Lawn
A display of the lines of survey data the ship has captured. Cross lines can be seen running perpendicular to the majority.

 

Personal Log

TJ Bridge Daylight
The bridge of NOAA Ship Thomas Jefferson in the daylight

A couple of days ago, I went up to the bridge shortly after sunset, and I was surprised what I saw. All the lights were off, and the screens of the various instruments had been covered by red filters. I was told that this is for maintaining night vision when on watch. Red light interferes least with our night vision, so anything that gives off light is switched to red.

Bridge at night
The bridge of NOAA Ship Thomas Jefferson at night

While on the bridge, I had the opportunity to ask ENS Garrison Grant (who had recently been selected for a promotion to Lieutenant Junior Grade – congratulations Garrison!) a little about the NOAA Corps. I must admit that I was largely unfamiliar with them before joining the Thomas Jefferson.

The NOAA Corps as we know it today began in 1970, though its roots are much older. As president, Thomas Jefferson (for whom NOAA Ship Thomas Jefferson is named) created the United States Survey of the Coast, which would later evolve into the United States Coast & Geodetic Survey. Their early operations were not unlike the survey work that NOAA Ship Thomas Jefferson is doing today, though their tools were more primitive: surveyors wanting to determine the depths of America’s bodies of water didn’t have the benefit of sonar, and instead used lead lines – lead weights tied to the end of ropes. These surveyors would also play a vital role in our military history. They would often assist artillery, and survey battlefields. This is what led to the United States Coast & Geodetic Survey (and later, the National Oceanic and Atmospheric Administration) to gain a commissioned uniformed service. Due to the rules of war, captured uniformed service members could not be tried as spies.

To join the NOAA Corps today, you need to first have a bachelor’s degree. ENS Grant received his degree from Stockton University in Marine Sciences, but he says that it isn’t a requirement that the degree be in a maritime field. He says that some of his classmates had degrees in fields such as English or Communications. After getting a degree, you then apply to join the NOAA Corps (anyone interested should check out this website: https://www.omao.noaa.gov/learn/noaa-corps/join/applying). If selected, you would then complete the Basic Officer Training Class (BOTC), which generally takes about 6 months. After that, you’d be given your first assignment.

 

Did you know? Before NOAA Ship Thomas Jefferson was operated by the National Oceanic and Atmospheric Administration, it belonged to the U.S. Navy and was known as the U.S.N.S. Littlehales

Jeff Peterson: Learner at Sea: Day 1, July 9, 2018

NOAA Teacher at Sea

Jeff Peterson

Aboard Oregon II

July 9-July 20, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 9, 2018

 

Weather Data from the Bridge

Date: 2018/07/12

Time: 16:16:53

Latitude: 28 48.11 N

Longitude: 092 47.94W

Barometric pressure: 1018.94

Relative humidity: 57

Air temperature: 32.4 C (90.3 F)

Calm seas

 

Science and Technology Log

photo 2seamap.jpg

This is the 3rd and final leg of the SEAMAP Summer Groundfish Survey for 2018, taking place between July 9 and July 20 in the Gulf of Mexico. “Groundfish” refers to fish that live on, in, or near the bottom of the ocean.  SEAMAP stands for “Southeast Area Monitoring and Assessment Program,” and as the Gulf States Marine Fisheries Commission defines it, it’s an interagency (State, Federal, and university) “program for collection, management and dissemination of fishery-independent data and information in the southeastern United States” (https://www.gsmfc.org/seamap.php).

download.jpg

What is “fishery-independent data,” you ask? The key is understanding its converse: “fishery-dependent data.” Fishery-dependent data is gathered directly from (and in that sense, depends on) commercial and recreational fisheries.  It’s furnished by “dockside monitors, at-sea observers, logbooks, electronic monitoring and reporting systems.” In other words, it’s all about what is caught for recreational or commercial purposes. By contrast, “fishery-independent data” are collected by “scientists from NOAA Fisheries science centers and partner agencies/institutes,” who seek to gather “information on fish stock abundance, biology and their ecosystem for inclusion in stock assessments.” Roughly speaking, then, the distinction is one between a particular target and that target’s larger biological context and ecological surround. Though I had an intuitive sense of this distinction, I wanted to hold myself to account and really learn what it meant. I’m a “Teacher at Sea,” yes, but I’m really a “Learner at Sea.”

I turned to a fellow member of the day watch, fisheries biologist Adam Pollack, and, after sketching the basic distinction for me, he directed me to the website for NOAA’s Office of Science and Technology, National Marine Fisheries Service, pointing me in particular to the webpage on Stock Assessment Basics, where, among other things, one can find terms like “fishery-dependent” and “fishery-independent data” neatly defined: https://www.st.nmfs.noaa.gov/stock-assessment/stock-assessment-101). Not sure what stock assessments are? Watch theNational Marine Fisheries Service video: “The ABCs of Stock Assessments.” As I was going online to check out the definition of “fishery-independent data,” Adam told me this: “This is the world I live in.”

The purpose of the Summer Groundfish Survey is three-fold: “to monitor size and distribution of penaeid shrimp during or prior to migration of brown shrimp from bays to the open Gulf; aid in evaluating the ‘Texas Closure’ management measure of the Gulf of Mexico Fishery Management Council’s Shrimp Fishery Management Plan; and provide information on shrimp and groundfish stocks across the Gulf of Mexico from inshore waters to 50 fm [fathoms]” (https://www.gsmfc.org/seamap-gomrs.php). (A quick note on the Texas Closure. In order to ­protect young brown shrimp and help ensure that the shrimp harvest is more mature and hence more commercially valuable, the Texas shrimp fishery is closed annually between May 15 and July 17.)

On the first leg (June 7 to 20) of the Survey, the Teacher at Sea aboard was Geoff Carlisle; on the second leg (June 27 to July 5, 2018), the Teacher at Sea aboard was Angela Hung. You can find the first two “chapters” of our collective TAS Summer Groundfish Survery story here: https://noaateacheratsea.blog/

At the time of writing we’re still on our way to the fish survey station; it’s a 30-hour steam out of Pascagoula. I look forward to reporting on our catches and the technology we’ll be using in a future post.

Personal Log

photo 1 - Oregon II at dock
NOAA Ship Oregon II at its homeport in Pascagoula, MS

 

I flew into Gulfport, MS, from San Francisco, on the afternoon of Sunday, July 8, and was met at the airport by friendly and informed Field Party Chief Christina Stepongzi. As we crossed the bridge over the Pascagoula River and NOAA Ship Oregon II came into view, Chrissy said proudly: “There’s home.” On arrival, I got a quick tour of the vessel I’ll have the privilege of calling home for the next 12 days, and Chrissy introduced me around. The folks I met that afternoon (and since) were all just great: gracious and good humored, warm and welcoming. That first jovial bunch consisted of Chief Marine Engineer Joe Howe, Chief Steward Lydell Reed, and Junior Unlicensed Engineer Jack Steadfast. I got settled into my stateroom, and, jet-lagged and short on sleep, I turned in early.

stateroom 2.jpg
Stateroom 103: That’s my gear on the top bunk

 

I woke rested Sunday morning and went out onto the dock to look around. I’d brought a sketchbook with me (intending to keep a sketch-journal as both a pastime and an aid to learning), and, since I had a couple of hours to myself before a meeting at 1230 hours, I decided to try sketching the ship. I found a comfortable spot in the shade, and got busy. I’d hoped to sketch the ship from stem to stern, realizing I wouldn’t be able to take it all in once aboard. I planned to divide the ship in half and draw the halves on facing pages in my sketchbook. Stores arrived at 1000 hours, and I watched various preparations taking place fore and aft. I also helped carry a few bags of groceries aboard.

NOAA ship Oregon II
NOAA ship Oregon II

Working briefly in pencil and mostly in ink, I committed myself to certain shapes and proportions early on, and it soon became clear that I’d have to omit the bow and stern, focusing on the middle of the ship and making the best of things. Many of the objects, devices, and structural forms I was drawing were unfamiliar, and I looked forward to having a crew member explain what I’d been drawing later on.

 

Sketch of NOAA ship Oregon II
Sketch of NOAA ship Oregon II

It was an absorbing and thoroughly satisfying way of introducing myself to the ship, and I had the pleasure of meeting a few more members of the crew while I sketched. Skilled Fisherman Mike Conway introduced himself and very generously offered to grab me a fast-food lunch, since meals aboard weren’t being prepared yet. Arlene Beahm, the Second Cook, stopped by to say hello, as did First Assistant Engineer William Osborn. When the time came, I went aboard for the “Welcome Aboard” meeting, an orientation to the ship and shipboard courtesies by Operations Officer Ryan Belcher. Thereafter we had a little time to ourselves, so I meandered about the ship, meeting fisheries biologist Alonzo Hamilton in the galley. He kindly answered my questions about the version of the ship I’d sketched in the morning. (What were the white cylinders with domed tops amidships? Satellite antennas. What where the propeller-like forms forward of them, above the bridge? Radar.) We embarked at 1400 hours, and I up went to the flying bridge (i.e., the open deck above the bridge) to watch our passage down and out the mouth of the Pascagoula River and into the Gulf of Mexico.

view from flying deck.JPG
View from the flying bridge, minutes after embaraking

I got good looks at some Laughing Gulls and some Terns (that I’ll need to ID later), and watched a shrimp trawler working next to the channel behind Petit Bois and Horn Islands.

Laughing gull.JPG
Laughing Gull, Leucophaeus atricilla

Shrimper.JPG
The shrimp trawler Evening Star

Once we were in the Gulf proper, we were joined for a while by some Bottlenose Dolphins. An hour or two later, as I sat astern watching the sun set, I caught sight of a pair of Frigatebirds, high above the ship, their stunning forked tails trailing behind them. I’d never seen one, let alone two, and I didn’t sketch them or take a photograph of them. But you know I’ll remember them.

Sunset
Sunset

Did You Know?

Magnificent Frigatebirds don’t dive after fish. They skim themfrom the surface or chase after other birds, stealing their catches. To learn more about the Magnificent Frigatebird, visit Cornell Lab of Ornithology’s “All About Birds” website:  https://www.allaboutbirds.org/guide/Magnificent_Frigatebird/

Jeff Peterson: From the West Coast to the Gulf Coast, July 5, 2018

NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – 20, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 5, 2018

 

Introduction

In a few short days, I’ll be flying to the Gulf Coast and going aboard NOAA Ship Oregon II, a 170-foot fisheries research vessel which first launched in 1967. I turned seven that year, and in my Southern California boyhood loved nothing better than exploring the cliffsides and mudflats of the Newport Back Bay, collecting seashells and chasing lizards and Monarch butterflies. Fifty years later, I’m just as smitten with nature and the marine environment, maybe more so. I live in the San Francisco Bay Area now, and these days my passion for the ocean takes the form of getting out on the water whenever I can (and longing to do so whenever I can’t): kayak-fishing along the coast from Marin to Mendocino, tide-pooling at Half Moon Bay, and whale-watching with my family in Monterey.

Jeff Peterson family
Me & my kids, Miriam and Noah, just off the water. Van Damne State Park, Mendocino California.

Though my childhood reading consisted almost entirely of field guides for shells and insects—and those by Roger Tory Peterson (no relation) were my most-prized books—I didn’t become a biologist. No, I became a professor of English instead, one who was drawn, not too mysteriously, to writers who shared my fascination with the sea and its creatures, novelists like John Steinbeck and Herman Melville, poets like Walt Whitman and George Oppen. As a non-scientist with an incurable case of “sea fever,” I simply couldn’t be happier to sail this summer as a NOAA Teacher at Sea, and I look forward to experiencing first-hand the rigors of life and work aboard a NOAA research vessel.

The College Preparatory School
A glimpse of The College Preparatory School. Oakland, California

I have the great good fortune of teaching at a wonderful independent high school that has helped me to cultivate these interests within and beyond the classroom: Oakland’s College Preparatory School. I teach a year-long Freshman English course there as well as a handful of upper-level semester-long seminars, each focused on a special topic or theme. One of my favorite seminars is called “Deadliest Catches” (yes, a shameless allusion to those intrepid Bering Sea crabbers on Animal Planet), a course that offers a deep-dive into the encyclopedic wonders of Herman Melville’s Moby-Dick. Every fall members of this course visit the San Francisco Maritime National Historical Park to go aboard historic vessels and sing chanteys with a locally famous park ranger. We also team up with members of College Prep’s Oceanography class, taught by my colleague Bernie Shellem, for an afternoon of marine science aboard the R/V Brownlee, examining bottom-dwelling marine life, identifying fish and crustaceans, and studying water chemistry and plankton in the San Francisco Bay.

 

College Prep students
College Prep students, about to go aboard the R/V Brownlee. Richmond, California

Another of my sea-related courses, and one that might stand to benefit even more directly from my TAS experience, is “Fish & Ships”: a week-long intensive class on sustainable seafood and Bay Area maritime history.  Though the course is brief, it encourages students to reflect on big questions: how do their everyday choices affect the marine environment that surrounds them, and what does it mean to be an ethical consumer of seafood? We meet and eat with industry experts, and we take a road trip to Monterey, visiting its amazing Aquarium, kayaking on Elkhorn Slough (where its rescued sea otters are released), and feasting mindfully at restaurants that feature sustainable seafood.

In connection with this course and on a personal note, I’m especially interested in the shrimp species I’ll become well acquainted with on the upcoming cruise. I’m a big fan of shrimp tacos, and my favorite taqueria in Berkeley makes theirs from “wild-caught shrimp from the waters of Southeastern Louisiana.” An ad on the wall proclaims they’re a sustainable resource, informing customers that independent fisherman harvest the “Gulf Shrimp” using a method called “skim netting,” reducing by-catch (i.e., the unwanted capture of non-target species) and thereby doing less damage to the ecosystem. I’m fascinated by the ways supply-chain connections like these—between particular fishermen and the fish they fish for in a particular place and in a particular way—swirl out into so many different but interconnected orbits of human endeavor, binding them in one direction to the fisheries biologists who help determine whether their stocks are sustainable, and, in another, to fish taco aficionados and English teachers in far flung states who delight in their flavorful catches.

What am I bringing along to read, you may wonder. Well, for starters, it’s only fitting that my well-worn copy of Moby-Dick accompany me, and another old favorite belongs in my bags: Steinbeck’s Log of the Sea of Cortez. More powerfully than any of his fiction, that work—which records the marine-specimen collecting trip Steinbeck made to Baja California with his longtime friend, marine biologist Ed Ricketts—spoke to me as a young man and certainly helped inspire the voyage I’m about to take as a Teacher at Sea.

 

Did You Know?

Samuel Clemens’s pen name, Mark Twain, had a maritime source. In the parlance of riverboat pilots, the two words mean “two fathoms” (or 12 feet) of depth, “marked” (or measured) by the leadsman. The expression meant safe water for a steamboat, in other words.

 

Angela Hung: “The Solution to Pollution is Dilution”, July 3, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 3, 2018

 

Weather Data from the Bridge

Conditions at 1610

Latitude: 29° 30’ N

Longitude: 92° 51’ W

Relative Humidity: 83%

Temperature: 26° C

Wind Speed: 13 knots

Cloudy with rain

 

Science and Technology Log

“The solution to pollution is dilution” was a common refrain during the midcentury as large scale factories became more common. This mindset applied to both air and water as both seemed limitless. Looking out over the Gulf of Mexico, a relatively small body of water, it’s easy to see how this logic prevailed. Even the Great Lakes, the largest body of fresh surface water in the world, accepted incalculable amounts of pollution and sewage from coastal factories, steel and wood mills, and of course major cities.

Sky and water as far as the eye can see. (It's hard to take a steady shot on a rocking boat!)
Sky and water in the Gulf of Mexico as far as the eye can see from the deck of NOAA Ship Oregon II. (It’s hard to take a steady shot on a rocking boat!)

The rise of the modern technological age that took humans to the moon gave us the first glimpse of the fallacy of the “solution”. “Earthrise” is the first photo of the entire Earth taken from space, showing us how thin our protective atmosphere really is and how delicately the Blue Planet floats in the vastness of space. This is the beginning of the modern environmental movement.

"Earthrise" Photo courtesy of nasa.gov
“Earthrise” Photo courtesy of nasa.gov

To truly guide the development of national policies including those that protect air and water quality, federal agencies such as NOAA are responsible for collecting data about our atmosphere and oceans, now knowing that these ecological compartments cannot endlessly dilute the pollution we generate. What seemed to be an obvious solution has today ballooned into a number of serious problems, from acid rain and blinding smog in cities to burning rivers, mass fish die offs that wash up on Lake Michigan beaches and dying coral reefs in the oceans.

The Cuyahoga River that runs through Cleveland, OH caught fire over a dozen times. This fire in 1969 finally motivated action towards creating the Clean Water Act.
The Cuyahoga River that runs through Cleveland, OH caught fire over a dozen times. This fire in 1969 finally motivated action towards creating the Clean Water Act. Photo from: https://www.alleghenyfront.org/how-a-burning-river-helped-create-the-clean-water-act/

A major pollutant in the Gulf is sourced from industrial agriculture practices from as far away as Illinois and the rest of the Midwest farm belt. Fertilizer and pesticides enter local rivers that find their way to the Mississippi River which carries contaminants into the Gulf of Mexico.

We have reached the Gulf’s “Dead Zone”, yielding a few tiny catches. Station W1601 may have given the smallest catch ever—a clump of seaweed and a whole shrimp.

The case of the shrinking trawls. On left, a catch from the night of July 2. Center and right, samples from two stations in hypoxic waters. The fish in the right photo may have been stuck in the net from the previous trawl.
The case of the shrinking trawls. On left, a catch from the night of July 2. Center and right, July 3 samples from two stations in hypoxic waters. The fish in the right photo may have been stuck in the net from the previous trawl.

Hypoxia literally means “low oxygen”. When fertilizers used to grow corn and soy enter bodies of water, they likewise feed the growth of algae, which are not technically plants but they are the aquatic equivalent. But plants make oxygen, how can this lead to low oxygen? Algae and land plants only produce oxygen during the day. At night, they consume oxygen gas through respiration. They do this during the day as well, but overall produce more oxygen in the light through photosynthesis. For hundreds of millions of years, that’s been fine, but the recent addition of fertilizers and the warm Gulf waters cause an explosion of the kind of microscopic algae that are suspended in the water column and turn water bright green, or red in the case of “red tides”. These explosions are called algal blooms.

Red tide. Photo credit: https://ocean.si.edu/ocean-life/plants-algae/red-tide
Red tide. Photo credit: https://ocean.si.edu/ocean-life/plants-algae/red-tide

Algal blooms can cloud up water, making life hard for other photosynthetic organisms such as coral symbionts and larger seaweeds. At night, animals can suffocate without oxygen. During red tides, some algae release toxins that harm other life. When these organisms die and sink, bacteria go to work and decompose their bodies. The population of bacteria explodes, consuming the remaining oxygen at the sea floor. Animals that wander into the hypoxic zone also suffocate and die, feeding more decomposer bacteria that can survive with little to no oxygen. Thus, hypoxic areas are also called “dead zones”.  The hypoxic zone is just above the sea floor, as little as a half a meter above, and oxygen levels can drop precipitously within a meter of the bottom.

NOAA scientists including those conducting the SEAMAP Summer Groundfish survey on Oregon II track the location, size and movement of the Gulf hypoxic zone using the conductivity-temperature-dissolved oxygen probe, or CTD. The CTD is sent into the water before every trawl to take a variety of measurements. Besides conductivity (a measure of ions), temperature and oxygen, the CTD also checks the salinity, clarity and amount of photosynthetic pigments in the water, which gives an idea of plankton populations. Ours uses two different sensors for conductivity, salinity, temperature and oxygen, double-checking each other. A pump pulls water through the various sensors and the measurements are sent directly to a computer in the dry lab to record these data.

The CTD is lowered to just under the surface of the water to make sure the pump is working and to flush the system. Then it is lowered to within a meter of the bottom. The CTD also has an altimeter to measure the distance from the bottom, while the ship also uses sonar to determine the water depth at each station. Water is measured continuously as the CTD is lowered and raised, creating a graph that profiles the water column. Crewmen are on deck controlling the winches according to the directions from a scientist over the radio who is monitoring the water depth and measurements in the dry lab.

Conductivity, temperature, dissolved oxygen sensor (CTD). The gray cylinders are bottles that can store water samples.
Conductivity, temperature, dissolved oxygen sensor (CTD). The gray cylinders are bottles that can store water samples.

Casting the CTD is a coordinated effort.
Casting the CTD is a coordinated effort.

The CTD also has bottles that can store water samples so oxygen can be tested a third time in the lab onboard. When we only get a few fish where the CTD recorded normal oxygen, the CTD is launched again to verify oxygen levels using all three methods. In the CTD output, oxygen is coded in green as a line on the graph and in the data tables. Most stations read in the 5-6 range, the cutoff for hypoxia is 2. We are reading less than 1 in the Dead Zone.

CTD output. Depth is on the vertical axis and each measurement is scaled on the horizontal axis, showing how each variable changes as the CTD moves to the bottom and back to the surface.
CTD output. Depth is on the vertical axis and each measurement is scaled on the horizontal axis, showing how each variable changes as the CTD moves to the bottom and back to the surface.

Quadruple check on dissolved oxygen in Gulf waters the "old fashioned" way using a Winkler titration.
Triple check on dissolved oxygen in Gulf waters the “old fashioned” way using a Winkler titration.

 With storms in the path and not-so-plenty of fish in the sea, today is a slow day.

 

Personal Log

Looking out over the water, I can’t help but think how intrepid, even audacious, early mariners must have been. I know we are within a couple miles of the coast but there’s no sign of land anywhere in any direction. Even with the reassurance that satellites, radar, radios, AND trained NOAA Corps officers steering in the bridge are all keeping track of us, I still swallow a moment of panic. What kind of person decides to sail out in search of new continents when it only takes a couple hours to lose track of where you came from? And yet, the Polynesians set out thousands years ago in canoes from mainland Asia, the Aborigine ancestors managed to find Australia, and of course, Europeans sailed across the Atlantic to the Americas, whether they knew it or not. It was all possible through careful observations of the winds, waves, ocean currents, stars and other indications of direction, but I still have to think that that’s a pretty bold move when you don’t know if land lies ahead.

No land in sight.
No land in sight.

At least we’re not alone out here. These are some other animals that we’ll leave for the mammal survey and birders to count.

 

Did You Know?

The CTD also shows the layers of ocean water. Looking at the graph again for the red (salinity) and blue (temperature) lines, we can see where they cross at about 15 meters. This shows where colder, saltier water starts compared to the warm surface water that is diluted by fresh water and mixed by wind.

Angela Hung: “Don’t Give it A Knife!”, June 30, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 30, 2018

 

Weather Data from the Bridge

Conditions at 2112

Latitude: 28° 40’ N

Longitude: 95° 43’ W

Relative Humidity: 76%

Temperature: 28.4° C

Wind Speed: 18 knots

 

Science and Technology Log

What are groundfish? They are basically what they sound like, the fish that live in, on or near the bottom of a body of water. NOAA Ship Oregon II samples waters in coastal Gulf regions from Florida to Texas using an otter trawl net. Our net includes a “tickler chain” that moves just ahead of the opening to disturb the bottom sediment so that organisms swim up to be scooped up.

Diagram of an otter trawl net
Diagram of an otter trawl net used collect groundfish. Photo credit: http://www.fao.org/docrep/008/y7135e/y7135e06.htm

We tow for a short half hour at each station to get an idea of what species can be found at different locations. Fishing boats tow for much longer, hours at a time with larger nets. The cod end where the fish collect, is created by a knot beautifully tied by Chief Boatswain Tim Martin that holds during the tow but easily pulls open to release the catch which drops into large baskets. Tim works on the deck to launch the CTD (conductivity-temperature-dissolved oxygen probe) and the trawl net. The baskets are weighed and then dumped onto a conveyor belt to be sorted.

The otter trawl in action.
The otter trawl in action.

knot
This knot closes the net during a trawl but pulls open to release a catch.

 

We start by putting whatever looks alike together, which is much easier said than done. If it turns out to be tricky, the wet lab is equipped with a range of resource guides to reference. Once everything is sorted out, each species is individually sampled: the count of individuals, the total weight of that species, the lengths of up to 20 individuals, and the weight and sex of every fifth individual. This information is entered into Fisheries Scientific Computer Systems (FSCS) and added into a database that gets uploaded for public knowledge.

Everyone is lined up and sorting through fish. It's the first trawl of the cruise so the night shift got excited and joined us.
Everyone is lined up and sorting through fish. It’s the first trawl of the cruise so the night shift got excited and joined us.

 

 

For commercial species, such as shrimp and red snapper, every individual is measured and sexed; up to 200 for shrimp and up to 20 red snapper.

Shrimp and more shrimp. Brown shrimp, Farfantepenaeus aztecus to be specific!
Shrimp and more shrimp. Brown shrimp, Farfantepenaeus aztecus to be specific! NOAA’s FishWatch recommends them as a “smart seafood choice”. https://www.fishwatch.gov/profiles/brown-shrimp

It’s a lot of work, but data entry is relatively easy using a magnetic board. You line the specimen up at the end of the board and simply press the magnet at the end of the animal’s body. The board is connected to a computer and automatically sends the measurement when the magnet is pressed. The scale is also connected to a computer and sends that information directly. However, every species’ scientific name is manually entered into a list for each station before measurements are taken.

 

So many kinds of fish, but color is not a way to sort!
So many kinds of fish, but color is not a way to sort!

These data are primarily used by NOAA for stock assessments. By documenting species abundances, size and distribution, fishery managers can calculate catch quotas for the year that maintains healthy stocks. These data are also used by NOAA for their database to help you make sustainable seafood choices: https://www.fishwatch.gov/ .  It is also part of NOAA’s mission to be “Dedicated to the understanding and stewardship of the environment,” which is why everything that is captured is counted. Federal data are publicly available, so these surveys might be used by scientists to study a range of questions about any species that we counted, including the ecology of non-commercial species.

It’s really interesting to see exactly where seafood comes from. In the 10 miles or so between stations, the communities change drastically. Shrimp are abundant in east Texas, but not where blue crab start to appear in west Texas. It’s also interesting to see the different sizes (ages) of fish change between stations. One station brought in snapper over 10” long, while the next two stations delivered their 5-6” juveniles. Aside from that, I got the chance to handle so many species I’ve only seen on TV and never imagined that I would get to hold in my hand!

 

This slideshow requires JavaScript.

 

Blue crabs, Callinectes sapidus. The two upturned crabs are females carrying eggs.
Blue crabs, Callinectes sapidus. The two upturned crabs are females carrying eggs.

“Don’t give it a knife!”

“Stop giving it things!”

-things you say when trying to separate blue crabs that are latched onto each other

It’s reassuring to see the Gulf teeming with gorgeous biological diversity as evidence that U.S. fisheries are responsibly managed and that we have a strong model of stewardship in our seas—SEAMAP Groundfish Survey literally only scratches the surface of the coastline.

 

Personal Log

The meals in the galley are great. Valerie McCaskill of Naples, FL and Arlene Beahm from Connecticut are the Stewards onboard and they work diligently to feed us delicious home cooked meals. I’ll be a few pounds heavier when you see me after this trip. “Arlene’s trying to kill you with food!” Tim observed. These two ladies are stand-in moms, making sure we have heaping plates at meal times and snack times and anytime in between.

Lunchtime
Finally got to eat some of the white shrimp we caught. And a whole steak for good measure. (Only the galley is allowed to take a part of the catch cook it for the ship.)

That’s a great thing because the 12 hour shifts work up an appetite. NOAA Ship Oregon II sails from one sampling station to the next, ranging from 5-12 miles in between, but as many as 20+ miles. On short runs, the next station comes up pretty quickly and we find ourselves finishing one just in time to start the next. We process four to five stations each shift with only short breaks during trawls.

It’s hugely humbling and an exercise in insecurity to watch the scientists work. At a glance they can recite the full scientific name of the hundreds of species that pour out of the net. I’ll be happy if I can come back with ten new species in my memory bank.

C. similis
Baby blue crabs? Nope, these are adult Callinectes similis, blue crabs are C. sapidus.

The researchers onboard have been doing this for years. Identifying species takes time and practice to learn like any other skill, and it showcases the dedication and fulfillment they find in this kind of work.

Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.
Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.

It’s hot, dirty work.  There’s no air conditioning in the wet lab and around 1000+ fish can be brought aboard at a station. I, and probably everybody else within smelling range, am grateful to have hot showers and laundry onboard. Kristin Hannan emphasizes that “field work isn’t for everyone, but you don’t have to work in the field to study marine science.” But, the wet lab is where you witness the enthusiasm that brings the crew and the scientists back day after day in the heat of July, year after year. Squeals of excitement and giant grins appear with favorite species: Calappa crabs (I learned a name!), triggerfish, beautiful snail and clam shells, the infamous mantis shrimp, a chance sea anemone and of course sharks to name a few. Fisherman James Rhue, a crewman who works with Tim and operates the winches, comes to check out (as in play with) the catch a couple times a day; the fishing crew must be as skilled with identifications as the researchers—they do it during their off hours. During the half hour of the tow, we are often talking about plankton diversity in the dry lab.

Kristin Hannan, a shark researcher, pauses to examine a young hammerhead.
Kristin Hannan, a shark researcher, pauses to examine a young hammerhead.

As satisfying as the work can be for some, the challenges certainly come with living on a relatively small boat built in a different time. While long overnight shifts sound tough, seasickness jumps to mind more readily when you say “boat”.  When you’re seasick, everyone volunteers a range of interesting remedies, from watching the horizon, which is qualified as BS; lying down; sleeping, which isn’t easy when you’re sick; eating to keep your stomach full, counterintuitive but actually a useful one; ginger candy; staying cool, which does not describe the wet lab; to just chewing on a chunk of raw ginger, distracting, I’m sure! The Teacher at Sea organizers recommend working to keep your mind off of the nausea. Arlene was also very kind and donated a couple of her seasickness patches to my cause. For me, standing outside and watching the waves for flying fish helped immensely in the few minutes between processing catches. And there is far too much work and creatures to see to think about my stomach.

The blue dots are sampling stations along the Texas coastline. The red line shows where we've been. Thankfully, we're not trying to hit every station, but there's plenty to do!
The blue dots are sampling stations along the Texas coastline. The red line shows where we’ve been. Thankfully, we’re not trying to hit every station, but there’s plenty to do!

 

Did You Know?

Although scientific names sound like gibberish, they are in Latin and often physical descriptions of the species. Portunus spinicarpus for example is a crab named for the long spike (spini) on its wrist (carpus).

P. spinicarpus
P. spinicarpus

Lagocephalus translates to “rabbit head”, the name given to the group of puffer fishes, but you might have to squint to see it.

 

Angela Hung: Flexibility, June 22, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 22-July 5, 2018

June 19-July 5, 2018

June 23-July 5, 2018

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 22, 2018

Weather Data from the Bridge

(Actually from weather.gov, the program in the bridge is off)

Conditions at 1454

Latitude: 30.46° N

Longitude: 88.53° W

Temperature: 34° C

Wind Speed: SW 12 mph

Science and Technology Log

Taniya Wallace-Chief Scientist, Fisheries Biologist

If you enjoy a good seafood steam pot or boil—overflowing with shrimp, crabs, clams and corn and potatoes mixed in, rounded out with fish filets blackened/broiled/fried to your preference—then you have to thank hardworking scientists like Taniya Wallace. Taniya is a fisheries biologist and is the Chief Scientist aboard Oregon II for this leg of the 2018 SEAMAP Summer Groundfish Survey. On top of assessing the health of the Gulf fisheries that feeds Americans across the country, she is busy coordinating the group of scientists that form the research party on the boat. The specifics of the research will follow in upcoming posts, but today, I’d like you to meet a scientist.

Taniya Wallace
Taniya entering data into the computer.

Taniya was certain of becoming a nurse. Her high school offered vocational coursework in nursing to give students an early start into college degree programs. She was on track, until it came to clinicals. Nursing clinicals are the part of the program where students begin their training in real work settings to apply what is learned in the classroom. More importantly, clinicals introduces students to the realities of the job.

Nurses are among the ranks of hard working, underappreciated sectors of the health field because much of what they do goes unseen. For many in pre-nursing and nursing programs, clinicals ensures that students are experiencing what they are signing up for. For Taniya Wallace, her experience during this class compelled her to make the difficult decision to pursue a different program of study.

Taniya was accepted in Mississippi Valley State University, a historically black university, where she earned her bachelor’s degree in biology with a minor in chemistry. She began a position as a laboratory scientist until the 2010 explosion on the Deepwater Horizon oil drilling rig that caused 11 deaths and the largest oil spill in history. Four million barrels of oil flowed into the Gulf of Mexico over three months before the underwater well was finally capped.

Taniya has always loved the water, and had previously shadowed her cousin who is also a marine scientist. Her aunt builds boats for Austal Shipyard in Alabama and her father works at Ingalls Shipbuilding in Pascagoula, MS, the very company that built Oregon II. With an urgent need to study the critical impacts of crude petroleum oil on the Gulf ecosystems, an opportunity on Oregon II was a natural fit. Taniya signed a three month contract–she’s been here ever since.

Plaque aboard Oregon II
Plaque aboard Oregon II

What has kept her going for eight years? As a scientist on a ship, she sees “something new every day” on the boat and on land when they stop at different ports. With a love of water, working in a lab at sea is a win-win.

Personal Log

The Teacher at Sea Program emphasizes to applicants that “flexibility and the ability to cope with the uncertain is crucial to the character of those who go to sea.” Taniya Wallace demonstrates this quality by shifting to a research program in college, joining NOAA Ship Oregon II, and by working at sea.

It is no exaggeration that flexibility is a requirement for working on a boat. In fact, I was scheduled to participate in the second leg of the SEAMAP summer groundfish survey on June 21, departing from Galveston, TX on the 22nd. Unfortunately, the trawl winch broke during the first leg (the first time ever for Oregon II which has been sailing for 50 years!), cutting their trip short. To try to make up the time, it was decided that the second leg would get an early start from Mississippi as soon as repairs were completed in Pascagoula, MS.

What originally was a week to get packed, find a plant sitter and cuddle with my cats became a last minute scramble to find rain boots and mow the lawn in the middle of a heat wave—I boarded a plane to Gulfport, MS on June 18 instead. (It was explained that this was not the typical direction in scheduling shifts.) I got to meet some of the fantastic crew members of Oregon II, as well as from neighboring Gordon Gunter, who invited me to play corn hole for the first time. This is the game where you are trying to throw bean bags through a hole cut in a plywood board that’s set on an incline.  I spent the night on the boat in port.

 

 

 

The boat bustled the next morning as everyone arrived: crew, scientists and a couple of interns. [Find your internship here! https://coastalscience.noaa.gov/about/internship/  ] At 1400, we were off!

There’s the requisite training and safety information for the ship in general. Taniya took over the interns and me for science brief. I learn that I’m assigned to the day shift which begins at 1200 noon the next day. Night shift starts at 2400 midnight that same day. The operations of the ship are 24 hours. It’s a long wait to get started and I’m looking forward to it.

We spend a night out at sea and I’m up and ready to sort some fish and shrimp. When I get to the galley, I find out that we are in fact, returning to Pascagoula because the trawl winch wasn’t fully repaired.

While issues like this are rare on Oregon II, a vessel that is widely regarded as extremely reliable, the process of science frequently hits stumbling blocks. TV shows like CSI and Bones and movies like Jurassic Park feature futuristic laboratories with state-of-the-art, if wildly impractical, equipment with colorful liquids, holograms, and scientists in lab coats and goggles who complete experiments in mere minutes. In reality, science is a lot messier and SLOWER. While wiling away the time today, I learned about a new hashtag for scientists full of internet examples: #badstockphotosofmyjob.

Real labs tend to have old equipment, space is limited so rooms are often crowded with large machines and many computers, and most liquids are colorless, stored in small, like the size of your pinky, tubes in a refrigerator or freezer. Particularly if you work outside, aka “the field”, and even if you don’t, a lot of equipment might be jerry-rigged from things picked up at Wal-Mart or Home Depot. Not to say that science is unreliable or not credible, but that projects are unique and a lot of times, you have to be creative and build what you specifically need. Then modify it until it works.

 

 

 

 

So here we are in a typical day of a scientist. A piece of equipment isn’t working, we’re losing data collection by the minute, but remember, we’re going to be flexible.

Did You Know?

The National Oceanic and Atmospheric Administration (NOAA) is operated by the U.S. Department of Commerce, which is tasked with promoting job creation and economic growth by providing tools and programs for the scientific collection and analysis of data. NOAA is one of these scientific research agencies employing scientists to study the atmosphere to provide us with weather and climate data, and the oceans, providing information for the operation of fisheries, for example. Good policies are informed by basic research, making the work of these agencies invaluable to the US economy.

Brandy Hill: Warm Initiation to Life at Sea: June 26, 2018

 

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA Ship Thomas Jefferson

June 25 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: June 26, 2018

 

Weather Data from the Bridge

Latitude: 28° 59.9′ N

Longitude: 093° 50.4′ W

Visibility: 10+ nm

Sky Condition: 2/8 (2 out of 8 parts have cloud cover)

Wind: 170°, 8 knots (kts)

Temperature: Sea water: 29.8 ° C, Air: 28.8 ° C

 

 

Science and Technology Log

 

Upon early evening arrival to Corpus Christi, TX, I was greeted by ENS Taylor Krabiel with a friendly sign at the airport arrival gate. We made a short drive to the port in Corpus Christi and boarded NOAA Ship Thomas Jefferson.

 

TJ Starboard View
Starboard view of the Thomas Jefferson while docked in Corpus Christi.

 

ENS Krabiel provided a quick and thorough tour of the Thomas Jefferson including the well-stocked mess (including a fresh salad and fruit bar, ice cream freezer and espresso machine), gym, complementary laundry facilities, all offices and staterooms, the plot (survey) room, and multiple outdoor decks. He was also patient as I repeatedly lost direction of the stairwell, multiple decks (floors) and doors. It is evident that ENS Krabiel has experience as a teacher because his enthusiasm about the ship, projects, personnel, and patience with newcomers seems to come naturally.

One fact he shared about the ship is that the Thomas Jefferson makes its own water through reverse osmosis. This means that all hands (everyone aboard the ship) generally do not need to worry about water rationing. I hope to take a tour and find out more about this process during the next couple of weeks.

 

2012-2018 Puretec Industrial Water
Reverse osmosis diagram. (Puretech Industrial Water 2012-2018)

 

He also mentioned that the U.S. via NOAA is one of the only countries that provide nautical chart data at no cost to the public. Private parties may use these accessible charts and make their own modifications.

The CO, Commanding Officer, of the ship and I discussed various careers aboard the Thomas Jefferson. CO explained that ship personnel in blue uniforms are hired through NOAA Corps and follow military rankings while professional mariners include the survey team, engineers, stewards, and deck department. There are also electronics technicians who are hired as civil servants. I found it astonishing that some crew members have been with the Thomas Jefferson since NOAA acquired the ship in 2003. I was able to have my first breakfast aboard the ship with Puddin’ Gilliam, Junior Engineer, who has been with the ship since then.

It was interesting observing the plans for departure from Corpus Christi come together. I sat in on a safety brief discussing the strict plan of navigation. It takes roughly two hours to navigate through a narrow, 21-mile long channel out of the port. Coming too close to the sides of the channel could cause the ship to run aground, while coming too close to oncoming ships could cause additional damage. There are also several points of crossways where ships could be coming from a different direction. All of these variables require critical communication and a concise plan. Junior Officer, ENS Jacquelyn Putnam, lead the brief and displayed digital Mercator projections of the navigation plan. She claims that navigation is her favorite part of her job. In addition, it was decided that the assistance of a pilot (someone who boards the ship while docked and departs at the jetty) would provide ideal support in navigating the ship.

General Alarm
Several checks are completed prior to departure. This includes sounding all alarms (above), checking the ship whistle, and steering (not pictured).

 

During a project brief lead by FOO (Field Operations Officer) Lt. Anthony Klemm, I learned that the primary mission is to accurately complete the survey of a section of the Gulf of Mexico. The area was last surveyed in the 1930s. Already, the survey team has submitted updates including the removal of two wrecks or obstructions previously documented in the narrow fairway leading to Galveston. This inaccurate documentation of obstructions that were no longer present could have been causing ships to deviate from the fairway or move unnecessarily into the oncoming lane of traffic. In addition, the surveys done by NOAA Ship Thomas Jefferson allow for validation of surveys completed by other organizations such as BOEM (Bureau of Ocean Energy Management).

 

 

           ENS Taylor Krabiel launches a towfish sonar device. 

       Basics of the survey process include launching two types of sonar which work together to provide in-depth views of the ocean floor. Sonar sends a sound wave at a speed around 1500 meters per second in salt water. Using this information and the time it takes for the sonar wave to return to the device, the distance can be calculated using Distance = Speed x Time. The sonar images generated are then processed, saved, and analyzed by the survey team. ENS Putnam mentioned that it is important to validate the data by using multiple scans, “buttoning-up” or finalizing, and re-surveying areas that generated poor data. At times, areas of interest (like a wreck) or areas of safety concern are further investigated by completing another scan on the main ship or by sending a launch (smaller boat).

 

Personal Log

While Tom Loftin, Chief Electronics Technician, was getting my computer set-up on the ship’s wifi, we heard a call for “All Hands on deck.” I looked at him and asked if that meant us. He replied, “Yep, let’s go!” We joined everyone on the ship to form an assembly line to assist with unpacking crates and passing food down into the mess. The crew would get excited about certain items like the ice cream and blueberries while questioning other generic items with nondescript labels.

Starting at the very beginning before we even left port, there has been no end to teamwork, positive morale, and camaraderie presented on the ship. I have discussed this with multiple crew members and all have said that teamwork and constant communication is critical. Several examples include: the departure from Corpus Christi, observing the survey and bridge communication while sonar is in the water, and the timely “Plan of the Day” email sent out by Lt. Charles Wisotzkey. ENS Putnam mentioned that nothing can be accomplished without a well-functioning team. She further stated that clearly defined roles and the importance of everyone’s job makes the team function well.

It has been a lot of fun to be around this crew. Everyone is kind and highly accommodating thus far. Outside the XO’s (executive officer) office is a sign that says, “Work hard and be nice to others.” I am excited to be here and to witness such a well-functioning team.

 

Bridge Departure View
Officers, crew, and pilot on the bridge while navigating the narrow channel to Galveston.

 

Peaks and Valleys

 

+ I enjoyed observing the departure process and launching the sonar devices.

+ I’ve seen over 30 dolphins scattered around the Gulf.

+I enjoy catching up with people during meal times. The food isn’t bad!

 

– I experienced my first bought of sea sickness immediately upon leaving the jetty. Seas were a bit rough (an estimated 8 feet) and I retired to my stateroom (bedroom) early without eating dinner.

– I accidentally locked myself out of the shared head (bathroom).

Angela Hung: The First Day of Summer, June 12, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 19-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 12, 2018

 

Weather Data from Prairie State College

Conditions at 1510

Latitude: 41.45° N

Longitude: 87.53° W

Temperature: 26° C

Wind Speed: S 6mph

 

Science and Technology Log

How did we decide that June 21 is the first day of summer? Is this the day the pool opens? Is it the hottest day of the year? The critical date when students have de-stressed from the last school year and the next still seems far away?

In fact, the first day of summer says a lot about planet Earth’s annual journey around the sun. June 21 (sometimes June 20) is also called the Summer Solstice—the longest day of the year in the Northern Hemisphere. Because Earth rotates on a tilted axis, this is the day that the North Pole is most directly pointed at the sun. From our view on the ground in Chicago Heights, the sun appears farthest north in the sky.

The seasons are a result of the Earth's tilted axis as it travels around the sun. Summer Solstice occurs between June 20-22 when the North pole is tilted towards the sun.
The seasons are a result of the Earth’s tilted axis as it travels around the sun. Summer Solstice occurs between June 20-22 when the North pole is tilted towards the sun. Image credit: NOAA National Weather Service, https://www.weather.gov/cle/seasons

Conversely, winter begins on a solstice as well—the shortest day of the year when the planet is leaning away from the sun. In between, Spring and Fall correspond to “equinoxes”, the days when night and day are “equal” or roughly the same lengths.

It follows that in the Southern Hemisphere, the seasons are reversed. On June 21 while the North Pole is soaking in the sun, the South pole is in the shadows for the longest night of the year. A common misconception is that summer is when the entire Earth is close to the sun in an elliptical orbit and winter is when the planet is far away. If this was true, the Northern and Southern hemispheres would experience winter and summer at the same time. Actually, Earth’s orbit is fairly circular and the planet as a whole remains the same distance all year. Only the poles change their relative positions to the sun.

 

Introductory Personal Log

June 21 is a bittersweet day for me. As an avid gardener, the flip side of the Summer Solstice is that the days begin to get shorter and shorter until December 21. I start accounting foot by foot around the yard where “full sun” areas disappear and the infamous Chicago winter looms ahead. But this year, the Solstice brings a new excitement. Next week, Earth’s and my summer officially begins with a trip to Pascagoula, Mississippi to begin the second leg of the SEAMAP (Southeast Area Monitoring and Assessment Program) Summer Groundfish Survey aboard NOAA Ship Oregon II. Oregon II is a research ship that surveys various types of marine life in the Gulf of Mexico, Atlantic Ocean and Caribbean Sea. I can’t think of a better way to spend summer in these bodies of water.

 

How would I know about the Gulf, Atlantic and the Caribbean? I’ve lived in a few places around the U.S. My early childhood was spent in northern Virginia before moving to Florida where I stayed until I left for graduate school. That took me to New Mexico (truly enchanting!) and my current position brought me here to the south suburbs of Chicago, Illinois. My parents still live in Florida by the Indian River on a barrier island in the Atlantic Ocean. My bachelor’s degree is from New College of Florida which sits on a bay in the shimmering Gulf of Mexico. I haven’t had the pleasure of living in the Caribbean, but I have visited a couple of times.

 

[Break to answer the burning questions on everyone’s minds]

Florida its has drawbacks to beaches, such as the crushing summer humidity, hurricanes, mosquitoes, giant spiders–it’s not that hard to leave.

New Mexico is amazingly beautiful, boasting the best sunsets in the country. There are more plants, less oxygen and colder winters than you think. The elevation in Albuquerque is over 5,000 feet rising to 10,000 feet in the Sandias Mountains that border the city. I learned to ski here.

I like Chicago, the native wildflowers are the most impressive I’ve ever seen. The cold, dark winter, which aren’t terribly worse than Albuquerque, is balanced by fall leaves and an invigorating appreciation for spring as everything seems to rise from the dead. Hence the keen interest in solstices and equinoxes. Finally, Northeast Illinois is strongly nostalgic. The climate, plants and animals are very similar to Virginia so I actually often feel like a kid again.

I’m a biology professor at Prairie State College. We are a community college located 30 miles south of Chicago. While my educational background is in animal behavior and ecology, my graduate research spanned genetics, cell biology and immunology. Biologists often say they prefer cells or organismal biology over the other, but it is important to study the parts and the whole of any study organism, both of which respond to the ecological context. I typically teach Organismal Biology, which surveys the diversity of life on Earth with an introduction to ecology and evolution, and Environmental Biology. This fall, Cell and Molecular Biology will be added to my regular course rotation.

Community colleges are dedicated teaching institutions. However, Prairie State College supports faculty who engage with students outside of the classroom through research. I teach full time but I sometimes have the privilege of mentoring a research student. This past spring, my mentee won First Place in the STEM (Science, Technology, Engineering and Math) Skyway Poster Competition! Community college students in the region present their original projects which are judged by scientist volunteers from Argonne National Lab.

Tylar tested different types of alternative plant growing systems such as hydroponics and aeroponics to grow lettuce. He is committed to developing and promoting practices that reduce the environmental impact of industrial agriculture while meeting the needs of a growing world population. My experience as a Teacher at Sea in the Gulf of Mexico is timely because agriculture in Illinois generates pollution that ultimately impacts the marine ecosystems of the Gulf. Additionally, his project is now a teaching tool that I can use in each of my classes along with what we learn on Oregon II.

 

Let’s get summer started!

Geoff Carlisle: Last Night in Texas, June 5, 2018

NOAA Teacher at Sea

Geoff Carlisle

Aboard NOAA Ship Oregon II

June 7 – 20, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 5, 2018

Welcome!

Geoff's classroom
In my classroom at KIPP Austin College Prep

Hello! My name is Geoff Carlisle, and I’m joining the NOAA Ship Oregon II this summer as part of the NOAA Teacher At Sea program. Every few days I’ll be posting updates here about my experiences on the ship, so keep checking in for updates from the Gulf (and to see if I’ve fallen overboard)!

I’m so excited to fly to Pascagoula, Mississippi tomorrow to begin my trip. When I heard that I was selected to join this program, I felt like a kid again. For anyone who knows me, I wear my love of nature documentaries and the natural world on my sleeves, so the chance to live at sea and interact with sea creatures is a dream come true. My biggest hope for this trip is that I get to hold a shark (crossing my fingers)!

Weather Data from the Bridge (Well… Austin)

  • Latitude: 30.336 N
  • Longitude: 97.687 W
  • Water Temperature: —
  • Wind Speed: 5.2 knots
  • Wind Direction: S
  • Visibility: 8.67 nm
  • Air Temperature: 37.2 oC (99 oF)
  • Barometric Pressure: 1009.6 mbar
  • Sky: Clear

No hurricanes expected
Five-Day Graphical Tropical Weather Outlook

I have to admit, the idea of sailing in the Gulf of Mexico gives me as much trepidation as it does excitement. As a science teacher, the Gulf is synonymous with hurricanes. However, I was pleased to see that NOAA’s National Hurricane Center tweeted today, “no new tropical cyclones are expected during the next five days.” So I’ll be fine for at least that long.

Here in Austin, the heat is oppressive, with temperatures already reaching over 100 oF, and daily reminders from NPR that we are flirting with record highs. Daily life is consumed by heat-related questions: “Did I put the sun reflector up in my car so can actually sit in my car? Did I bring another shirt with me for when I inevitably sweat through the one I have on? Are people like me with Norwegian heritage even supposed to live this far south?” As a triathlete, I spend a lot of time training in conditions that mimic what I’ll see in a race. Since the direct sunlight and heat will be similarly intense at sea, I’m just treating each triple-digit day like a training session. A very sweaty training session.

 

Science and Technology Log

This summer, I will be joining the science team aboard the NOAA Ship Oregon II on leg one of the SEAMAP (Southeast Area Monitoring & Assessment Program) Summer Groundfish Survey in the Gulf of Mexico.  This research is vital to the long-term sustainability of groundfish and shrimp populations in the Gulf. The three primary research objectives are:

  1. Provide near-real-time data on the size of shrimp in the gulf
  2. Aide in the evaluation of when to close the Texas shrimping season
  3. Measure the groundfish and shrimp stock across the northern Gulf of Mexico

Four ships across the Gulf, including the Oregon II (see below), conduct this research in June and July every year by casting long nets called trawl nets at different locations around the Gulf. These nets are reeled onto the ship’s deck, and the contents of the catch are brought inside to be sorted by species, sexed, measured, weighed, and the data recorded. Some particular species will be stored and brought back to labs on the mainland for research.

NOAA Ship Oregon II
NOAA Ship Oregon II (Photo Credit: Ensign Chelsea Parrish, NOAA)

  

Personal Log

College pennants
College pennants decorate the walls when you enter the school, giving a visual reminder to our school’s driving purpose.

Last week I completed my 8th year teaching middle school science. I began my teaching career as a Teach For America corps member in the Mississippi Delta, and have spent the past six years at KIPP Austin College Prep. KIPP is a national network of public charter schools that primarily serve students from underserved communities, and put them on the path to college. Every day when I enter school, the first thing I see when I come in the door is a sign that says “Home of the hardest working students in Austin,” and this couldn’t be more true. I came to KIPP because I wanted to be a part of a community of exceptional educators who are committed to educational equity. Being part of a mission-oriented organization makes every day feel urgent and purposeful, and I’m proud to call myself a KIPP teacher.

Watch the video to learn more about KIPP Austin!

As a science teacher, I know how important it is that my students have learning experiences outside of the classroom. Partnering with my immensely talented colleague Colleen Henegan, we secured a Bright Green Futures grant from the City of Austin to build the largest school-based aquaponics greenhouse in Central Texas. Our school is located in a federally-recognized food desert (an area where access to healthy foods is severely limited). The system was built largely by our own students, along with Google employees who volunteered their time. Aquaponics is a method of cultivating fish and plants together in a closed system that is vastly more energy-efficient and requires 90% less water than traditional agricultural methods. Our students are learning how to grow plants in an environmentally-conscious way that allows them to see how science can be used to solve real-world problems.

AP Environmental Science Teacher Colleen Henegan
AP Environmental Science Teacher Colleen Henegan testing the aquaponics system’s plumbing

Aquaponics demo system
Our demo system that I built to show how fish and plants can be grown together in symbiosis (fish are in the tank below, and cucumber are growing in lava rocks above!)

greenhouse
A photo of the greenhouse our students helped to build which now houses our system

Outside of teaching, I enjoy playing in an orchestra and training for triathlons (I’m training for my first Ironman 70.3 in October!).

Did You Know?

As a native of Oregon, being a crew member on Oregon II feels quite special. In my research about the ship, I was fascinated to learn that it has also achieved some major accomplishments:

  • Built in 1967, Oregon II is the longest-serving ship in the NOAA fleet. It has logged over 10,000 days at sea and traveled over 1,000,000 nautical miles, sailing as far south as the Amazon River Delta in Brazil, and as far north as Cape Cod, Massachusetts. (Source)
  • In 1998, Oregon II was the first United States Government ship to call at Havana, Cuba since 1959 when Fidel Castro took control of the country. The ship partnered with NOAA’s Cuban counterparts to research shark migration patterns. (Source)

 

Dana Kosztur: Back to School, April 25, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

 

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 17-25, 2018

Science and Technology Log

Safety is very important on NOAA vessels. We did various safety drills while I was on board. We did a fire drill and a man overboard drill.  We also did an abandon ship drill where we reported to our assigned lifeboats. During one of these drills, I was required to put on a “Gumby” suit.  This survival suit is designed to keep you from getting hypothermia if you are to be in the water for long periods of time. For another drill, I donned a blindfold and found my way out my room and to the outside deck.  This drill was to simulate an emergency situation with no lights. It was pretty scary to walk through the boat in the dark.

 

The final day of fishing and camera drops proved to be awesome.  We had lots of fish on camera and caught fish all four times we dropped lines. I was able to collect the measurements and samples from those fish without any extra guidance. The mission scientist recorded and observed, but they didn’t have to assist me. Their confidence in me was a pretty great feeling.

The video below is an example of the videos collected by both SatCam and RIOT Cam.  These arrays have 6 cameras.  The video is the view from these cameras stitched together.  The top camera is not included in the panorama.  The NOAA scientists use the videos to count fish species they study during the SEAMAP reef fish survey.

 

Personal Log

As we were docking, I had mixed emotions as we approached the harbor. I disembarked in Tampa, Florida.  I was very excited to get back home but I knew my journey on Pisces was coming to an end. I am proud of myself for taking this trip. I am grateful for all the support from my family, friends, team teachers, and administration.  I would not have been able to sail without their help.  I learned so much more than I imagined and I will treasure the memories I made on this adventure. Being a Teacher at Sea increased my appreciation of Gulf of Mexico and I want to pass that on to my students.

 

Life at home has returned to normal.  I returned back to school this week.  I’ve spent a lot of time talking to my students about my experience aboard the ship.  They have asked tons of questions.  They are very interested in every aspect of my time at sea and loved all of the pictures and videos.   I love that they are so engaged in the lessons this week.  We are in the last month of school and it is often hard to keep the student’s attention. My Teacher at Sea tales and lesson plans have kept them focused and on task. They claim to have missed me and I, of course, missed them.

 

I do have a few pieces of advice for the others that have yet to embark on their Teacher at Sea journey.

  1. It is amazing.  You will love it.
  2. Bring a water bottle and a backpack. I used both of these almost constantly.
  3. Talk to everyone on the ship.  Every member of the vessel has valuable knowledge.
  4. Ask your students what they are the most curious about. After a brief overview of NOAA and the mission I was going on, I had my students write questions for me to get answered.  It was a great way to gauge what they were most interested in and these also make great conversation starters.

 

Did You Know?

If there are not enough male grouper in a given area, the largest or dominant female will change from a female to male.

Red Grouper
Red Grouper

Dana Kosztur: Science Lab at Sea, April 15, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 15, 2018

Weather Data from the Bridge

Lat: 29° 35.5335′ N Long: 084° 19.8126′ W
Air Temperature: 18.2°C (64.76°F)
Water Temperature: 20.43°C (68.77°F)
Wind speed: 28.11 knots (32.35 mph)
Conditions: stormy, Seas 7 to 9 feet

Science and Technology Log

While I have been at sea,  I have spent time exploring Pisces and getting to know the people on board. This research vessel is 209 feet long, 50 feet wide, and it has a draft of 20 feet.  It is large enough to hold 39 passengers. The crew of the vessel during my sail consists of 5 NOAA Officers, 5 deck crew, 5 engineers, 4 technicians, 2 stewards and 5 scientists.

NOAA Ship Pisces
NOAA Ship Pisces

Pisces is loaded with science equipment. It has the capability to run acoustic surveys, marine mammal surveys, and various fish surveys. The onboard wet lab is used to process the marine life brought in on trawls, long lines, or bandit reels. In the dry lab, the mission data is stored and processed by the scientists and survey technicians on the ship.  There is a side sample station on the starboard deck where the cameras and ROVs are launched and the trawls are deployed on its stern. The centerboard, on the hull underneath the ship, has mounted sensors that send back various types of data for the scientist to use. This vessel was also engineered to be quiet while underway so it won’t scare marine life. The ship shares the oceanographic, hydrographic and weather data it gathers daily to the outside world.

The Commanding Officer gave me a tour of the bridge.  The bridge is the navigation center. The vessel can be operated from one of four different stations. The science that is being conducted determines where the officer will navigate from. The technology on the bridge is quite amazing.  The dynamic positioning system allows the vessel to stay within certain parameters when supporting science missions. It functions almost like an auto-pilot to keep the ship in the proper position.

Bridge Center Navigation
Bridge Center Navigation

"Moo"ving the ship
“Moo”ving the ship

 

NOAA Ship Pisces is like a floating city.   I had the opportunity to explore the engine room with the ship’s first assistant engineer to see how this mini-city works.  He showed me how they process sewage and garbage aboard the vessel. I learned how the vessel creates its own water and power.  I saw the huge engines. This ship has two 8 cylinder engines and two 12 cylinders engines that power the ship. I also learned how the bilge/ballast system keeps the ship stable and how the bow thruster aids in steering

 

one of four engines on Pisces
one of four engines on Pisces

Personal Log

Most of the days pass quickly and I lose track of time.  I can’t believe I have been at sea for 10 days. Having a different type of workday is very unusual to me.  I have taught for almost 18 years so school days are what I know. It is different to work with adults all day instead of children.  It is a definite change of pace. Today is a slow day. We are currently standing-by due to a weather delay. We have moved closer to shore and are riding out the storm.  Hopefully, we will be able to be back up and running tomorrow.

I will surely miss the trips to the galley when I get home. I have probably gained five pounds on this trip. The stewards that cook on this ship do an amazing job.  It is nice to have already prepared meals. I have gotten spoiled by not cooking too. I know will miss the view when I get back to land. Watching the waves never gets old.  I could stare at the water all day. Even when it is stormy the ocean is beautiful.

Being away from home is hard.  It’s difficult not to harass my team teachers about my classroom while I am gone.  I know that my students are well taken care of but it is hard not to worry. The letters from my students, emails from family,  texts from my husband, messages from friends, and sweet videos from my granddaughter help me combat homesickness.

Did You Know?

The Gulf of Mexico is home to 21 marine mammals and 5 sea turtle species

Student questions

How many species of sharks are in the gulf?  There are approximately 49 shark species in the gulf.

Dana Kosztur: Unexpected Visitors, April 11, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 11, 2018

Weather Data from the Bridge

Lat: 29° 54.7331′ N Long: 087° 12.1562′ W
Air Temperature: 22.5°C (72.5°F)
Water Temperature: 21.29°C (70°F)
Wind speed: 5.8 knots (6.7mph)
Conditions: blue sky, flat seas

Science and Technology Log

This week I have learned a lot about the reef fish studied in this SEAMAP survey. I have learned how to weigh the fish and take various length measurements. I have also learned how to examine the gonads and distinguish a male from a female.  I can now properly remove the otolith bones from the otic capsule that is located at the base of the fish’s skull.

 

We have had some unusual catches that have provided great learning experiences as well.  The bandit reel caught a sharksucker on the line as it returned. This fish belongs to the Remora family.  It attaches to sharks and other marine animals. This was a really unusual creature to observe.

Dana and shark sucker
TAS Dana Kosztur displays a sharksucker captured on the bandit reel.

The camera arrays had fireworms hitch a ride to the deck from the bottom of the gulf. These guys look like large spikey caterpillars. They have venom in their bristles that can cause a painful sting.  

Fireworm
This fireworm hitched a ride on a camera array.

Personal Log

Today was a beautiful day.  The water is such a beautiful blue.  The sky was cloudless last night so I finally got to look at the stars.  The night sky seems much more vast and bright away from the light pollution on land.  The stars are amazingly bright. I am enjoying life on the ship but I do miss home. I have a greater respect for those that work away from home for long periods of time.  Teamwork and a positive attitude seem to be the lifeblood of this NOAA vessel and that makes it much easier to adjust.

Did You Know?

Many birds will often land on the vessel to rest during their migration route across the Gulf of Mexico.     

Barn swallows
Migrating barn swallows

Waves transmit energy, not water.

Cow at sea
Cow at sea

Questions from students:

Why do scientists need to know what types of fish are on the reef?  

It is important to manage and maintain the reef fish species because they are often over-fished.

Scamp grouper
Scamp grouper

 

Dana Kosztur: Cruising with Camera Arrays, April 8, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 8, 2018

Weather Data from the Bridge

Lat: 29o 20.6309′ N      Long: 087o 46.1490′ W
Air Temperature: 18.1oC (64.5oF)
Water Temperature: 22.29oC (72oF)
Wind speed: 10.81 knots (12.4 mph)
Conditions: cloudy,  1 to 2 ft seas

Science and Technology Log

The most important equipment on this mission are the camera arrays. Most of the data collected are dependent on these cameras.  I mentioned in my last entry the two types of camera arrays used in this survey are the SatCam and the RIOT.  The video taken from these camera arrays is stitched together in a five-panel single view. The videos are reviewed and each species that appears is counted and recorded.  Images help the scientist determine the population of fish at a given site. The RIOT is a two-stacked spherical camera housing unit that contains 5 horizontal cameras and one upward facing camera.  The RIOT is the more expensive of the two arrays, but it gives the scientist a greater ability to measure fish when they are captured in the dual videos.  

 

IMG_0759
deploying the RIOT

 

Over the past few days, we have caught several species of fish on the bandit reels. We have caught red snapper, vermilion snapper, and red porgy. These lines have 10 baited hooks and they are dropped into the water on a randomly selected site.  In order to obtain a proper sample of the fish, very little human interaction is made with the reel or the line. This leaves out any fisherman bias and allows for natural sampling of species on the site.  The hook sizes are rotated with each drop. The hooks sizes are 8, 11, and 15. If reel 1 starts with size 8 hook, it will have size 11 on the next drop, and then 15 on the third. Each reel has a different rotating pattern.  This allows each hook size to be in the water over the same site. The data will help determine if a certain hook type is favored by a species of fish.

 

IMG_07742
recording red snapper data

 

IMG_0756
class mascot

 

Personal Log

My students will return to school tomorrow from spring break.  I am a little sad I am not there with them.  They wrote letters for me to read while I was away. I have read some of these already and they are pretty funny.  I want to reassure them that I will not fall overboard and that I am eating well.  I will answer student questions on the bottom of my blogs.

We are in the Gulf of Mexico about 70 to 80 miles offshore, on the Mississippi-Alabama Continental shelf.  I have not been this far out in the gulf before today. It is pretty humbling to look out and just see blue water. The sunrises and sunsets are spectacular. You can’t always see them though. The weather has been pretty gloomy the last two days, so I was unable to see last night’s sunset or this morning’s sunrise.   We had a storm yesterday followed by the much cooler weather today.  I hope this is the only cold snap we get.  I am not a fan of cold boat work.

Did You Know?

Turbidity is how cloudy the water is based on the suspended solids. The higher the turbidity the more sediment, algae and other solids are suspended in the water.  Clear water has low turbidity.

Questions from students:

What is hydrography? The science that measures and describes the physical features of bodies of water and land close to these bodies of water.  Multibeam echosounders are used to obtain hydrographic data.

New species that I have seen:  Red Porgy:  Pagrus pagrus

                           Vermilion Snapper:  Rhomboplites aurorubens

 

IMG_0773
Red Porgy teeth

 

Dana Kosztur: Sailing on the Gulf of Mexico, April 5 & 6, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-19, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 5 & 6, 2018

Weather Data from the Bridge

Lat: 29o 22.895′ N      Long: 087o 59.992′ W
Air Temperature: 22.9oC (73oF)
Water Temperature: 22.83oC (73oF)
Wind speed: 14.89 knots (17.13 mph)
Conditions: partly cloudy skies and the seas are pretty smooth

Science and Technology Log

I have been aboard Pisces for over 24 hours.  I have learned a lot about the technology used on the ship.  This vessel has a Simrad ME70 multibeam echo sounder. This device will create a bathymetric map of the survey areas that have been randomly selected for this mission.

The crew is on the third leg of a four leg reef fish survey.  This SEAMAP survey will use cameras as its primary instrument to study the population of fish in the survey area. There are two types of camera arrays the scientist use.   The SatCam has 7 cameras that allow a 360-degree view of the ocean floor.  The RIOT is a double-stacked version with 12 cameras. The RIOT allows the same visuals as the SatCam but can also be used for fish measurement.

 

IMG_0661_resized
RIOT (Reef Information Observation Tower) on deck

 

IMG_0633_resized
SatCam ready to deploy

The SatCam and RIOT are rotated, one is deployed each site. The boat is positioned over the sampling site and the cameras are released into the water. The cameras free fall to the bottom and are buoyed. They are left to soak for 30 minutes before they are picked back up.  The camera begins recording 5 minutes after it hits the bottom to allow the sediment to settle, it then records for the remaining 25 minutes.

After the camera is sent into the water, the ship moves away and a CTD is released into the water in much the same way.  The CTD is an electronic instrument package that sends back real-time data of water conditions such as salinity, temperature, density, and light filtration versus water depth.

 

IMG_0618_resized
CTD tests the water column for conductivity, temperature, and depth

 

Bandit reels are also used in this survey.  There are three of these reels mounted on the starboard side of the boat. The line on each has 10 baited hooks.  This leg of the trip we are only fishing every other stop. The first round of fishing with the bandit reels yielded no fish. The second time the stern bandit reel caught silky sharks.  Three sharks made it to the deck to be weighed, measured and then safely released. The next time we used the reels two large red snappers were caught. They were weighed and measured. The otoliths and gonads were removed from each specimen.  These will be used to determine age and reproductive abilities.

 

IMG_0640_resized
Bandit Reel 1

 

 

 

IMG_0687_resized
Red Snapper caught on Bandit Reels

 

 

I think I am getting adjusted to life aboard the ship. We are only working during daylight hours so I won’t have to change my sleeping schedule. I am working with a team of 4 scientists and they are doing a great job explaining everything and answering my questions. There is so much to learn about and I want to know it all.

I am taking medication to keep from getting seasick and it is working, but I was so exhausted yesterday that I went to bed after watching the sunset.  I hope that will get better in the coming days. I haven’t lost my excitement about being here.  Everything out here is interesting.

Did You Know?

A snapper otolith can tell the age of the fish.  The otolith is an ear bone. When removed from the fish and cut in half, the rings can be counted.

  • Animals Seen Today

Bottlenose Dolphin (Tursiops truncatus)

Silky Shark (Carcharhinus falciformis)

Red Snapper (Lutjanus campechanus)

Dana Kosztur: Introduction, March 23, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Friday, March 23, 2018

Personal Log

IMG_0140[1]
Ocean Springs, MS
Hello from the Mississippi Gulf Coast.  I am a 7th grade science teacher at St. Martin Middle School in Ocean Springs.  This is my 5th year as a St. Martin Yellow Jacket and my 17th year as an educator. I currently teach science to over 100 seventh graders every day.  This is most definitely a challenge, but one I enjoy taking on. Teachers are always looking for ways to improve classroom instruction and grab student interest.  I applied to NOAA’s Teacher at Sea program hoping to accomplish both of those tasks. Because we live so close to the Gulf of Mexico, it is a big part of my students’ lives.  I will use the experience and knowledge I gain at sea to link our curriculum to something they see every day. This will give real value and relevance to the content they learn in class. I have already spent some time explaining my trip and NOAA’s mission to my students.  They are interested and excited about my adventure. Most of them have written questions that they want me to answer in my future blogs. Students, keep checking back to see if your question is posted or just to make sure Mrs. K hasn’t fallen overboard.

I am eager to spend two weeks on the NOAA ship Pisces. I love the Gulf of Mexico and I can’t wait to learn more about it. My husband and I spend every possible weekend, on our on boat usually heading to one of Mississippi’s beautiful barrier islands. We spend most of our vacation days on Gulf beaches and we even got married on the beach in Orange Beach, AL.  IMG_0137[2]

In just a few weeks I will board Pisces in Pascagoula, MS, and join the crew on Leg 3 of a 4 Leg reef fish survey. I will be at sea for 14 days and disembark in Tampa, Florida. I am thrilled I have the opportunity to be on a fishing vessel.  I really enjoy fishing and I love seeing marine life. I feel like this is going to be very interesting and I am excited to do this type of hands-on research.

The next time I write I will be officially at sea. I know it won’t be easy to be away from home.  I will certainly miss my family, friends, and SMMS.  My students wrote me letters to read while I am on the boat to help combat homesickness.  I can’t wait to read them.  I am very grateful for the opportunity to take this trip and I look forward to sharing what I am learning along the way.

Don’t forget to check back in 13 days.

IMG_0138[1]
paddleboarding          MS barrier islands
IMG_0139[1]
My husband and I with Katie Bug
Did You Know?

The Pisces has a multi-beam echo sounder (MBES) that allows scientist to measure and count fish by the reflection of sound off their bodies. It projects a fan-shaped beam of sound that can also be used to map the seafloor.

Kate Schafer: The Importance of Science, October 4, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 4, 2017

 

Weather Data from the San Francisco Bay area:

Latitude: 37o 38.4’ N
Longitude: 122o 08.5’ W

Visibility 16 km

Winds 5-10 mph

San Francisco Bay Water Temperature 16 oCelsius

Air Temperature 17 o Celsius

 

Science and Technology Log:

Well, I’m back on dry land, with lots of great memories of sharks, big and small, and all the interesting people who I spent two weeks with on the Oregon II.  And let’s not forget the red snappers either.

OLYMPUS DIGITAL CAMERA
The largest shark we caught: 10 foot tiger shark

 

CubanDogfish
Cuban dogfish: The smallest species we caught

On our last day, we fished at a couple of sites right off the coast of Alabama and caught lots of sharks, plus a new species of grouper for the trip.  The scamp grouper (Mycteroperca phenax) is apparently not frequently found on the longlines along the coast of Texas but becomes more common along the coasts of Mississippi and Alabama and up the Eastern Atlantic coast as well.

ScampTail
Tail of a Scamp Grouper

The groupers are mostly protogynous, meaning that when they become sexually mature, they are always females.  Only later in life, when they have grown bigger (and have the right environmental influences), do they transition to males.  This species can live for more than 30 years, but that’s actually relatively short for a lot of the grouper species, some of which can live to 60 years or more. Scamp grouper come together in groups to reproduce, so this makes them vulnerable to overfishing.  The management councils take this into consideration when making a management plan and will close off areas known to be spawning grounds during the reproductive season.  These are also great areas to target as Marine Protected Areas.

ScampHead
Scamp Grouper being measured

All of this knowledge about the scamp grouper (and other species we encountered on this survey) was gained through careful scientific research.  As mentioned before, the long line survey was started in 1995 and has been conducted using the same methods every year since then.  These data are used by fisheries managers to set catch limits and detect changes that might indicate problems for the species living in these areas.  In other words, the science forms the basis for decision making and planning.

This is true for the various surveys that NOAA conducts in the Gulf each year.  The Groundfish Survey, for example, provides vital information about the extent of the Dead Zone off the coast of Louisiana, by measuring dissolved oxygen levels on the sea floor as part of the survey.  This data tells us that we need to continue to work on controlling nutrient inputs into the Mississippi River from agriculture lands and cities that span much of the eastern United States.  Scientific research also tells us that we need to be planning for and mitigating the effects of the looming problem of climate change.

Climate change will certainly bring about significant change to the Gulf.  As ocean temperatures rise, water becomes less dense and therefore takes up more space.  Along with continued melting of land-supported ice in the polar regions, this is contributing to a cumulative increase in sea level of 3.2 mm per year (https://oceanservice.noaa.gov/facts/sealevel.html).  In the Gulf, this increase will particularly impact estuarine ecosystems that are rich nurseries for many fish species and are extremely productive habitats.

One of the predictions of many climate models is that increased global temperatures are likely to bring about more frequent and more intense hurricanes.  This 2017 hurricane season is a stark reminder of the devastating impacts that hurricanes can have, even when we have the scientific tools to predict approximately where and when the storm will make landfall.

Finally, the increase in global temperatures will make the regions surrounding the Gulf less pleasant places for people to live.  The summers are already very hot and humid, and a degree or two hotter will make a lot of difference in the livability of the region.

We know all of this through careful scientific research, and there is a consensus amongst scientists that this is happening.  To prepare for the effects of climate change and to know how to best minimize those effects, we must continue to collect data and do science.  After all, what is the point of scientific research if we don’t use the results to make better choices and to address the problems that are facing us?

IMG_4151
At the end of my time on the Oregon II

Personal Log:  I am so grateful for the opportunity to go on this research survey and for the Teacher at Sea program as a whole.  I strongly encourage any teacher thinking of applying to the program to do so.  Thanks to NOAA and everyone at the TAS office for all your help and support.

 

 

 

 

 

 

 

Kate Schafer: A Day in the Life… September 29, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 29, 2017

Weather Data from the Bridge:

Latitude: 29o 11.3′ N
Longitude: 88o 18.3′ W

Few clouds

Visibility 10 nautical miles

Wind speed 8 knots

Sea wave height 1 foot

Temperature Seawater 29.4 o Celsius

Science and Technology Log:

So, as my time on the Oregon II is winding down, I thought I’d share a bit about what it is like to do science on a boat.  First of all, there is a tremendous amount of planning that must go into a successful survey in the weeks and months beforehand.  In addition to all the logistics of going to sea for two weeks, there is the challenge of putting together a crew of scientists that can be away from their day to day jobs and lives, and agree to work 12 hour days, for weeks on end.  Lisa Jones is the Field Party Chief for this survey and must figure out those logistics plus organize the science part as well.  This survey has been going since 1995, and one of the keys to longitudinal data sets is that they keep standard methods throughout, or else the data aren’t comparable.

This can be challenging in all sorts of unforeseen ways.  For example, a few years ago, it became difficult to find the mackerel used as bait on the longlines.  During an experimental survey in the spring, they tried out squid as an alternative and caught a totally different composition of species.  Fortunately, the mackerel became more available again, and the problem is no longer an issue, for now.

MackerelBaitedHooks
Hooks baited with mackerel

Lisa is also the one responsible for working with the captain and his crew to determine sampling locations and a plan for getting to those locations.  There’s a plan at the beginning, but, of course, that changes frequently, due to weather, the locations of other ships and a myriad of other unforeseen circumstances.  The goal is to reach 200 sites per year, with 50% between 5-30 fathoms (1 fathom=6 feet), 40% between 30-100 fathoms, and 10% between 100-200 fathoms.  These percentages reflect the depths of the continental shelf area throughout the sampling region. Below is a sampling map for the 2015 longline survey.

SamplingStations
Sampling stations for 2015 Longline survey from 2015 Cruise report

During a longline set, the line is deployed for one hour before retrieval, with 100 baited hooks.  As the line comes in, each fish is given three to four measurements (depending on the species) and is weighed.  Many of the sharks are tagged, as this provides the possibility of someone finding the tagged shark in the future.  With a tag retrieval, we can learn about how far the organism has traveled and how much and how quickly it has grown.

Shark Cradling team_Shark LL SEP2017
Measuring and tagging shark in the cradle

As I mentioned in my post about the red snappers, the snappers, groupers and tilefish are dissected for their otoliths and gonads.  They can’t be successfully released in most circumstances anyway, due to barotrauma from pulling them quickly to the surface from depth.

YellowEdgeGrouper
A Yellowedge Grouper weighing nearly 20 kg

Sharks are less affected by barotrauma because they don’t have swim bladders to maintain their buoyancy like the bony fishes we’ve been catching.

PullingInShark
Caught on the longline

Here are a couple examples of our data sheets.  As you can see, some sets have more fish than others (in fact the full one, was only one of three pages).  Once all the data are collected, they have to be entered in the computer for later summary and analysis.  Some days it can be a big challenge to get all the data entered before it’s time to start all over again.  Other days, like today, include lots of travel time.

DataSheetEmpty
Only a tilefish on this set…

 

DataSheetFull
Many more on this one…in fact this is only one of three pages

 

Personal Log:

OLYMPUS DIGITAL CAMERA
Tiger shark filling the 10 foot cradle

For me, it has been truly wonderful to get to work as a scientist again, if just for a couple of weeks, especially with such an amazing group of scientists.  I’ve learned so much from my fellow day crew members (Lisa, Christian, Nick and Jason).  They have patiently answered all my questions, even when it was keeping them from getting to dinner.  Lisa Jones has gone above and beyond in her support of me, even though she has had many other responsibilities on her plate.  I also appreciate being made to feel welcome lurking around the night crew’s catches.  Thanks especially to Christophe, Vaden, and Eric for allowing me to hang out in the measuring pit.  I love my job as a teacher, but part of me definitely misses working as a field biologist.  I am grateful for the opportunity and especially thankful for my wonderful family.  I can’t tell you how much I appreciate your support and love.

 

Kate Schafer: Setting off for Brownsville, TX, September 18, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 18, 2017

 

Weather Data from the Bridge:

Latitude: 27o 02.5’ N
Longitude: 94o 32.6’ W

Scattered clouds

Visibility 14 nautical miles

Wind speed 10 knots

Sea wave height 1 foot

Temperature Seawater 29.9 o Celsius

 

Personal log

Sunday afternoon, September 17

I arrived in Pascagoula, Mississippi in the late afternoon on Saturday after a long day of travel.  Things were so quiet on the ship that evening as most of the crew had gone home during the break between legs of the survey.  It was great to be met and shown around by a friendly face, the Officer on Duty (OOD) David Reymore.  I definitely was feeling a bit like a fish out of water, even though we hadn’t even left the dock yet. As people start to arrive back on the ship, they all know their role and are busy getting ready for our departure later on today. It’s a good experience to feel like you’re out of your element every now and again and I guess a small part of why I decided to apply for a Teacher at Sea position in the first place.

NOAA

As I was preparing to depart on this adventure and was explaining that I was going to be a NOAA Teacher at Sea, I had a number of people ask me what NOAA stood for, so I thought I’d provide a bit of information about what they are and what they do.  First, NOAA stands for the National Oceanic and Atmospheric Administration, and the name definitely suggests the broad mission that the agency has.  Their mission involves striving to understand the oceans, atmosphere, climate, coastlines and weather and making predictions about how the interactions between these different entities might change over time.

That is a tall order, and the agency is divided up into different offices that focus on different aspects of their mission.  The National Weather Service, for example, is focused on forecasting the weather and makes predictions about things like where hurricanes will travel and how intense they will be when they get there.  The National Marine Fisheries Service is tasked with studying the ocean resources and habitats in U.S. waters and to use that understanding to create sustainable fisheries.

So far, I’ve met many people that I’ll be sharing the boat with over the next two weeks.  They have all taken time to introduce themselves and talk for a bit, even though I know that they’ve got tons to do before we sail.

Sunday evening

Well, we’re underway towards our first sampling sites off the coast of Brownsville, Texas.  The seas are really calm, and I’m sitting up on the deck enjoying the light breeze and digesting the delicious dinner of jambalaya, vegetables and blackberry cobbler.  On our way out from Pascagoula, we saw a few dolphins, beautiful white sand barrier islands and mile after mile of moon jellies, but now we’re no longer in sight of land.

P1030600
Barrier island off the coast of Mississippi

We’ve passed an occasional oil rig off in the distance but haven’t seen much else.  The sun just set behind just enough clouds to make the colors spectacular and then as I was climbing down the stairs, I saw a handful of dolphins playing in the boat’s wake.

IMG_3919
Sunset over the Gulf of Mexico

Monday, September 18

Today will be a full day of travel to reach our fishing grounds.  Assuming we continue to make steady progress, we should arrive in the late afternoon or early evening on Tuesday to begin fishing.  We will be baiting 100 hooks that, once deployed, will remain in the water for an hour before we pull them back in.  We’ll be fishing in a variety of depths while working our way back towards Pascagoula.  We practiced some drills this afternoon, including a “man overboard” simulation, using a couple of orange buoys.  They deployed a rescue boat and had retrieved the buoys in a matter of minutes.  I have to admit that watching them get out there with such speed and skill put me at ease.

IMG_3927
Rescue boat deployed during the “man overboard” drill

 

 

Kate Schafer: Off to the Gulf, September 16, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 16, 2017

Introduction

Welcome to my Teacher at Sea blog!  My name is Kate Schafer, and I am a teacher at the Upper School at the Harker School in San Jose, California, right in the middle of Silicon Valley.  I teach biology, marine biology and food science to mostly juniors and seniors.  This may seem like an odd mix of courses, but I am so fortunate to be able to teach students about all my favorite topics.  I have heard that the food is delicious on the Oregon II, and I’m interested in learning more about the challenges of keeping a crew fed when you can’t pop down to the corner grocery store when you realize that you forgot to order that crucial ingredient.  I have spent many hours on the ocean, and spent six years studying coral reefs in Belize, Central America, but I’ve never been to sea on a research vessel.  I’m thrilled to have that opportunity and to share it with my students.

My husband, daughter and I ready to tour the Atlantis in Woods Hole, MA this summer

Weather Data

The weather has been a big topic of conversation of late here in San Jose.  Two weekends ago set all-time record high temperatures throughout the Bay Area, even along the coast.  Living in close proximity to the ocean, we expect relief from that rare hot day to come rather quickly, but the heat lingered for days.  We’re back to normal fall weather as I head off, though.  This morning is cool and seasonable.  I know from growing up in Atlanta, Georgia, that I’m heading to warm and humid conditions on the other end of my travels.

Science and Technology Log

On this research cruise, we will be conducting long line surveys, looking at shark and red snapper populations in the Gulf of Mexico.  I will report more on where we are going and what we’re studying once the leg of the survey begins. There are multiple legs to the survey, and I’ll be joining in for the fourth and final leg.  It has been a tumultuous time in the Gulf over the past few weeks, and it will be interesting to learn about how this has impacted the coastal waters in the area we will be surveying.

Personal Log

I am sitting in the airport in San Jose, ready to board my flight to Dallas, en route to Gulfport and my final destination of Pascagoula, Mississippi.  Wow! It’s been a frantic week of getting all sorts of last minute pieces put together to allow things to, hopefully, run smoothly in my absence.  It’s early morning, so I’m still in a bit of a groggy cloud, making the fact that I’m actually heading off on this adventure all the more unreal.

Even the grogginess cannot stifle my excitement, though, as I head off for two weeks of working with scientists and collecting data.  As I was packing last night, I couldn’t help but be reminded of all the previous trips I packed for more than 15 years ago to conduct field research on coral reefs in Belize.  I was studying a type of crustacean called the stomatopod and learning about the role that they play in coral reef ecosystems, how they interact with other species like pygmy octopus and crabs, their main source of prey.

I am thrilled to be heading out on this research trip and feel so fortunate for the opportunity.  I look forward to questions from you about what we are doing and learning on our voyage.  Check in frequently for updated blog posts once the trip commences.

Did You Know?

That the Oregon II has been part of the NOAA fleet since 1977?

Susan Brown: Who Needs Sharks Anyway? September 13, 2017

 

NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 3 – 15, 2017

 

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 13, 2017

IMG_6406
sunset through jaws of a blacktip shark

 

Science and Technology Log

We have been sampling along the coast of Florida, Alabama, Mississippi, Louisiana, and Texas at varying depths – “A” stations ( 5- 30 fathoms), “B” stations (30 -100 fathoms) and “C” stations (100 – 200 fathoms). A fathom is six feet or approximately 2 meters. The longlines are baited the same – mackerel on 100 hooks spread out across one nautical mile and then set on the bottom of the ocean. As we reel in the long line, the click and whine of the line as it’s being spooled, we wait in anticipation of what it may bring. Each station yields something different and you never know what you are going to get. Below is a list of some of the animals we have encountered.

 

IMG_6286
baby hammerhead

Shark species: blacktip, sharpnose, blacknose, scalloped hammerhead, great hammerhead, bull, tiger, spinner and bonnet head (to learn more about each of these species, select it for a NOAA fact sheet).

IMG_6273.jpg
Scallop Hammerhead in cradle

Other animals: southern ray, cownose ray, roughtail stingray, red snapper, black drum, sharksuckers, catfish, red drum, yellowedge grouper, king snake eels and even some blue crabs.

So why survey sharks? Did you know that people are one of only a few species that prey on sharks — killer whales and other sharks are the others– killing over a hundred million per year?* Sharks are apex or top predators in an ocean food web and play a vital role in keeping this food web in balance. With the hunting of sharks as well as over fishing the prey that sharks eat we are disturbing the natural balance. This survey is used determine the number of sharks and other species that are present in the Atlantic Ocean including the Caribbean Sea and the Gulf of Mexico. With these numbers, the National Marine Fisheries Service (NOAA Fisheries) regulate how many sharks, swordfish and tuna can be harvested without impacting the total population. In the Pacific Ocean, NOAA fisheries work with fisheries in developing how to best manage sharks.

IMG_6731
red snapper

Apex predators in any ecosystem are vital to the health of that ecosystem. These top predators keep numbers down on the more abundant prey species and keep their numbers in check. Here is a simplified illustration of what happens when we lose apex (top) predators in an ocean ecosystem.

If the number of sharks goes down then the food the sharks eat goes up (forage fish) because they are not being eaten by the sharks. With more of those forage fish around their need for food – the zooplankton – increase. With more forage fish eating the zooplankton there are less zooplankton and their numbers begin to decrease. If there are less zooplankton then the phytoplankton numbers increase because the zooplankton aren’t around the eat them. Removing top predators from any ecosystem can have an impact on the entire food web and this phenomena is called a trophic cascade.

IMG_6489
Removing Hook

Personal Log

When people think of sharks, they think of the movie Jaws. Unfortunately this has given sharks a bad reputation and has vilified these animals that are essential to the ocean food webs. Sure, there have been shark attacks, but did you know that more people are killed each year by electrocution by Christmas tree lights than by shark attacks? When people imagine sharks, they think of enormous sharks that eat everything in sight. The reality is that sharks come in all sizes and shapes. A mature Atlantic sharpnose shark will only get to be 3.5 feet long with the world’s smallest shark being the dwarf lantern shark that can fit in the palm of your hand. The largest shark is the harmless-to-human whale sharks that feeds primarily on plankton and can grow up to 60 feet!

IMG_6084
Smooth-hound (Mustelus Sinusmexicalis)

Did You Know?

Scientists can tell the age of a shark by counting the rings on its vertebrae (similar to how they can tell how old a tree is by counting its rings!)

Question of the day:

What is an example of a terrestrial (land) apex predator that has been over hunted impacting the entire ecosystem?

hint: watch this video clip: https://www.youtube.com/watch?v=ysa5OBhXz-Q

 

 

 

Susan Brown: Making Waves, September 10, 2017

NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 3 – 15, 2017

Mission: Snapper/Longline Shark Survey
Geographic Area of Cruise: Gulf of Mexico
Date: September 10, 2017

Weather Data from the Bridge

Latitude: 29 24.526 N
Longitude: 094 22.228W
Sea wave height: 1 meter
Wind Speed: 16 knots
Wind Direction: 30.8 degrees
Air Temperature: 26.1 Celsius
Barometric Pressure: 1017.55 mb
Sky: clear

 

 

Science and Technology Log

We have been experiencing some rocking and rolling out here due to the hurricanes that are occurring to the east and the west of us as we sit in the relatively calmer waters off the coast of Texas and Louisiana. We have experienced 6 – 8 foot waves so far on our survey and the ship is being maneuvered to try and find the calmest spots so we can continue to do our work.

So what makes a wave a wave?

Check out this link to learn what makes a wave a wave!

https://oceanservice.noaa.gov/facts/wavesinocean.html

 

Waves are part of the experience. Below is a poem written by the scientists and crew of the Oregon II on an earlier survey. Here are a few vocabulary words that you may not know to help you interpret the poem.

 

partsofawave
https://tasmancoast.wordpress.com/teacher-activities-for-yr-13-geo/a

Crest – the highest part of the wave
Trough – the lowest part of a wave
Muster – to call together
Haul back – the process of bringing in the longline
Bridge – where one controls the ship

Here is a poem written by some of the scientist and crew of the Oregon II about rough waters on an earlier expedition.

 

Trough-Man

The crew knows he’s on the job,
when the Ship starts to bob.

They know he’s at the wheel,
‘cause on the hip she does heel.
Trough-Man

On the Deck the haul-back team does muster,
while on the Bridge he robs sleep with the bow thruster.

You’ll always wake up in a funk,
‘cause you’ve been rolled out of your bunk.
Trough-Man

Sometimes you may wonder if he can
find the trough in a mug or a coffee can.

On this Ship you can’t even shave,
‘cause you never know when she’ll hit another wave.
Trough-Man

When the boat’s wallowing like a stuck pig,
you know he’s on the Bridge doing a jig.

For the rail you will grab,
when the boat does its crab.
Trough-Man

When you’re eating off your neighbor’s plate,
you know he’s your Shipmate.

If you can’t hold your food down and your stomach is off,
you know your riding in the trough.
Trough-Man

This poem is to all boat drivers, because they are put in the position of going from point A to point B no matter the sea state.

by Scientists & Crew of Oregon II Cruise 1102

Personal Log

We have had calm days where the water is like glass and other days with wind waves of up to 8 feet! I have come to appreciate the numerous handrails available all around the ship as well as learning to make sure my drawers and cabinets are secured. Nothing like waking up in the middle of the night with your drawers opening and closing! Also taking a shower in these conditions are quite the adventure in itself. The last few nights have felt like I am sleeping in a swinging hammock. There are also some nice features on the ship to keep items in place.

 

 

Here are some photos of the things I appreciate when the boat is rocking and rolling —  handrails that are located everywhere, hooks that keep doors open and holes in the picnic table to keep your drink from spilling!

Did You Know?

An oceanographic front is an area where two distinct water masses meet. Here is the one that we encountered on this last station. Why are these fronts important to birds and marine life? Extra credit for this bonus question!

FullSizeRender
See if you can see the two different colors of water

Question of the day:

Do waves transmit water or energy?

(hint: watch the video link https://oceanservice.noaa.gov/facts/wavesinocean.html)

Susan Brown: Weather or Not, September 9, 2017

NOAA Teacher at Sea

Susan Brown

NOAA Ship Oregon II

September 3 – 15, 2017

 

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 7, 2017

Weather Data from the Bridge

Latitude: 2095.92N
Longitude: 08825.06W
Sea wave height: 1.2 m
Wind Speed: 20.3kt
Wind Direction: 50 degrees
Visibility: (how far you can see)
Air Temperature: 025.6 degrees Celsius

Barometric Pressure: 1018.36 mb
Sky: cloudy

Science and Technology Log

The weather has been a big topic of conversation on this survey and for good reason. The original plan was to fish off the coast of Texas from Brownsville to Galveston. Due to Hurricane Harvey and possible debris in those waters, the survey changed course to sample off the coast of Florida. As we motored east, Irma was building up to a category 5 hurricane.

IMG_6031
Captain Dave

 

Captain Dave has been keeping a keen eye on the weather and after a few days of fishing off the coast of Florida, we headed back toward Pascagoula, Mississippi to pick up a crew member and let another off to tend to his family in Florida which is in the current path of Irma. We have been looking at the various computer modeling showing where Irma will land and this determining our path. Fortunately, a cold front to the west of us is pushing Irma east which will allows to stay out instead of docking and ending the survey early. This cold front is unusual for this time of year according to the Captain. Earlier models showed Hurricane Irma hitting the west side of Florida into the Gulf of Mexico where we are which would end our survey. Now, with the updated weather, we may get to stay out as planned but staying close to Mississippi and then heading West to work off the coast of Texas and Louisiana.

IMG_6331
Daily updates and rerouting due to weather

This ship is part of the Ship of Opportunity Program (SOOP). This program enlists ships to collect weather data that is sent to the National Weather Service (a line office of NOAA) every hour. This is the data that supplies information to weather forecasters! Information that is gathered includes wind speed and direction, barometer reading, trend in pressure over the past few hours, as well as wind, wave and swell information. Have you every noticed on TV that the weather reports have a notification that states the data is coming from NOAA? Weather forecasters get weather information from ships out in the ocean like the one I am on.

IMG_6323
another beautiful sunset from the top deck

This morning I headed up to the bridge to chat with Captain Dave. Here are some of the questions I asked.

Q: How long have you been a captain?

CD: 9 years

Q: What got you interested in this type of work?

CD:I grew up in Mississippi where you hunt and fish so when I got out of high school I always wanted to work on the water due to my upbringing. We were always taking out the boat to hunt or fish growing up. It’s in my blood.

Q: What is your schooling? What advice would you give someone that is interested in this as a career?

CD: I graduated high school in 1980 and made my living on the water commercial fishing and working on the oil rigs until January 4, 1993. I started as a deck hand and worked my way up to Commanding Officer (CO). I’ve been on the Oregon II 25 years. The hardest thing was taking the test to be a Master.

Captain Dave is a civilian Master which is rare – there are only two in the NOAA fleet. Most NOAA ships are run by NOAA Corps Officers. 

Q: What is the biggest storm you have seen?

CD: East of Miami, Florida in the gulf stream we were seeing 12-15 foot seas. The engine room calls the bridge regarding a busted intake valve. The boat was sinking. The engineers were in knee deep water and were able to find the broken valve and stop the flooding. In another 7 minutes the generator would have been under water and we would have lost power and would be forced to abandon ship in 12-15 foot waves.

Q: Is this weather unusual for this area this time of year?

CD: We never get a NE wind bringing in cooler weather which is probably what is turning Hurricane Irma. Normally it’s blazing hot here with southwest winds at 10 miles. This cold front is the reason we are not going in.

Check out this cool animated site for wind patterns. You can see how the hurricanes impact the flow of air.

https://www.windy.com/?47.680,-122.121,5

Personal Log

So far the seas have been calm and I keep expecting things to pick up because of all the weather happening around us. Sleeping pretty good with slow rocking of the ship and we will see how I do with some bigger swells. The crew has been super helpful in doling out advice from how keep from getting seasick ranging from eating, drinking and even how best to walk! I’m listening to all this advice and so far so good. I do wonder how much of Hurricane Irma we will feel now that we are heading west a few hundred miles.

IMG_6341
The one that got away!

IMG_6357
baiting the line with Mackerel

IMG_6393
Spinner shark

We have caught a few sharks and I am excited to catch some more. Other critters we have caught were a bunch of eels and a suckerfish. On yesterday’s shift I learned how to tag one of the big sandbar sharks. She was about 6’ long. The night crew caught a 10’ tiger shark! Maybe we will get lucky on today’s shift as I would love to see more sharks and handle some of the smaller ones.

IMG_6103
suckerfish

Update: Last night our shift brought in 16 sharpnose sharks so things were busy. These sharks don’t get much bigger than 3 ½ feet. All of the ones we pulled in last night were female. The oceans have gotten a bit rougher with swells 4-5 feet! I have gained a new appreciation for all the rails available along the corridors of the ship and have learned to make sure my door is clicked shut as well as all the cabinets and drawers. Nothing like waking up to drawers slamming open and shut in the middle of the night!

Did You Know?

A Captain of the ship can be ranked as a Captain or a Commander within the NOAA Corps but a civilian does not hold a commissioned rank because they are not in the NOAA Corps and is called a Captain since he holds a Master license gained by taking extensive coursework and an intensive exam through the United States Coast Guard.

Question of the day:

What is the difference between a category 5 hurricane and lesser hurricanes? (hint: check out the link below)

http://abcnews.go.com/US/hurricanes-form-explained-abc-news-chief-meteorologist-ginger/story?id=49650211