John Bilotta, Totally Awesome Turtle, An Ocean of Stars, and Fancy Fish – Days 7-9 in the South Atlantic MPAs, June 25, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 25, 2014

 

Weather: Partly cloudy to sunshine.  27 degree Celsius.  8.0 knot wind from the southwest.

Locations:  North Cape Lookout 3 Proposed MPA, South Cape Lookout Proposed MPA (both off the coast of North Carolina) and the Edisto MPA (off the coast of South Carolina.)

LAT 32°24’N, 79°6’W  LON 32°24’N, 79°6’W

 

Hint:  See the pictures LARGER.

If you click on any of the pictures in any of my blogs, they should open up full screen so you can see the detail better.

 

Science and Technology Log  with more than 20 ROV dives completed, here are five new items to share

Science Part I.  Totally Awesome Turtle!

On Tuesday, June 24th during our first of four dives of the day a Loggerhead sea turtle came for a visit in front of the ROV.  Loggerheads are common for the MidAtlantic and other oceans in the mid-latitude regions. Loggerheads grow up to 250lbs and are named for their relatively large heads.

Loggerhead sea turtle. Photo credit to NOAA / UNCW ROV June 2014.
Loggerhead sea turtle. Photo credit to NOAA / UNCW ROV June 2014.

This was a dream come true for me.  I have always had this fascination with turtles stemming from catching them on Keller Lake in my early childhood to the snappers that have been visiting and nesting in our gardens the past few years at Goose Lake.  Every turtle is entitled to a name, this one I am calling “TJ.” (Hi Taylor!)   I hope we will see more.

Science Part II.  Discoveries of Dives in the Deep – the fish

Scamp Grouper

Scamp Grouper & Cubbya Dive067054 12 04 27
Scamp Grouper & Cubbyu. This grouper is probably 16-22 inches. Photo credit to NOAA / UNCW ROV. June 2014
Scamp Grouper. Photo by NOAA / UNCW ROV June 2014.
Scamp Grouper. Photo by NOAA / UNCW ROV June 2014.

Speckled Hind

Speckled Hind.  Photo by NOAA / UNCW ROV. June 2014.
Speckled Hind. Photo by NOAA / UNCW ROV. June 2014

Cornetfish

Cornetfish.  Photo by NOAA / UNCW ROV June 2014.
Cornetfish. Can grow to be 2-4 feet in length, 6 feet maximum. Although not possible to fully detect, when we photographed these it appears two males were courting a female. They almost danced together in the water. Photo by NOAA / UNCW ROV June 2014.

Science Part III.  An Ocean of Stars – Echinoderms and other Invertebrates

A brief bit of science, then you can see the pictures.  Echinoderms have three main characteristics:

1.  A body plan with 5-part radial symmetry
2.  A calcite skeleton
3.  A water-vascular system

Here are a few we have found on the ocean floor the past few days with the ROV.  By the way, it’s also a sky of stars at night from the ‘iron beach’ on the top deck aft of the bridge of the Nancy Foster.

Asterporpa Star wrapped around the backside of a diodiordia photographed during ROV dive.  Photo credit to NOAA / UNCW. June 2014.
Asteroporpa Star wrapped around the backside of a diodogorgia photographed during ROV dive. Look hard past the purple and you can see it. Photo credit to NOAA / UNCW. June 2014.
Seastar photographed during ROV dive.  Photo by NOAA / UNCW June 2014
Sea star photographed during ROV dive. Photo by NOAA / UNCW June 2014
Brittlestars photographed  during ROV dive.  Photo by NOAA / UNCW.  June 2014
Brittlestars photographed during ROV dive. I magnified this photo so you could see two close up, but in one of the photos we took with the ROV there were more than five visible. Photo by NOAA / UNCW. June 2014
Longspine Erchin.  Photo by NOAA / UNCW ROV. June 2014.
Longspine Urchin. Photo by NOAA / UNCW ROV. June 2014.

One of the mollusks we found. 

Thorny Oysters.  There are three in this picture.  Photo by NOAA / UNCW ROV 2014.
Thorny Oysters. There are three in this picture; the middle one is slightly open. Photo by NOAA / UNCW ROV 2014.

Science Part IV.  Iceberg Scours dead ahead!

Many of the ridges and valleys Stacey Harter our chief scientist choose for us to investigate with the ROV are actually scours along the Atlantic Ocean seafloor created by icebergs that moved in a southwesternly direction towards the Carolina’s. Yes, I said icebergs!  These scours I learned were probably created during the last deglaciation period, (~29,000-15,000 BP (before people)). I found this great blog post that summarizes some research on these and has a good graphic too.   The scours are revealed through the multibeam mapping (MB) that the science mapping team conducts overnight. The image below is a MB map that shows the ridges and valleys (iceberg scours) and the red dots that form the line our ROV took exploring it on Sunday.

Multibeam (MB) Map showing iceberg scours and ROV dive track.  Image courtesy of NOAA and Harbor Creek.  June 2014.

Multibeam (MB) Map showing iceberg scours. The red dotted line near the middle of the image is our ROV track from the dive, going east to west. Image courtesy of NOAA and Harbor Branch Oceanographic Institute . June 2014.

The earth science education I teach with the Earth Balloon and Earth Walk programs cover processes that shape and form the planet and I can’t wait to incorporate iceberg scours and the habitat they now provide into these programs!

A call out to Jennifer Petro and her class at Everitt Middle School in Panama City, Florida. Jennifer participated as a TAS in 2013 on this same research project. Her class sent a collection of decorated styrofoam cups with Andy David from the Panama City NOAA lab for us to bring to the bottom during one of our dives.  This is what happens when Styrofoam is subject to increasing pressure.

Styrofoam cups predive

Styrofoam cups postdive

Science Part V.  I think we placed it here…I think it is here…It is here!

Earlier this spring, the South Carolina Department of Natural Resources in cooperation with the Army Corp of Engineers sank two barges to create artificial reef systems and habitat for groupers, tilefish, and countless other species.

Artificial reef barge sank spring 2014 by the South Carolina Department of Natural Resources with cooperation from the Corp of Engineers.
Artificial reef barge sank spring 2014 by the South Carolina Department of Natural Resources with cooperation from the Corps of Engineers. Its difficult to say for sure, but to give you a sense of scale, typical shipping containers like the green on one on top are are 40-50 feet in length.

During the overnight hours of June 24th & 25th the mapping science team (see below) set out to find these two barges somewhere within a 2 square mile box using the MB aboard the Nancy Foster; that’s a lot of ocean to cover!    I stayed up late with them and at about 10:00pm images began to emerge that resembled the barges.  By 10:30pm, the mapping team had combed through the data and generated 3D maps that were strong evidence they had found them.

MB barge1
3D multibeam image of one of the sunken barges near the Edisto MPA. The barge is the rectangle, however there appears to be a mass of objects off one of its corners – keep reading.

However, a hypothesis emerged; one of the barges may have flipped upside-down during its initial sinking and that some of the cargo containers had actually fallen off and came to rest on the ocean floor separate from the barge.  During this discussion with the mapping team, I had this huge smile and was in awe with what they could do with sound waves!

So on Wednesday afternoon, June 25th the ROV team went to work to explore the sunken barges.  I watched as Lance Horn slowly guided the ROV down below 100 meters.  Eventually we could make out the barge.  Lance had to use his many years of ROV piloting to carefully maneuver.   We could not let the umbilical fiber optic and power cord get caught on any of the metal debris and towers that projected outward.  What did we discover?  Unfortunately I am unable to show you the pictures.  At 90 meters in depth it was so dark, the digital camera could not capture quality images – even with two LED lights.  However, the HD video gave us clear visual and conclusions.  The barge settled upright on the sea floor (it wasn’t upside down).  However, we speculate that it came down with such force that the shipping containers and structures collapsed and broke away.  Indeed four of them are lying on the ocean floor off the northwest corner of the barge. It’s only been a few months so habitat and few fish have yet to call it home, but schools of Amberjack were all around.

 

Career highlight: 

Kayla Johnson and Freidrich Knuth are our mapping scientists we brought on board as part of the science team and Samantha Martin and Nick Mitchell are fulltime NOAA mapping scientists assigned to the Nancy Foster.  All four of them have very interesting stories about how they use their education and expertise to be eyes through the water column deep into the ocean.  Freidrich and Kayla accompanied the science team as graduates from the Department of Geology and Environmental Geosciences at Charleston College.

Mapping science crew aboard the Nancy Foster.  From left to right:  Freidrich Knuth, Nick Mitchell,Kayla Johnson.  Not pictured - Samantha Martin.
Mapping science crew aboard the Nancy Foster. From left to right: Freidrich Knuth, Nick Mitchell,Kayla Johnson. Not pictured – Samantha Martin.

It is really inspiring to hear about their experiences in MB mapping in many of the oceans worldwide.  They are experts of combing through data we receive through a number of ship-mounted devices, applying complex GIS software (geographic information systems), and creating 2D & 3D maps that the science team can use to direct the ROV to the next day – which means this team works through the overnight hours and sleeps during the day.

Personal Log:

I have been running on the treadmill which is located in a small fitness center low in the ship.  It’s a very awkward feeling when there are large waves and the treadmill and I are going up and down and swaying side to side.  The way I look at it I am running on water so it has to be easier on my knees.

I have lost track of the number of birthdays we have celebrated while offshore.  From somewhere, seemingly daily, birthday cards and cakes emerge.

And for another quote from The Big Thirst by Charles Fishman that I am reading while aboard the Nancy Foster.

“Water is a pleasure.  It is fun.  Our sense of water, our connection to water, is primal.  Anyone who has ever given a bath to a nine-month-old baby – and received a soaking in return – knows that the sheer exuberance of creating splashing cascades of water is born with us.  We don’t have to be taught to enjoy water.”  (p760)

We are sailing for the Florida MPA overnight tonight (10-12 hours) and will be ready to launch the ROV again tomorrow.

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  In the meantime, some might have links to further information. 

NOAA’s Coral Reef Watch has a great site of definitions at

http://coralreefwatch.noaa.gov/satellite/education/workshop/docs/workbook_definitions.pdf

  • Ehinoderms
  • Radial symmetry
  • A ‘clip’
  • Latitude/Longitude
  • Heading
  • Hypothesis
  • GIS
  • TED – turtle exclusion device (Andy and I had a conversation about other work NOAA is doing in the Gulf related to turtles, TEDs and their work on trawlers.   Perhaps another NOAA at sea adventure for me in the future.)

Lesley Urasky: Do You See What the Pisces “Hears”?, June 22, 2012

NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 22, 2012

Location:
Latitude: 18.5472
Longitude: -65.1325

Weather Data from the Bridge:

Air Temperature: 28.6°C (83.5°F)
Wind Speed:  9 knots (10.5 mph), Beaufort scale: 3
Wind Direction: from SE
Relative Humidity: 77%
Barometric Pressure: 1,014.80  mb
Surface Water Temperature: 28.1°C (82.6°F)

Science and Technology Log

Another aspect (much more technical) of the scientific research conducted on this cruise is the collection of acoustic data.  This field is continually evolving as the detection resolution improves allowing scientists to more precisely identify fish.  This has been used with more success in fisheries farther north because the schools of fish are more likely to be monospecific (a single species).  However, the technique still needs improvement in warmer waters where the fish assemblages tend to be multi-specific (having a much greater variety of fish).

General idea behind an acoustic sounder being used to detect fish. (Source: www.biosonicinc.com)

This field of study is called Hydroacoustics (hydro- means water, and acoustics refers to sound).   It is the science of  how sound moves through water. Leonardo da Vinci noticed how sound travels through water in 1490.  He noticed that, “If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you.” (Urick, Robert J. Principles of Underwater Sound, 3rd Edition. New York. McGraw-Hill, 1983.)  World War I helped promote innovation in the field, especially with the need for anti-submarine detection devices (Wood, A. B., From the Board of Invention and Research to the Royal Naval Scientific Service, Journal of the Royal Naval Scientific Service Vol 20, No 4, pp 1-100 (185-284)).

Hydroacoustic instruments utilize SOund Navigation and Ranging, more commonly referred to as SONAR.  The ship Pisces is equipped with a system located on the center board; this is a flat structure that can be raised/lowered through the water column beneath the center of the ship.

Line drawing of the NOAA ship Pisces showing the location of the center board.

The system used is a sonar beam that is split into quadrants.  This instrument is used to assist in determining fish abundance and distribution.  The premise is relatively simple: an echo sounder transmits a pulse of energy waves (sound), when the pulse strikes an object, it is reflected (bounced) back to the transducer.  The echo sounder is then processed and sent to a video display.  This is the same general process behind the recreationally available fishfinder.

Acoustic beam split into quadrants (Source: http://www.htisonar.com
A short burst of energy is focused into a narrow beam.  When this beam encounters an object such as a fish, a school of fish, plankton, or other object, some of the energy bounces back up through the water to the transducer.   It is the detection of these reflections that allow scientists to determine location, size, and abundance of fish.  These reflections show up on our video monitor.  These measurements are combined with groundtruthed data (for example, fish collected in the field, camera images).

One of the difficulties in data interpretation is that often, the signals that appear on the computer monitor have false readings.  This is a result of the sound wave bouncing multiple times.  It travels to the bottom from the transducer, strikes an object, returns to the ship, bounces off the ship back toward the bottom, strikes another object, and is detected yet again.

Real-time annotated echogram at sampling site.

The Pisces is actually home to one of six multi-beam acoustic instruments in the world.  Of the six in existence, NOAA has five of them.  The benefit of running a multi-beam instrument is that each beam can be set to measure a different frequency (kHz), thus enabling detection of many more features (different species of fish, etc.)

Scientific multibeam echo sounder (Source: www. simrad.com)

Personal Log

Last night the crew of the Pisces carried out a task that they don’t normally perform.  The Pisces was created for fisheries research projects – it focuses on collecting fish samples either by bandit reel, longline, or trawling.  This particular operation was to deploy the anchor for a buoy that will be attached at a later date.  When the buoy is ready to be attached, another vessel will bring it out to the site and divers will go down to the anchor to make the final attachment.

The anchor consists of a huge rebar-reinforced concrete block with a very long chain that has marker floats attached at the end.  Logistically, this took some planning; the A-frame had to be raised and the anchor lifted with the Gilson winch with a 1″ spectra line (has an enormous tensile strength).  The gate to the ship’s ramp was lowered and the A-frame (or as the deck hands call it, the “Tuna Tower”)  repositioned so the anchor was hanging over the water.  The rope holding the anchor, chain, and float was cut through, and the anchor plunged to the ocean bottom.  Again, the crew made the operation go smoothly and demonstrated their ability to complete unexpectedly assigned tasks.

Today was a slow fishing day – no fish at all.  Without any fish to “work up” (collect samples from), the day goes more slowly and we have more down time.  With the extra time, I had a chance to interview Kevin Rademacher, the Chief Scientist on the cruise.

LU: What is your official job title and what are your job duties?

KR: I’m a Research Fisheries Biologist.  I work for the Reef Fish Unit at the NOAA Fisheries Lab in Pascagoula, MS.  I am the Senior Tape Reader/Reviewer, in charge of the readers that analyze  the video data we collect from Reef Fish Surveys.  I also help plan, organize, and run the surveys.  Additionally, I participate in trawl surveys and anything else the lab needs done.

LU: When did you first become interested in the ocean and marine sciences?

KR: I guess that would have been when I was really young.  There is a photo from the Panama City, Florida newspaper, two weeks after I was born with my parents pulling me in a homemade wagon along the beach!  I knew in junior high school that I wanted to be a cross between Jacques Cousteau and Marlin Perkins of Mutual of Omaha’s Wild Kingdom.

LU: It’s such a broad field; how did you narrow your focus down to what you’re currently doing?

KR: I got lucky and kind of fell into reading underwater videos at the initial stages of the project and fell in love with being the proverbial “fly on the wall”! It has allowed me to see the fish in their natural  habitat, different color phases, behavior, etc.

LU: If you were to go into another area of ocean research, what would it be?

KR: Marine Mammal Studies.  After college I trained dolphins and sea lions and put on shows with them for a local Oceanarium on the Mississippi Gulf Coast.

LU: What is the biggest challenge in your job?

KR: Communicating with people and writing papers.

Ariane Frappier and Kevin Rademacher reviewing a dichotomous key in order to determine the species of a fish we caught.

LU: What do you think is the biggest issue of contention in your field?

KR: The impression that commercial fishermen have regarding the work we do to regulate the fisheries they work in.

LU: What are some effects of climate change that you’ve witnessed during your career in fisheries research?

KR: The decline of coral reefs and overfishing of some species.

LU: In what areas of marine science do you foresee a lot of career paths and job opportunities?

KR: Ecosystem management and data modelers.  There has also been a decline in taxonomists over the past few decades.

LU: How would you explain your work to a layperson?

KR: I use underwater cameras to help assess populations of reef fish, especially snappers and groupers.  The data collected is used to manage those fisheries.

LU: If a high school student wanted to go into your field of study/marine science in general, what kinds of courses would you recommend they take?

KR: Math, Biology, Chemistry, and any other science courses available.

LU: Do you recommend students interested in your field pursue original research as high school students or undergraduates?  If so, what kind?

KR: Most definitely! Whatever they are interested in would be beneficial.

Well, only two more days left with the scientists before we pull into San Juan, Puerto Rico.  We have 17 more daytime sites to sample and then this survey will be over.  The scientific crew will be flying home on the 25th, and once home, their work will really begin.  Back in the lab, they will be analyzing the data and reviewing the video.  Some of them will be going back out on other cruises.  Kevin Rademacher will be going out on another reef fish survey in the eastern Gulf of Mexico.  It is currently delayed because of the potential formation of tropical storm Debby.  Joey Salisbury has a couple more; he will be going on a longline cruise and then another reef fish survey, both of which will be in the Gulf of Mexico.  Arian Frappier will be heading off to begin a masters program in marine systems and coastal studies at Texas A&M Corpus Christi.

After a day’s shore leave in San Juan, I’ll continue on to Mayport on the Pisces.  During this time, I’ll focus on the crew members and their jobs.  The cruise will definitely take on a different feel at this point, but it will give me an opportunity to explore other ocean related careers.

Jennifer Fry: March 9, 2012, Oscar Elton Sette

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship, Oscar Elton Sette
March 12 – March 26, 2012

Mission: Fisheries Study
Geographical area of cruise: American Samoa
Date: March 9, 2012

Personal Log

Pago Pago

With the morning light, the island’s landscape came into view.  Looking back toward land was the single road, a variety of buildings, consisting of numerous churches, restaurants, schools, and hotels.  I have come to learn that each small village has its own church and outdoor meeting hall.  Behind the buildings the topography extended upward forming a steep hillside covered with green, lush tropical plants, including a variety of palms and fruit trees laden with mangoes and papayas.

After a hearty Samoan breakfast with ten of the scientists that will be on the research vessel, we met with representatives from the local marine sciences community at the American Samoan government building.  Chickens, chickens, and a small clutch of baby chickens happily pecked on the lawn in front of the building which put a smile on my face.

These chickens found their home in front of the Government Building of Pago Pago, American Samoa.

Scientific Log

The chief scientist, Dr. Donald Kobayashi, began by introducing the team of scientists and gave a brief overview of the upcoming mission aboard NOAA Ship Oscar Elton Sette.

The variety of investigations that will be conducted during these next 2 weeks which include:.

  1. Midwater Cobb trawls:  Scientists, John  Denton, American Museum of Natural History, and Aimiee Hoover, acoustics technician , Joint Institute for Marine and Atmospheric Research of the University of Hawaii, will conduct nighttime tows that will focus on epipelagic and pelagic juvenile reef fish and bottomfish species.
  1. Bot Cam: Using a tethered camera that is later released to float to the surface, and using acoustics–a.k.a. sonar readings–scientists Ryan Nichols, Pacific Islands Fisheries Science Center , Meagan Sundberg, Joint Institute for Marine and Atmospheric Research of the University of Hawaii, and Jamie Barlow , Pacific Islands Fisheries Science Center, will collect samples of fish at selected sites during the cruise.
  1. CTD experiments: “Conductivity, Temperature, and Depth.”   At predetermined locations scientists Evan Howell, Pacific Islands Fisheries Science Center, and Megan Duncan, Joint Institute for Marine and Atmospheric Research at the University of Hawaii, will collect water samples called “profiles” taken of the water column at different depths.  This data is very important in determining the nutrients, chlorophyll levels, and other chemical make-up of the ocean water.
  1. Plankton tows:  Using plankton and Neuston nets, scientists Louise Giuseffi, Pacific Islands Fisheries Science Center, and Emily Norton,University of Hawaii, Manoa, Biological Oceanography department, will conduct day and nighttime plankton tows focusing on plankton and microplastic marine debris.  Scientists will be  looking at a specific species of plankton called the copepod.  This study will also be collecting microplastic pieces, some of which are called “nurdles” which are small plastic pellets used in the manufacturing process. Unfortunately most plastic debris will never degrade and just break into smaller and smaller pieces potentially working their way into the food web, making this research and its findings very important to environmental studies.
  1. Handline fishing using a small boat, the Steel Toe: Scientists Ryan Nichols, Pacific Islands Fisheries Science Center, Meagan Sundberg, Joint Institute for Marine and Atmospheric Research at the University of Hawaii, and Jamie Barlow, Pacific Islands Fisheries Science Center, will conduct daily fishing expeditions obtaining scientific data on bottomfish, grouper and snapper species.   They will be focusing on life history factors including age, growth, male/female ratios, length and weight.  This is very exciting research since the last data collected from this region was from the 1970s and 80s.

I am very excited and fortunate to be part of this important scientific research project, and the significant data collected by the scientists.

Did You Know?
American Samoa pronunciation: The first syllable of “Samoa” is accented.
Pago Pago (capital of American Samoa): The “a”  pronunciation uses a soft “an” sound as in “pong.”

Animals Seen Today
Frigate birds
Common Myna
“Flying Foxes” Fruit bats
Kingfisher
Brown tree frog
Dogs, various
Chickens, various

Walter Charuba: Calmer Days at Sea, July 19th, 2011

NOAA Teacher at Sea
Walter Charuba
Aboard R/V Savannah
July 18 — 29, 2011

Mission: Reef Fish Survey
Geographical Area: Southeast Atlantic Ocean
Date: July 19, 2011

R/V Savannah
R/V Savannah

Science and Technology Log

Hopefully I will write more this time because the boat is much calmer today. After that day with 4 to 6 foot waves I will never use the expression “rollicking good time” again.

The reason the weather is so calm today is because the tropical storm Bert is Northwest of our boat and is going towards the middle of the Atlantic. Bert has created a nice high pressure system for us. The water seems much more calm and it is a beautiful day. I never thought I would be thankful for a tropical storm.

You may be wondering, and if you are not wondering, you should, what I am doing on a ship called Savannah? Why am I twenty to thirty miles off the coast of Florida? Why are we trying to catch fish? Why don’t I stop all these questions and get to the point?

Well the purpose of this mission is to gather data about the population and the condition of reef fishes off the coast of Florida and Georgia. The four species groups we are researching are Groupers, Sea Basses, Snappers, and Porgies. The reason we are doing this is not only important, but essential. We have to know the status of our fish population off our coastal waters. We need to know if we are over fishing or if we are improving in conservation.

Sorry for another question, but how do we count the population of fish, especially reef fish? It’s not like caribou or something where you can take a picture from a helicopter and count a herd. We can obviously never have a specific count but we get an idea by dropping traps with bait at the bottom of the reefs. These traps also have undersea digital cameras to view the surroundings and fish that are not caught. The fish that are caught are dissected to get an idea of their age and reproductive state. This is a very important job I am trying to avoid.

(This is the last question I promise.) Who are these scientists and engineers that participate in this great effort? Well, this is my blog and I really do not want to talk  about  them. I am selfish like that. Seriously they are great people and I will blog later about them. ( I find writing about this trip a battle because I feel I just want to start a new subject and just keep writing. I am trying to avoid that for your sake.) I would just like to tell you the scientists are all pretty intelligent, and in that case they will probably read this blog.

Personal Log

Here I am in my survival suit, often referred to as a Gumby suit, in case we ever have to abandon ship.

Here I am in my Gumby Suit
Here I am in my "Gumby" suit

Margaret Stephens, May 18, 2011

NOAA Teacher at Sea: Margaret Stephens NOAA Ship: Pisces
Mission: Fisheries survey, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Mayport, Florida to South of St. Lucie Inlet, Florida Date: Wednesday, May 18, 2011

Weather Data from the Bridge
As of 15:05 (3:00 p.m. EDT 18 May)
Wind Speed 11.17 knots
Wind Direction 68.31
Clear, Visibility 10+ miles
Surface Water Temperature 26.33 ºC
Air Temperature 22.10 ºC
Relative Humidity 65.00 %
Barometric Pressure 1011.20 mb
Water Depth 38.09 m

Science and Technology Log

NOAA Ship Pisces, Commissioned on November 6, 2009
NOAA Ship Pisces, Commissioned on November 6, 2009

The principal work of the Pisces involves fish – their habitats, distribution (where they are found) and their population dynamics (how and why their numbers change over time). Teams of scientists come aboard Pisces for a few days to two weeks at a time to study, monitor, and collect data on many marine species and conditions in the waters of the United States from the Gulf of Mexico, Caribbean, and South Atlantic as far north as North Carolina. This region is among the world’s most productive marine areas, with many important commercial and recreational fisheries. Pisces is outfitted with sophisticated equipment and instruments that allow scientists to conduct surveys of many marine species, study ocean conditions and marine habitats, and map the sea floor using bathymetric (underwater mapping) analysis. Their work provides vital information to help establish practices and policies to manage marine ecosystems protect species and habitats facing stresses from overfishing, pollution, and climate change, and maintain sustainable fishing practices. Pisces also observes and collects data on weather, sea conditions, and other environmental factors important to the fishing and other commercial interests, scientists, and coastal residents.

During this research cruise, Pisces will collect data primarily about red snapper and grouper species (known as the snapper-grouper complex) to assess their distribution and abundance, or population numbers. At present, the red snapper fishery is closed, meaning that commercial and recreational fishing of that species is prohibited, because overfishing had led to a severe decline in its population. Groupers, a group (no pun intended) of species, are popular, tasty and economically important fish caught by recreational and commercial fishing boats.

The first step in the scientific work is for the team to identify areas where those species are likely to be found, so that they can have a better chance of catching them to study further. The scientists, like good detectives, gather information from prior studies about the kinds of habitats those species prefer, and then they use advanced sonar techniques to find the most promising areas to survey. There will be more about their techniques, equipment and methodologies in the upcoming log entries.

The scientific party aboard includes eleven professionals, led by Chief Scientist Nate Bacheler, Ph.D. Nate and several of the team work out of NOAA’s National Marine Fisheries Service, headquartered in Beaufort, North Carolina. All of them look forward to spending a few or more weeks at sea each year for about a week or two at a time. The ship’s operations crew, headed by Commander Jeremy Adams, includes officers who manage the ship around the clock, ship’s engineers, deck crew and, most importantly, the stewards that keep everyone well fed all day, every day.

Personal Log

I’m so fortunate to be among a terrific group of dedicated scientists and crew as a NOAA Teacher at Sea. NOAA, the National Oceanic and Atmospheric Administration is like the NASA of the oceans. As a federal government agency funded by public dollars, its mission is to study and provide information to the public and decision-makers about the weather, climate, and management of marine resources vital to our survival and livelihoods. NOAA’s work affects everyone, as it helps us predict weather, track major storms, and alert people to potentially dangerous conditions.

Endeavor space shuttle launch 16 May, 2011 from Cape Canaveral, Florida. STS-134 Mission. Photo source: NASA
Endeavor space shuttle launch 16 May, 2011 from Cape Canaveral, Florida. STS-134 Mission. Photo source: NASA

The Teacher at Sea program provides educators the opportunity to share science with the public. It allows me and a lucky group of counterparts to work side by side with scientists, using cutting edge equipment and methods, to learn all about a research ship’s operations, and to alert students to career opportunities in scientific and marine-related fields.

Pisces ran into mechanical problems that kept her from leaving her home port of Pascagoula, Mississippi as scheduled. The superstitious among us might think that the date, Friday the 13th of May, had something to do with the delay. Then, as luck would have it, the space shuttle Endeavor’s new launch was set for just the time Pisces would have been approaching the area around Cape Canaveral, so Pisces and all other ship and air traffic were redirected to remain outside of the shuttle’s exclusion zone.
Endeavor space shuttle launch 16 May, 2011 from Cape Canaveral, Florida. STS-134 Mission. Photo source: NASA
Pisces finally arrived at the rendezvous point, the Mayport, Florida Naval Station late on Monday, May 16. I met the scientific team in town, and after clearing Navy security, we entered the base and set sights on the great-looking ship, our floating home for the next two weeks.

The scientists and crew have been warm and welcoming as I find my way around the decks and passageways, get my sea legs, and try to learn all I can about their research. They are so genuinely interested in sharing their knowledge and experience that it is impossible not to catch their enthusiasm.

NOAA Teacher at Sea, Margaret Stephens, aboard the Pisces
NOAA Teacher at Sea, Margaret Stephens, aboard the Pisces
NOAA Ship Pisces, Commissioned on November 6, 2009
NOAA Ship Pisces, Commissioned on November 6, 2009

We’ve had our first fire drill, where the ship’s alarm sounds for a deafening ten seconds, and we all scramble (walking briskly, never running) to our muster locations to make sure everyone is present and safe. Next up: an Abandon Ship drill that involves our donning an unwieldy one-size-supposedly-fits-all survival suit in under sixty seconds. The suit is otherwise known as a “Gumby” – you can figure out why!

Links & Resources

Peggy Deichstetter, September 3, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 3, 2010

Groupers
Groupers

My biorhythm clock has been reset; I didn’t wake up until my alarm rang at 11:00pmWhat an exciting start to the shift. The day shift caught nothing all day. Within a few minutes of our arrival the fish just kept coming. There were so many that the day shift stayed on to help us measure, weigh, and tag the sharks before we returned them to the sea.. Besides the sharks we also caught a large red snapper.

measuring a shark
measuring a shark

Next Cassidy and I helped out with the bongos. These are twin plankton tows that stay at a certain angle based on controlling the angle of the line. The depth is determined by the amount of line that is let out. The first time we got the baskets a little too deep in the water. So we brought up two containers of mud. We rinsed out all the mud and tried again. This time we were successful. Cassidy and I rinsed the baskets into sieves and washed down the plankton before putting it in specimen jarsWe then proceeded to bait one hundred more hooks and once again began out quest for sharks. After dropping the line and waiting an hour we were ready to pull in more sharks. I .worked the computer for this catch The computer logs in the exact location of each fish caught We caught NO sharks this time. We did catch three huge Groupers.I intended to watch the sun rise but it was behind a cloud bank. We had an hour before our next station, so we had breakfast. I’d like to give a big thanks to our cooks. You can have pretty much what you want for breakfast made to order

We arrive at the next station at 8:00am. It is another plankton tow, but this time we caught a moon jelly. It takes up about an hour then on to our next station, sharks! Unfortunately, its going to take us two hours to get there. I don’t think our shift will have the opportunity to land the sharks.