Eric Koser: Hydrography 101 – and the Tools to Make it Happen, June 28, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22 – July 9, 2018

Mission: Lisianski Strait Survey

Geographic Area: Southeast Alaska

Date: June 28, 2018: 0900 HRS

Weather Data From the Bridge
Lat: 57°52.59′ Long: 133°38.7′
Skies: Broken
Wind 1 kt at variable
Visibility 10+ miles
Seas: calm
Water temp: 5.6°C

Science and Technology Log

Long Line Boat
A typical longline fishing boat. The fishing lines get spread out behind the boat from the large booms on either side.

The ultimate focus of Rainier is to assure accurate navigational charts are available to all mariners. This task is critical to the safety of many industries. About 80% of all the overseas trade in the US (by weight) is moved over water. Here in SE Alaska, it appears the largest industry is commercial fishing. Many boats fish both with nets and long lines to catch halibut, rockfish, cod, and several varieties of salmon.

Another major industry here is certainly tourism. As we conduct our work, we often see very large cruise ships. It’s an interesting juxtaposition to be in a narrow inlet surrounded by mountains, ice, and wildlife and then come across a large ship.  We passed the brand new ship Norwegian Bliss around 11 PM on our transit to Tracy Arm. This ship is 1,082 feet long, carries a crew of 2,100 people and has a guest capacity of 4,004 people! The safe navigation of all of these vessels depends upon the accuracy of charts produced by NOAA.

Norwegian Bliss
The cruise ship Norwegian Bliss as we passed her port to port in the evening.

The freely available charts offered by NOAA are created with three essential steps. First, the bulk of the depth data in this area is measured with MBES (Multi-Beam Echo Sounder). This creates a three-dimensional digital image of the bottom.

Secondly, important features to navigation that are shallow are best identified by our launches which travel along the shorelines and inspect for rocks, ledges, and other potential dangers. The locations of features are identified by GPS location and charted digitally by hydrographers on each launch.

Thirdly, bottom samples are collected by launch crews to confirm the type of material present on the bottom.

The MBES systems aboard Rainier and the launches come from Kongsberg Maritime. Two transducers (devices that transmit and receive) work in tandem. The transducer that is oriented front to back sends out an array of sound signals in a wide beam. The width of the beam on the sea floor depends directly on the depth – deeper water allows the beam to spread farther before reflecting. The transducer that is oriented side to side in the water receives a narrow swath of the ‘pings’ of sound that were transmitted. The time it takes any ping to get to the bottom and reflect back to the ship is recorded. The greater the time, the larger the depth.

MBES on a launch
This shows the position of the MBES on the bottom of one of several launches.
MBES transducers
This is the pair of MBES transducers on a launch, looking from the bow towards the stern.
Hydro Sonar
This image, courtesy of NOAA, depicts an MBSS beam below the ship and the mapped results off the stern.

A couple of issues provide challenges to this technique. One, the speed of sound in water depends on several factors. The salinity (concentration of salt in the water),  the conductivity (how easily electricity passes through the water), and the temperature each fluctuate as the depth changes and affect the speed of the sound waves. As hydrographers receive data, the system has to account for these changes in speed to produce an accurate depth measurement. One way to do this is with a static CTD sensor. This device is lowered from the launches all the way to the bottom as it measures the speed of sound in the water.  It provides a set of three charts as the depth changes which are used to adjust the time data from the MBES accordingly. There is also a version of the CTD, called a MVP (Moving Vehicle Profiler or ‘fish’), that can be pulled behind Rainier as we are moving and take dynamic data.

Here is a NOAA article on hydrographic surveying.  Here is further explanation of MBSS.

Deploying Depth Profiler
Here the crew lowers the profiler “fish” into the water.
Speed Profiler Data
These three plots represent the speed of sound, temperature, and salinity (from left to right) vs. depth (on the vertical axis).

A second issue is GPS signal drift. Over time, the location information can shift slightly. To account for this potential problem, the scientists place a HORCON (Horizontal Control) station onshore in the area where they are mapping. I described this tool in my previous post.

Another interesting technology that is currently being developed is called “backscatter” mapping. Here scientists look not only at the time it takes the sound waves to bounce back to the transducer, but also at the quality of the return signal. Different materials on the seafloor reflect the sound differently – hard surfaces like rocks have a sound signature that is much different than soft surfaces like silt or plants. NOAA is continually improving the tools they use to learn!

Here is an example of the chart that we are updating in Tracy Arm.

Personal Log

I had a chance to take the helm yesterday! It’s interesting how sensitive the steering on this large vessel really is. The rudders are able to turn from “amidships” or their center position, up to about 35° to either side. But while traveling at about 8 knots, we tend to use a maximum of about 5° of rudder to alter the ship’s direction. While at the helm, we keep close track of the heading (compass bearing) of the ship as indicated by the gyro compass and magnetic compass on board. Then we provide steering input to hold the ship to the course ordered by the CONN. I had the chance to help steer around several icebergs as we transited into Tracy Arm. Careful attention to detail – and willingness to promptly follow commands make for success!

Helm
My opportunity to take the helm of Rainier.

I also took an opportunity to head out in a kayak from the ship where we are anchored! Two of my new colleagues and I paddled across this bay and had a great chance to look very closely at pieces of ice. The ice is really beautiful and forms many interesting shapes. The quiet of the bay – hearing only the distant waterfalls, birds, and our paddling was beautiful!

Iceberg
This piece of ice drifted through Tracy Arm from the glacier. It was temporarily ‘grounded’ on the bottom by the receding tide.

It’s crazy to consider the ice we were seeing may have been formed thousands of years ago in the glacier – and it just now melting as it floats away.

Did You Know?

President Thomas Jefferson signed a mandate in 1807 ordering a survey of the nation’s coasts. This fundamental task is always ongoing, with 95,000 miles of US Coastline.

About 90% of any floating piece of ice will be submerged below the salt water.  Because the density of frozen fresh water just slightly less than salt water, the ice floats very low in the water!  Read more here!

Who is Onboard?

I’d like you to meet HST (Hydrographic Survey Technician), Amanda Finn! Ms. Finn has been with NOAA since last September – and started working aboard NOAA Ship Rainier in October of 2017. As an HST, Amanda works with the team of hydrographers to collect MBES data from either the ship or any of the launches. Amanda graduated from the University of Connecticut in 2016 with a bachelor of science degree in GeoSciences and a minor in Oceanography. At the end of her college experience, she knew that seafloor mapping was her passion but wasn’t sure how to make that into a job. But it all came together when she found NOAA through a friend of a friend!

HST Amanda Finn
HST Amanda Finn with recently acquired depth data for Lisinaski Inlet!

Amanda was performing at her first harp concert (another skill!) when she met a relation of a hydrographer who works on a NOAA ship! Based on her experience, her advice to students is: “When things don’t seem to be going the way you want, take time to focus on something else you like instead. In good time, things will work out!”

One positive challenge Amanda shares working here on a hydro ship is developing an understanding of systems integration. Many different pieces must come together to create the finished charts. The people aboard Rainier make the experience very positive!  The passion for seeking the unknown is the drive to continue!

 

Mary Cook: Day 4 at Sea, March 22, 2016

NOAA Teacher at Sea
Mary Cook
Onboard R/V Norseman II
March 18-30, 2016

Mission: Deepwater Ecosystems of Glacier Bay National Park
Geographical Area of Cruise: Glacier Bay, Alaska
Date: Tuesday, March 22, 2016
Time: 7:40pm

Data from the Bridge
Temperature:
37.6°F
Pressure: 1013 millibars
Speed: 0.0 knots
Location: N 58°51.902’: W 137°04.737’

Science Log

Happy Birthday to Cheryl!

Cheryl small
This is Cheryl!

Unbeknownst to Cheryl, Chief Scientist Rhian Waller, even though she was very busy preparing for the cruise, brought balloons, streamers, candles, and noisemakers to celebrate Cheryl’s birthday today.

Birthday Decor small
Surprise Birthday Decor

The ship’s chef is secretly making her a cake. The celebration is slated for tonight at dinner. Shhhhh……

This morning, Chief Scientist Rhian Waller announced that we are steaming toward the end of the west arm of Glacier Bay to Johns Hopkins Glacier. This is a place where cruise ships take tourists in the Fall. But the Park Service has it closed during the Spring and Summertime because it’s a harbor seal nursery. The nightshift workers are trying to catch a few winks of sleep before we get there. No one wants to miss it. We are hoping for clear skies. Johns Hopkins Glacier is one of the few glaciers that is advancing instead of receding. As it advances, it is joining the Gilliman Glacier.

Park Service Map small
Map showing John Hopkins Glacier. Credit: National Park Service

It’s 10:30 am and we’ve arrived sooner than I expected. Johns Hopkins Glacier is really something to see! So massive. Once again everyone is out on deck taking pictures and oohing and aahing.

The glacier has shades of blue and white with streaks of brown and gray. It has a covering of white snow that looks like cake icing. The glassy water is a blue-green color with a multitude of icebergs floating in it. Bob Stone uses a term we all like—“bergy bits”—meaning small pieces of floating ice. He even brought some “bergy bits” onto the ship for us to add to our water or soft drinks. So refreshing!

This slideshow requires JavaScript.

While on deck taking pictures we hoped to see the glacier calve and fall into the sea. It sounds like thunder. We waited and we waited and finally a couple of small ones happened. Also, a couple of snow avalanches slid off the mountains into the water leaving dirty brown streaks along the slopes.

Avalanche medium
Occasional avalanches leave dirty streaks in the glacier’s white snow covering

Our scuba divers went down for another exploratory look and came up with a first! They found Primnoa pacifica in the West Arm! This is the first Primnoa pacifica ever found here. They described it as spindly and small in comparison to the others found in the East Arm.

The scuba divers continue their search for Red Tree Coral.

The significance of this Red Tree Coral being in the shallow water is that it has been considered a deep-water coral. There are two broad categories of coral: warm-water coral and cold-water coral. Generally, warm-water coral live in shallow, tropical waters. Cold-water coral live in deep water. The emergence of cold-water corals like Primnoa pacifica in the shallow waters of Glacier Bay has caused scientists to re-evaluate their understanding and descriptions of these organisms.

The third and last scuba dive for today was described as “mud, mud, and more mud”. A bit of a disappointment but they did bring up an interesting little critter.

Sea Peach small
Maybe a sea peach?

This sea peach is a tan color here in the wet lab, but according to Bob, in its natural habitat it has a bright cherry red color.

Cheryl Birthday Party large
Birthday party for Cheryl!

Well, it’s finally suppertime! That means “Birthday Party Time!” The ship’s chef, Harry served up a delicious meal of salmon, barbeque chicken, steamed kale, baked summer squash, scalloped potatoes and a big salad. For dessert, he prepared a layered chocolate cake with freshly made whipped cream and strawberries. Everyone sang “Happy Birthday” to Cheryl.

After she blew out the candles we went out on the deck and ate cake with new friends in the view of majestic mountains and glaciers.

Eating Cake on the Deck large

A birthday to remember, I’ll say.

Now it’s back to work and the ROV crew is getting ready to deploy Kraken 2 for another night of exploration!

Personal Log

Today has been a day of anticipation and inspiring wonder. I’ve tried to stay out on deck watching the glacier. Hoping for calving and avalanches. It’s really neat to me that no one else is here. We haven’t seen anyone else except four Park Service employees who boated out to meet us today. I found out that there are over 1,000 glaciers in Glacier Bay National Park! Some of them aren’t even named. I enjoyed watching a couple of bald eagles sitting on icebergs. And the absolute coolest thing has been the discovery of Primnoa pacifica in the West Arm of Glacier! I could feel the excitement in the air!

It’s so thrilling to be a part of this scientific exploration and to learn from these world-class researchers!

Mary Murrian: Getting Ready to Fly to Alaska, July 1, 2014

NOAA Teacher at Sea

Mary Murrian

(Almost) Onboard NOAA Ship Oscar Dyson

July 19- July 22, 2014

 

Mission:  Annual Pollock Survey

Geographical area of cruise: Bering Sea and Gulf of Alaska

Date: July 1, 2014

Personal Log

Greetings from Dover, Delaware, the first state to ratify the United States Constitution!  My name is Mary Murrian and I teach math and science to a wonderful group of fifth grade students at William Henry Middle School.  My journey will begin early in the morning on Wednesday, July 2, 2014.  My son, Robert–an upcoming junior at the University of Delaware, is driving me to the Philadelphia airport at 3:00 am in the morning.  After transferring planes in Chicago, Illinois and then again in Anchorage, Alaska, I will finally make land at my final destination, Dutch Harbor, Alaska.

disney trip 2014 009

If you are a Deadliest Catch fan you will recognize Dutch Harbor as the home base for the popular television show on the Discovery Channel.  I will be aboard NOAA Ship Oscar Dyson, a NOAA (National Oceanic and Atmospheric Administration) ship.  I have the wonderful opportunity to work  with the crew and scientists aboard the Oscar Dyson to research and determine the abundance and health of walleye pollock, one of the largest fisheries in the world.  If you have ever eaten fish sticks or imitation seafood, most likely you have tried pollock!

Thanks to the NOAA Teacher at Sea program, I am afforded this wonderful opportunity to work hands-on, learning the science involved in research aboard a NOAA ship. I currently teach a unit on ecosystems, where my students learn about the ecosystem around them and the interrelationships between organisms in an environment focusing on food chains, food webs, and environmental factors that play a role in an ecosystem. This experience will enhance my knowledge of marine ecosystems and the important role the fish play in supporting a healthy and sustainable environment.  I look forward to learning and growing through my participation with experts in their field.  I want to gather as much information as possible, in order to bring it back to my classroom and share my real life experience with my students this upcoming school year and years to come.  What a wonderful way to bring real-life data and experiences to my students.

I have been asked numerous times if I am scared or nervous to be aboard a ship sailing on the Bering Sea.  My response, NO!  I am thrilled.  I cannot wait for my journey to begin.  I have cruised to Alaska before, however not as far north as the Dutch Harbor area and I was on a recreational cruise ship. It was beautiful and the scenery was amazing.  I never saw ice as blue as I did when we crossed Tracy Arm fjord.  A fjord is a typically long, narrow valley with steep sides that are created by advancing glaciers (http://oceanservice.noaa.gov/education/kits/estuaries/media/supp_estuar04_fjord.html).  The trip, although freezing, was amazing.  I also found out that glacial ice often appears blue because of years of compression gradually making the ice denser over time, forcing out the tiny air pockets between the crystals.  When glacier ice becomes extremely dense, the ice absorbs a small amount of red light, leaving a bluish tint in the reflected light (http://nsidc.org/cryosphere/glaciers/quickfacts.html).  Super cool!

Sawyer Glacier in Tracy Arm, showing the very blue ice.  Photo provided by personnel of the NOAA ship John N. Cobb
Sawyer Glacier in Tracy Arm, showing the very blue ice.
Photo provided by personnel of the NOAA ship John N. Cobb

I look forward to my upcoming experience, a trip of a lifetime.  There is more to come, I hope you will continue with me on my journey across the Gulf of Alaska and the Bering Sea!  Watch out Alaska, here I come!

Julia Harvey: Calibration in Sea-Otterless Sea Otter Bay, August 7, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013 

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date: 8/7/13 

Weather Data from the Bridge (as of 21:00 Alaska Time):
Wind Speed:  10.42 knots
Temperature:  13.6 C
Humidity:  83%
Barometric Pressure:  1012.4 mb

Current Weather: A high pressure system is building in the east and the swells will increase to 8 ft tonight.

Science and Technology Log:

Before I begin, I must thank Paul for educating me on the calibration process.  Because calibration occurred during the day shift, I was not awake for some of it.

The EK60 is a critical instrument for the pollock survey.  The calculations from the acoustic backscatter are what determines when and where the scientists will fish.  Also these measurements of backscatter are what are used, along with the estimates of size and species composition from the trawling, to estimate fish biomass in this survey.  If the instruments are not calibrated then the data collected would possibly be unreliable.

Calibration of the transducers is done twice during the summer survey.  It was done before leg one in June, which began out of Dutch Harbor, and again now near Yakutat as we end leg three and wrap up the 2013 survey.

As we entered Monti Bay last night, Paul observed lots of fish in the echosounder.  This could pose a problem during calibrations.  The backscatter from the fish would interfere with the returns from the spheres.  Fortunately fish tend to migrate lower in the water column during the day when calibrations were scheduled.

This morning the Oscar Dyson moved from Monti Bay, where we stopped last night, into Sea Otter Bay and anchored up.  The boat needs to be as still as possible for the calibrations to be successful.

Monti and Sea Otter Bays Map by GoogleEarth
Monti and Sea Otter Bays
Map by GoogleEarth
Site of calibration: Sea Otter Bay
Site of calibration: Sea Otter Bay

Calibration involves using small metal spheres made either of copper or tungsten carbide.

Chief Scientist Patrick Ressler with a tungsten carbide sphere
Chief Scientist Patrick Ressler with a tungsten carbide sphere
Copper sphere photo courtesy Richard Chewning (TAS)
Copper sphere
photo courtesy Richard Chewning (TAS)

The spheres are placed in the water under transducers.  The sphere is attached to the boat in three places so that the sphere can be adjusted for depth and location.  The sphere is moved throughout the beam area and pings are reflected.  This backscatter (return) is recorded.  The scientists know what the strength of the echo should be for this known metal.  If there is a significant difference, then data will need to be processed for this difference.

The 38 khz transducer is the important one for identifying pollock.  A tungsten carbide sphere was used for its calibration. Below shows the backscatter during calibration, an excellent backscatter plot.

Backscatter from calibration
Backscatter from calibration

The return for this sphere was expected to be -42.2 decibels at the temperature, salinity and depth of the calibration  The actual return was -42.6 decibels.  This was good news for the scientists.  This difference was deemed to be insignificant.

Personal Log:

Calibration took all of the day and we finally departed at 4:30 pm.  The views were breathtaking.  My camera doesn’t do it justice.  Paul and Darin got some truly magnificent shots.

Goodbye Yakutat Bay
Goodbye Yakutat Bay

As we left Yakutat Bay, I finally saw a handful of sea otters.  They were never close enough for a good shot.  They would also dive when we would get close.  As we were leaving, we were able to approach Hubbard Glacier, another breathtaking sight.  Despite the chill in the air, we stayed on top getting picture after picture.  I think hundreds of photos were snapped this evening.

The Oscar Dyson near Hubbard Glacier
The Oscar Dyson near Hubbard Glacier
Location of Hubbard Glacier.  Map from brentonwhite.com
Location of Hubbard Glacier. Map from brentonwhite.com
Many came out in the cool air to check out Hubbard Glacier
Many came out in the cool air to check out Hubbard Glacier
I even saw ice bergs floating by
I even saw ice bergs floating by
Lots of ice from the glacier as we neared
Lots of ice from the glacier as we neared
Nearby Hubbard Glacier with no snow or ice
Near Hubbard Glacier
And there it is: Hubbard Glacier
And there it is: Hubbard Glacier
Hubbard Glacier
Hubbard Glacier
Hubbard Glacier
Hubbard Glacier

Did You Know?

According to the National Park Service, Hubbard Glacier is the largest tidewater glacier in North America.  At the terminal face it is 600 feet tall.  This terminal face that we saw was about 450 years old.  Amazing!

Read More about Hubbard Glacier

Robert Ulmer: Perspectives on a Glacier, June 14, 2013

NOAA Teacher At Sea

Robert Ulmer

(En route from Jacksonville, Florida to NOAA Ship Rainier and at port in Juneau, Alaska)

Will be underway from June 15 to July 3, 2013

At port in Juneau:  N 58⁰17.895’, W 134⁰24.684’

Mission:  Hydrographic survey

Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date:  June 14, 2013

Weather conditions at port:  19.08⁰C, scattered cumulus clouds with little vertical extent against bright blue skies, 43.05% relative humidity, 1017.36 mb of atmospheric pressure, wind speed of 9.5 knots with a heading of 79⁰

Port of Juneau
A panoramic view of the Port of Juneau with a cruise ship beginning its exit of Gastineau Channel

Explorer’s Log:  Mendenhall Glacier

Flying across the North American continent at an altitude of 34,000 feet is an experience somewhere between looking down upon a held globe and walking across the terrain.  Maybe that’s too obvious a sentence for starting this second blog entry, but the fact of that obviousness is the necessary beginning, I think.

Marker on the trail to Mendenhall Glacier with Ensign Steven Wall
As we walked the few miles through Tongass National Forest and across or around several mountains along the West Trail to Mendenhall Glacier, Ensign Steven Wall and I followed piled stone trail markers called cairns.

Crossing the skies above the glaciers of western Canada and eastern Alaska, I was overwhelmed by the sheer majesty of the sights below me.  Stretching from one horizon to the other, mile after seemingly endless mile of nearly blinding albedo from frozen water reflecting the sunlight of the approaching solstice at the nearly-Arctic latitude, interrupted only occasionally by jutting dark crags of towering mountains with just enough warmth or slope to slough the otherwise boundless field of snow, and dotted here and there by impossibly sapphire pools of today’s meltwaters.  Eons of valleys carved by the almost imperceptibly unhurried slog of ice advancing under the magnitude of its own weight.  Cascades of energy waiting, breathing, crawling, leashed only by the chilly bonds of molecular attraction below a certain thermal mark.  But the hiker in me instantly feels a frostbitten ache in the ankles and knees just from peering downward at the tremendous glaciers from the warmth of the airplane cabin, entirely based on the mere consideration of just one day’s walk across the frozen sheet, thousands of frigid footfalls constituting a single-digit of traversed miles, at best.   Truly, the glaciers are awesome when seen from an airplane.

At the toe of Mendenhall Glacier, just before a calving
These ice formations are at the leading face of Mendenhall Glacier as it slowly creeps along and melts into the lake and river below. Even though they seem small, the rocks beneath the ice are more than twenty-five feet high above the water line in this picture! About an hour after I took this photograph, a chunk of ice calved away from the glacier, making an explosive sound that could be heard for miles.

On a globe in my classroom, though, those magnificent glaciers are mere splotches of white and maybe a bit of texture for the fingertips, an entirely different paradigm, to be sure.  Accurate, proportional, and contextually appropriate on a cardboard sphere that must display the major surface features of an entire planet.  Excellent for showing young people comparative and relative size and location in order to launch discussions about geography, tectonics, Earth’s axial tilt, or the water cycle, but not likely to send shivers through the imaginations of the young students whose travels more often are flights of fancy rather than physical treks to distant lands.

The west side of Mendenhall Glacier, viewed from below
This was our first close-up view of Mendenhall Glacier. The “ramp” of ice that you see on the right is more than one hundred feet high.

The point of this comparison?  A study in perspective.

Where a biologist sees a species of tree (or maybe a whole ecosystem), a painter sees verticality or varieties of green, and a carpenter sees a cabinet.  Importantly, all three observers are valid, correct, and good in their perspectives.  Perhaps more importantly, not one of those perspectives has to be deemed wrong just so that the others can be right at the same moment.  Likewise, the globe and the look-down from the airplane both are meaningful in providing totally different perspectives on the same glaciers.

Ice cave at Mendenhall Glacier
Pressure, temperature, and friction work together to carve holes and caves in glaciers, some of which are big enough to walk through… with safety gear, of course!

Therefore, I was overjoyed to hear on my first morning after boarding Rainier a bit of enthusiastic encouragement (and a quick primer on how to use a can of bear spray!) from the ship’s XO, Holly Jablonski, insisting that Ensign Steven Wall and I should spend the day actually exploring Mendenhall Glacier above the Tongass National Forest, just outside the Juneau city limits.  With snacks and drinks in hand, Ensign Wall and I were dropped at the head of the West Trail, where we hiked through a few miles of verdant evergreens and mosses, over and around a few mountains, and up a rock face before arriving at the toe of Mendenhall Glacier.  Abruptly, here in front of me was a rippled wall of ice with folds so large that singular words of description are insufficient to capture their enormity.  What had appeared from miles across the meltwater lake to be small chunks of ice at the face of the glacier now were towers more than 140 feet tall, and yet their backdrop still showed them to be relatively tiny.  In the river below were chunks of floating ice that had fallen forward from the glacier’s leading edge, seemingly just a few feet wide… until I saw kayaks completely dwarfed next to them like flies next to football stadiums.

Kayaks among the calvings in Mendenhall Lake
If you look closely, you’ll see that the black specks on the lake are kayaks, which will give you some idea of the size of the “small” icebergs adrift in the water below Mendenhall Glacier.
Twenty-foot crevasse in Mendenhall Glacier
What appears to be a small crack really is a crevasse more than twenty feet deep, and its small drainage cave continues downward for more than 150 feet to the lake below the glacier.

Indeed, the ice was cold, but the feelings at the front of my thoughts were more about size and power, awe and beauty.  Nothing in my previous education had prepared me for my sudden inability to appreciate the magnitude of the behemoth.  Crawling through caves of ice and walking on the surface of the ice was both spiritually overwhelming, as I joined something so much larger in size and time than any human experience, and also tremendously frightening, as the sound of every creak and every drip striking a floor hundreds of feet below the edges of the hole served as a reminder of my fragility at the hands of such forces.

Next, though, I surprisingly was struck by exactly the opposite of the feeling that I had expected:  Rather than feeling the tremendous difference between the frozen landscape in front of me and the 90-plus Fahrenheit degrees that I left before dawn just one day earlier in Florida, I was moved instead by an overwhelming sense of unity, sort of a bridge between the airplane view and the globe view about glaciers that already had passed through my mind.  I couldn’t escape the connection between this mountainous ice sheet and the swampy lowlands where I live thousands of miles to the southeast, because ultimately it is the existence of this frozen ocean atop the mountains of Alaska (and its neighboring icecap, extending toward the planet’s pole) that leaves the great liquid oceans of Earth at a lower level, thus exposing the small peninsula of Florida that I call home at the far other corner of the continent.  And then I saw everything around me differently:  The flowing ice around the peaks looks very much like the wind-blown sands at the beginnings of beach dunes, the small deltas in the mud from the trickles of meltwater are shaped identically to the much larger region surrounding the Suwannee River as it crashes into the Gulf of Mexico, and the wetland grasses miles below the glacier are nearly twins of the salty marshes near Florida’s Intercoastal waterway.  While very different, also quite the same in many ways.

Delta beneath a rivulet near the toe of Mendenhall Glacier
A delta is formed when running water meets the friction of an obstacle in its path (often a larger body of water) and spills leftward and rightward of its banks, making a triangular shape (like the shape of the Greek letter delta) in the nearby land when seen from above. This tiny delta is at the end of a rivulet at the base of Mendenhall Glacier, but it has the same basic form as larger river deltas all over the world.

As my students and friends hear me say so often, we are the sum of our stories, and every story is interesting if told from a meaningful or exciting perspective.

If I simply had described the past few days of my life as a series of long and uneventful flights followed by a walk among some trees and ice chunks, it wouldn’t have been untrue; it just would have been less interesting.  We all know that the best stories often come from places of familiarity, but spun with unfamiliar points of view.  During the next three weeks, I look forward to hearing and sharing ideas and insights with scientists, mariners, stewards, and technicians aboard Rainier as together we explore the same scenery along the waterways of Alaska, but from our own different perspectives… and then sharing those stories with you here.

Hikers on Mendenhall Glacier
By finding the ice features along the left wall of this picture on other photos in this blog may give you some additional perspective about the tremendous size of Mendenhall Glacier, as here you can see a group of hikers along the edge of a meltwater stream.

In our hurried world of expediency, cell phones, and paved highways, perhaps we too often put on blinders to see our travels from only one frame of reference.  As you walk your own paths, I challenge you – as I again challenge myself – to look at each new thing in several ways before closing any doors of possibility or windows of perspective.  Keep exploring, my friends.

Explorer’s Supplemental Log:  Juneau, Alaska

Tlingit totem pole and wall painting on Village Drive in Juneau
The native Tlingit people carve and paint totem poles and other images to tell stories, record events, and celebrate or worship. Central to their totemic imagery is the great raven, a powerful bird of the local skies. The items in this photograph are at the entry to Village Drive, where many members of the Tlingit Tribe still live just a few blocks from the water in downtown Juneau.

Before my excursion to Mendenhall Glacier, I first was taken to the ship port in Juneau, where NOAA Ship Rainier has been at port for two weeks.  Despite the late hour of my arrival, the sun at this northern latitude so near the beginning of summer remained far above the horizon, and so I decided to explore the local city on foot.

Blooming flowers in Juneau
Many colorful flowers bloom in the warming air in and around Juneau as summer approaches.

Juneau, the Alaskan state capital, is nestled among several evergreen-rich yet white-capped mountains on both banks of the mighty Gastineau Channel, which carries its glacial headwaters eventually to the distant Gulf of Alaska in the North Pacific Ocean.  While Juneau has served as host for my shipmates during their hours of liberty in the past several days, the city traces its history both to the discovery of gold in the nearby mountains and waters and to the native Tlingit people who moved from nearby Auke Bay.  During the past century and a half, those beginnings have laid a strong foundation for commercial ventures in mining, exploration, and government alongside a rich cultural heritage that still is seen in the stories told by the totem poles at the entry to Village Drive.  Further, those roots have since grown as other visitors and new residents have brought their own religions, cultures, and curiosities, resulting in a small and beautiful city of varied flavors and voices, a city whose shopkeepers, fisherman, sailors, citizens, and guests mingle their perspectives into a lovely harmony with those of the soaring eagles, boisterous ravens, playful otters, and hungry gulls.

Juneau movie theater building
Downtown Juneau has many beautiful older buildings, like this one, which houses the movie theater (a favorite evening site for ship crews ashore).
Alaska Senate Chambers
Senators represent their home districts as they debate, negotiate, and legislate in the Alaska Senate Chambers in the state capital city of Juneau.
Russian Orthodox church in Juneau
This is the oldest Russian Orthodox church in North America, constructed in the 1800’s to educate and convert the local Tlingit people.

Did you know?

Like other living things, languages grow, ingesting new ideas and experiences, and then converting them into written or spoken symbols called words.  The study of vocabulary often reveals another important lesson in perspective, as word roots give us clues about how the inventors of those words saw the items and events in their own worldviews.

For example, a glacier is an enormous sheet of ice, but the etymological root of that word is the same root that underlies glass (which looks like ice in its nearly-clear, fragile, appearance of solidity) and glaze (which means to coat or polish a surface so that it appears to be covered in ice, a metaphor that is extended into frosting and icing on cakes).  And in many European countries, you can order a frozen treat by asking for a glacé.  Also, when a frozen chunk of the leading face of a glacier breaks free of the main body of the glacier, the event is called a calving, as the inventor of that term in that context must have seen the many ways that the event is like the birthing of a smaller baby cow from its much larger mother.

(By the way, calved chunks of glaciers that fall into bodies of liquid water don’t sink, but rather they float to become icebergs.  Most substances become denser when they freeze from liquids into solids, but water is unusual.  The buoyancy of water ice – which you’ve experienced on a small scale every time that you see ice cubes floating in a glass of drinking water – is caused by the greater density of liquid water compared to the lesser density of frozen water, as electrochemical forces lock water molecules into a more spread-out lattice during the freezing process than those same molecules experience as they flow more closely around one another in the liquid state.)

NOAA Ship Rainier at port in Juneau
NOAA Ship Rainier at port in Juneau, Alaska

Rita Larson, August 15, 2009

NOAA Teacher at Sea
Rita Larson
Onboard NOAA Ship Rainier
August 10 – 27, 2009 

Beautiful Kachemak Bay
Beautiful Kachemak Bay

Mission: Hydrographic Survey
Geographical Area of the Cruise: Kasitsna Bay, AK
Date: August 15, 2009

Weather Data from the Bridge 
Latitude: 59° 36. 952′N Longitude: 151° 24. 490′W
Sea Water Temperature: 9.4°C (49°F)
Air Temperature: Dry Bulb: 13.3°C (56°F) Wet Bulb: 12.2°C (54°F)
Visibility: 10
Wind: Light

Science and Technology Log 

I am deploying and retrieving the CTD. (Picture taken by Asst. Survey Tech. Nick Mitchell)
I am deploying and retrieving the CTD. (Picture taken by Asst. Survey Tech. Nick Mitchell)

The one unique feature I witnessed here at Kachemak Bay is a phenomenon called glacial flour, which was mixed in with a very strong tidal rip current. If you can imagine a grayish white top layer almost like foam on a good cappuccino and as soon as you motor through it, you could see the normal clear Alaskan water underneath in its wake. There was a definite line between the outgoing bay waters and the in-coming seawaters.  This was really awesome to see up close and for the first time! The Rainier uses specialized sonar systems and equipment, such as the CTD, which collects conductivity, temperature, and pressure samples.  This instrument collects the necessary correction factors to aid in the post processing of the sonar data in determining the bottom depth. One factor that is considered while collecting bathymetric data is that fresh water is less dense than salty ocean water, so it will float or suspend on the top of the ocean water. Because these differences in sound speed through the water can have a major impact on the accuracy of the soundings generated by the sonar.

Mid-summer melting from snow capped mountains.
Mid-summer melting from snow capped mountains.

The CTD cast is used to detect these differences and measures the sound speed at various depths to correct the sonar readings. Another influence while collecting bathymetric data is glacial flour. Glacial flour is known as clay-sized particles of rock, generated by glacial erosion. This material is very small and creates a suspended silty covering over the ocean waters. While collecting data in Kachemak Bay, which is located in Cook Inlet, we experienced a current shift during high tide, which was heavily emerged with glacial flour. More than likely, the flour came from the Kenai Fjords Glaciers, which are located north of Homer, Alaska. Normally, during mid-summer, it is expected to flood and have high standing water in glacial areas. When the glaciers melt, the glacial flour also mixes with glacier till and erodes into the oceans. Since the glacier mix is fresh water, this blanket of glacial flour suspends on top of the ocean water until it becomes sediment on the bottom of the ocean floor.

Less dense fresh water suspended over the denser salty ocean water.
Less dense fresh water suspended over the denser salty ocean water.
This is during high tide on August 15, 2009 with evidence of glacial till.
This is during high tide on August 15, 2009 with evidence of glacial till.
This is the same water; two hours later after the tides and currents had changed.
This is the same water; two hours later after the tides and currents had changed.

Personal Log 

While surveying, it is hard to ignore the beauty that is all around you. When the sun is shining and the wind on your face, Alaska is just breathtaking. It is still hard to believe I am working in Alaska for NOAA all the way from Woodbridge, Virginia. Every day brings wonderful first-time experiences and I am so glad to be a part of it. It is nice to have this opportunity to become the captain of your destiny and navigate towards your own TAS (Teacher at Sea) adventures.  

Here I am driving the launch! (Pictures taken by Seaman Surveyor, Steve Foye.)
Here I am driving the launch! (Pictures taken by Seaman Surveyor, Steve Foye.)

New Term/Phrase/Word 
Sailors use charts, navigational tools, and landmarks, to help find their way around the oceans. While surveying today, we came across a landmark called a “Lighted Day Mark” which signifies, on nautical charts, hazards or changes in the directions of channel patterns.

Did You Know?  
Did you know that there are eight active volcanoes around Cook Inlet, Iliamna, Redoubt, Double Glacier, Spurr, Hays, Douglas, Four Peaked, and Mt. Augustine? Today, while we were surveying, Mt. Augustine was venting or letting out steam, gases, and ash.  We were able to observe this volcanic activity through the binoculars.  If you would like to see it visit the website.

A “Lighted Day Mark” landmark which signifies a hazard or change in the direction of channel patterns.
A “Lighted Day Mark” landmark which signifies a hazard or change in the direction of channel patterns.

Rita Larson, August 13, 2009

NOAA Teacher at Sea
Rita Larson
Onboard NOAA Ship Rainier
August 10 – 27, 2009 

Mission: Hydrographic Survey
Geographical Area of the Cruise: Kasitsna Bay, AK
Date: August 13, 2009

RA-4 launch, one of the Rainier’s small boats
RA-4 launch, one of the Rainier’s small boats

Weather Data from the Bridge 
Latitude: 59° 28.515′N Longitude: 151° 33.549′W
Sea Water Temperature: 9.4°C
Air Temperature: Dry Bulb : 14.4°C (46°F); Wet Bulb: 12.2°C (54°F) (Dew Point)
Visibility: 10 miles

Science and Technology Log 

The Rainer deploys launches or small boats such as the RA-4 that have different tasks assigned to them listed on the POD or the Plan of the Day. Today, our mission was to survey a section of the sea floor in Kachemak Bay. Once the survey has been completed, the raw data is processed and then is sent to other NOAA’s National Ocean Service divisions to create nautical charts of the sea floor for either updating for accuracy or created for the first time.

Each launch is equipped with multi-beam sonar devices. The crew is currently collecting bathymetric as well as backscatter data simultaneously. Backscatter data can be analyzed to categorize the bottom type of the sea floor indicating changing sediment types such as rock or mud. This information is of particular use to fisheries biologists, ecologists, and others who are interested in habitat mapping. The lead hydrographers are given a polygon region, which defines the area in which they are going to survey.  This is what ours looked like for today:

This was our chart at the beginning of the day.
This was our chart at the beginning of the day.
This is our chart after a hard days work!
This is our chart after a hard days work!

Can you see what we surveyed? Yes, you are correct if you said the purple and green-blue mixture. The first step that was taken was putting a cast in the water, which is called a CTD and stands for Conductivity, Temperature, and Depth. The CTD is used to see the changes in sound velocity all the way to the bottom.  This process is repeated at least every four hours for readings. This sound velocity data is used to correct the multi beam sonar data. The computer is able to translate the multi-beam sonar data in a 3-D image of the sea floor.

The CTD, which measures conductivity, temperature, and depth.
The CTD, which measures conductivity, temperature, and depth.

Personal Log 

I am getting used to my routine living on a ship. The main idea is respecting others and their space. Listening to others and following the rules. Asking lots of questions will help you transition easily. Following others advice. Enjoying the company you are with. Having fun on every adventure that is given to you. I am learning so much, and each day I am feeling more and more comfortable here in my new home on the Rainier. 

New Term/Phrase/Word 

Wow, I am a student here on the Rainier! I am learning new words and terms everyday. Just today I found out a FISH is not an animal, but an instrument that is towed behind a boat on a cable and “swims” through the water. One example is a Moving Vessel Profiler or a MVP. This apparatus collects the same information as the CTD; however, it collects the information in real time. It is smart to have the CTD and the MVP on the launch to compare the same data to make sure it is correct.

This is a screen that is read by the hydrographers that shows the 3-D sonar images of the bottom of the sea floor.  Today, some of our readings were more than 500ft deep. WOW!
This is a screen that is read by the hydrographers that shows the 3-D sonar images of the bottom of the sea floor. Today, some of our readings were more than 500ft deep. WOW!

When we survey a section of the sea floor that was previously surveyed that is called junctioning, or overlapping. Holidays are not the days on a calendar, but stands for “holes in the data”. That means after you survey a section of the sea floor, if there is a missed section on the computer screen you must go back and re-survey that area.

Rita Larson, August 12, 2009

NOAA Teacher at Sea
Rita Larson
Onboard NOAA Ship Rainier
August 10 – 27, 2009 

Mission: Hydrographic Survey
Geographical Area of the Cruise: Kasitsna Bay, AK
Date: August 12, 2009

Weather Data from the Bridge 
Latitude: 59° 28.515′N Longitude: 151° 33.54′W
Sea Water Temperature: 9.4°C
Air Temperature: Dry Bulb: 14.4°C (58°F); Wet Bulb: 12.2°C (55°F)
Visibility: 10 miles
Wind: 06

The skiff RA-8 being launched from NOAA Ship Rainier.
The skiff RA-8 being launched from NOAA Ship Rainier.

Science and Technology Log 

Last night (Aug 11, 2009) the P.O.D (Plan of the Day) was posted and I found out that I was assigned to work with the Survey Team. We would go out on the skiff identified as RA-8.  We had a special guest that came with us today, Mr. Randall, from the NOAA Headquarters located in Silver Spring, Maryland was in Homer Alaska, so we drove RA-8 to Homer, Alaska to pick him up. Then we proceeded to Bear Cove to complete our main mission, which was to observe the tides and complete the leveling of the remote tide gauge. NOAA uses tide gauges to verify long-term assessment of sea level changes and establishes the vertical datum, or frame of reference, for their nautical charts. Mr. Randall was retrieving a GPS (Global Positioning System) unit that was planted in Bear Cove the previous day to collect data.

Our crew consisted of Matt Abraham, our coxswain, was responsible for driving the open skiff (RA-8). Our hydrographer in charge was ENS Schultz; she surveyed Bear Cove and retrieved the data from the tide gauge. Manuel Cruz and Tony Lukach were responsible for holding the leveling rods to help complete the survey. My responsibility was to write the data given to me and record it on the leveling sheets and find the difference between each measurement. Mr. Randall also worked with us throughout the day. While surveying we used a three-wired level that sits on a tripod, level rods, measuring tape, turtles, pencil, and a calculator.

Personal Log 

Looking through a three wire level.
Looking through a three wire level.

I was so excited about this mission since it was my first one. I was very cold in the morning since we were a little bit wet from the spray of the ocean, even though I was dressed very warmly. By the afternoon I was only wearing a t-shirt and jeans. The scientists were telling me the last time they were at Bear Cove they actually saw a bear. So, I was looking around constantly to keep an eye out for them. At one point of the day I went with ENS Schultz to collect the initial tide measurements from the tide gauge and check the flow of the nitrogen gas to make sure it was operating smoothly. Little did I know that I had to climb a wooded hill to help collect this data. One has to be in great physical shape to perform these types of tasks. It was unbelievable to see such sophisticated equipment in such a remote area.

After observing these remarkable scientists doing their jobs in the middle of a mosquito-infested area, I applaud everything they do. I felt comfortable and I felt safe in their care. They are all so knowledgeable in their fields. One can really sense the teamwork that is needed for all the missions NOAA  expects from them. I am proud and honored to be a part of the project called Hydropalooza, which provides a deeper understanding of Alaska’s Kachemak Bay.

New Term/Phrase/Word:  Turtles in surveying are not animals. They are used as half way marks from the benchmark item to the surveyor. The ones we used were round and heavy with a silver handle on them. They are heavy for a reason, so they do not move once they are placed on the ground. Surveying is very important to this mission since the measurements must be within 2.5mm.

Animals Seen Today 
Puffins and Sea Otters

Collecting data from the tide gauge in Bear Cove
Collecting data from the tide gauge in Bear Cove

larson_log1e larson_log1d

As we were bringing Mr. Randall back to Homer we saw this glacier in the distance.
As we were bringing Mr. Randall back to Homer we saw this glacier in the distance.

John Schneider, July 4, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 4, 2009

Midnight – no flash!  The moon is rising off to the left.
Midnight – no flash! The moon is rising off to the left.

Personal Log 

Left home at ~0900 EDT and was driven to Philadelphia Int’l by my old son. First leg was PHL to Atlanta in order to connect to a 767 for the nonstop leg to Anchorage. On the first leg, I was in a middle seat, but that was OK as it was only a 1.5 hour flight. After a :45 layover I connected to Delta flight 1475 to Anchorage for a 7 hour nonstop flight. On that flight I chose a window seat which meant I would be boxed in. I usually like an aisle seat so I can get up and walk around, but figured that having never been to Alaska I’d like to be able to look out the window.  After about 5 hours being stuck in that little seat, I was tired, cramped and uncomfortable.

But then I started to see mountains covered with snow on their North slopes – the southern slopes being sunlit and having melted.  A bit further on, the mountains were high enough and far enough North to be snow covered on all exposures. Then, for the last hour or so of the flight, the view was non-stop input of glaciers, fords, icebergs, islands, tidal flats and a sun still high in the sky, even though it was almost 7 pm local time.  It amazes me that folks take so for granted the wonders of where they live – there was a couple in front of me who just chatted through the last couple hours as if it was “business as usual.” Still, living in the Northeast, I know people who take the NYC skyline for granted, too, and having lived in the US Virgin Islands we used to say “Just another day in Paradise” as if it was nothing special.  When I get home I will look at my home state with a different and less cynical perspective. 

Glacier and runoff into the sea
Glacier and runoff into the sea

The descent into Anchorage brought us closer to the ground and I could discern the tree growth and recognized that we were flying over the coniferous forests that characterize the landscape in Northern ecosystems like the Taiga biome.  Once on the ground, the cool crisp air and generally quiet tranquil atmosphere immediately let me know I wasn’t in the lower 48!

After a brief layover in Anchorage I went to the gate for the flight to Kodiak.  Era Airlines is one of the local carriers that services Alaska’s interior and the aircraft are relatively small.  I was on a twin engine turboprop that carries about 25 people. Seating is not assigned and I was fortunate enough to have a window again. The flight to Kodiak is only about an hour so the plane never reaches the altitudes of longer flights and I was treated to multiple glaciers, islands and near the end of the flight even caught a glimpse of the Fairweather at the pier in the harbor! 

In front of Kodiak Airport
In front of Kodiak Airport

Once on the ground, I called the ship and Ensign Matt Forney said he’d be over in a few minutes to pick me up.  While I waited, I got to sit and appreciate the day.  It was 2030 hours (8:30 pm) and not even close to dark. Ensign Forney arrived and we were off. It’s just a five minute drive to the Coast Guard pier but I was given a ten-minute diversionary drive to the public harbor area (very few private “yachts,”) many commercial fishing vessels; also stores, clubs, restaurants, etc. but not too many.

I’m tempted to say “quaint,” but I think that would diminish the true nature of the area . . . this is a remote area and the people live lives adapted to the area just as everywhere else.  Being from New Jersey and its crowds, it seems a life less encumbered. Because the ship is in port, I’ll have time tomorrow to meet some crew members and get acquainted with the layout.  I hope to also get a chance to get to town. 

Susan Smith, June 11, 2009

NOAA Teacher at Sea
Susan Smith
Onboard NOAA Ship Rainier
June 1-12, 2009 

Mission: Hydrographic survey
Geographical area of cruise: Trocadero Bay, Alaska; 55°20.990’ N, 33°00.677’ W
Date: June 11, 2009

Weather at 9:45 AM 
Temperature: Dry Bulb:  7.8°C (46°F);  Wet Bulb: 6.7° (44°F)
Cloudcover: OVC
Visibility:  10+ nautical miles
Wind direction: 285, 7 kts.
Sea Wave Height: -0
Sea water temperature: 8.3°C (41°F)

Margerie Glacier
Margerie Glacier

Science and Technology Log 

Today’s log is an accounting of our voyage up Glacier Bay to the Margerie Glacier. Along the way we received information about Glacier Bay from Lewis, the National Parks Service employee whose assistance we enlisted. At approximately 5:30 AM Lewis came on board. He was delivered by boat in the Sitakaday Narrows, near Bartlett Cove. We actually entered Glacier Bay a few hours later. Our destination- Margerie Glacier,at the border of the United States and Canada.

 

Reid Glacier, south of Tarr Inlet
Reid Glacier, south of Tarr Inlet

Margerie Glacier’s height is 250 feet. The glacier also extends another 100 feet below the water line. The Statue of Liberty is 307 feet tall by comparison. The Reid Glacier, south of the Tarr Inlet, is 150 above the waterline and is ••• mile across. It is the fastest moving Tidewater glacier, moving at approximately 8 feet per day. A Tidewater glacier is defined as “a glacier that terminates in the sea, where it usually ends in an ice cliff from which icebergs are discharged”.

Questions of the Day:

  1.  Why does the ice look blue? The ice in the glacier absorbs shorter red and green wavelengths.
  2.  Why is part of the glacier black? Rocky debris mixes in with the ice.
  3.  Why are the edges jagged? Because glaciers advance and recede constantly they leave jagged patterns on the ice edges.

I took several photographs through the Flying Bridge’s high powered binoculars, or “Bug Eyes”. As you can see the crevices are very deep and unstable, causing the ice to break off and drop into the water. Ice breaking away from a glacier is called calving.  

Interesting patterns as seen through the high powered binoculars
Interesting patterns as seen through the high powered binoculars
Top of the glacier
Top of the glacier
Black debris covers part of the glacier
Black debris covers part of the glacier

Lewis explained several interesting historical things to us.

  • John Muir traveled this area in 1879, by canoe, giving vivid descriptions of what he had encountered. This opened up tourism like never before.
  • In 1925 President Coolidge, by presidential order, declared this area as Glacier Bay National Monument. It wasn’t until 1980 that it became Glacier Bay National Park.
  • In the 1990’s it was officially recognized as a UNESCO (The United Nations Educational, Scientific and Cultural Organization) World Heritage Site. Each World Heritage Site is the property of the state on whose territory the site is located, but it is considered in the interest of the international community to preserve each site.
  • Glacier Bay was covered with glaciers 100 years ago. When the glaciers receded they carved out the bay as we know it today.
Margerie Glacier with calving splash
Margerie Glacier with calving splash

Glacier Bay National Park has 3.3 million acres of land, with a park shoreline of 1,000 miles in the bay proper. Outside of the official boundary the waters three miles out cover another 300 miles. (When the Grand Pacific Glacier receded into Canada’s land area the Canadians jokingly stated they should build a deep water port because now the water was on their side of the border) 

Park Regulations: No more than two cruise ships may enter the park per day. This provides less disturbance on the wildlife and environment. The park director may mandate a speed limit of 10 knots, depending on whale proximity.

Recreation 

  • There are no trails in the backcountry.
  • Geikie Inlet is a kayaker’s haven
  • There are five areas of wilderness waters, four of which are closed to motorized traffic and sea planes during the summer, and one area with two sections, each closed half of the summer.

1. Beardslee Islands- forested with 200 year old trees

2. Adam’s Inlet- young, flat area with moose, wolves, bears

3. Rendu Inlet- raw and exposed area, not protected

4. Hugh Miller complex- including Scidmore Bay and Charpentier Inlet, west of                the wilderness boundary at the mouth of the Hugh Miller Inlet.

5. Upper Muir and Wachusett Inlets- a. Muir, a large and exposed area, is closed from June 1-15; and b. Wachusett is closed July 16-August 31

Grand Pacific Glacier, brown area
Launch up close with the glacier

Research Projects-There are many research projects going on in Glacier Bay National Park. Academic research is continually being done by universities. There are long term weather stations set up within the park and 24 CTD (Conductivity, Temperature, Depth) stations to check. Three specific populations being studied are the brown bears, whales, and birds. These populations are being monitored to determine the extent they are affected by motor vessels, tourism, and land management. There is also huge research (approximately 40 projects each summer) on plant succession. Simply by the multitude of research projects occurring you can easily see why Glacier Bay National Park is known as a research park.  For more photographs and information, go here.

Grand Pacific Glacier- The mountains are Canadian.
Grand Pacific Glacier- The mountains are Canadian.

Teacher at Sea Experience Summary 

This trip has given me such insight on all the work done to insure the safety of all who utilize Alaska’s waterways. Before coming on board I had no idea of the volume of intricate data which must be collected and processed to make navigational charts. I had no knowledge of how a NOAA ship as large as Rainier operates and the myriad of jobs necessary to make it all run smoothly. After 11 days on the Rainier I can honestly say there is no other ship I would have enjoyed being on more- the hospitality shown me from day one was remarkable, the patience required to answer the same questions over and over was stellar, I got to take the helm, and I learned more science and nautical vocabulary than even I anticipated.  Thank you, NOAA, for this opportunity and thank you, the people of Rainier S-221, who allowed me to spend part of my summer vacation living and working with you. Bravo Zulu!

smith_log6g

Clare Wagstaff, June 9, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 9, 2008

CO of the COBB and a NOAA diver heading down to explore the hull of the  COBB. They took knifes with them expecting to find netting caught, but no such luck.
Divers heading down to explore the hull of the COBB. They took knifes with them expecting to find netting caught, but no such luck.

Final Log 

I write this last log sat at the dinning table in the galley of the JOHN N. COBB. The last few days have been difficult here on the ship. Unfortunately the mechanical difficulties that the vessel suffered on June 3, have proven to be a little more serious than was originally hoped. The initial diagnosis was of some sort of obstruction, probably fishing line from a trawler, caught in the propeller. After the final leg of our journey, being towed by a much larger NOAA ship, the Rainier, and then finally the last mile by a tug boat, the COBB limped into port in Juneau. Here, the CO and two experienced NOAA divers explored the hull of the ship but unfortunately found nothing obviously wrong to report. With external problems to the ship ruled out, the crew looked internally into the ship’s engine. The engine on the COBB is 59 years old. Similar types where used in the past in trains and submarines. This engine is massive, about 20ft long by 4ft wide. In fact the ship was actually built around the engine, meaning any serious problems with it are extremely difficult to get to and fix. After closer inspection by Sam and Joe, the COBB’s engineers, they discovered that the crankshaft had a large fracture in it. With only two engines of this type known to still be in use, the COBB being one of them, finding a spare crankshaft to replace it is likely to be difficult. It seems as if the COBB may have sailed for the last time under her own power.

A huge crack in the crankshaft, which is essential as it connects all the cylinders of the engine together and makes them rotate.
A huge crack in the crankshaft, which connects all the cylinders of the engine and makes them rotate.

One of the biggest aspects of our cruise was meant to be the last week: studying the haulout sites in two large glacial areas in Tracy Arm and Endicott Arm. With the COBB out of action, I decided to jump onboard a tourist cruise that took a small group of us to the Tracy Arm fjord. It has two picturesque tidewater glaciers are set at the end of this long fjord. Along the journey down the fjord, the step cliff face rises vertically out of the water.  The captain maneuvers the small boat around massive icebergs, with the thought of the Titanic always in the back of my head, I am pleased he goes so slowly. These massive chunks of ice that have broken off a glacier and can float for many miles down stream and out to open water. They can be made of ice, possibly a thousand years old, and are very impressive floating ice blocks with an intense, bright blue color. Light is made up of many colors, all blended together. When light hits an object, some of its colors are absorbed, while others pass through it. Which colors are absorbed depends on the composition of the object: what it is made up of. In this case, the densely packed ice is thick and absorbs red and yellow light, leaving only blue light to be seen. Thinner ice appears white as all light passes through it.

A massive floating iceberg located in Tracy Arm fjord.
A massive iceberg located in Tracy Arm fjord.

As we got closer to the North Sawyer glacier: seal pups galore! It seemed every direction I looked there was a mother and her pup! Dave had spoken about this area to me and pointed out things to look for. Some distance off from our boat, I could see two juvenile bald eagles sat on the ice in very close proximately to a larger seal. Apparently the afterbirth leaves pinkish / red stains visible on the ice, is a tasty meal for these birds, and they were sat there waiting for the opportune moment to enjoy it! There was though one seal that stood out for all the hundred of others. This seal had a transmitter attached to the top of his head and what I later found out to be, a heart rate monitor around its chest! The seal did look a very strange sight and was easily spooked back into the safety of the water. Earlier this season, Dave had been helping the Alaskan Fish and Game department tag seals in the Endicott Arm area, some 40 miles from here so this seal had traveled some distance. The transmitter attached to its head relays information of its location and details from its heart rate monitor. Measuring the heart rate of the seal is used to study the stress placed on the animal in regards to cruise boats and their close proximity. A seal under stress will expel more energy as it swims away from the danger. Being in the water also means that more energy is expelled in thermoregulation to maintain its body temperature. From this sighting Dave was able to report back to the Fish and Game department that this seal had been spotted, alive and well!

Just one group of many of the seals present in Tracy Arm.
Just one of many of the seals in Tracy Arm.

Although this seal did look quite funny to the human observers, it should think it lucky that it was just a little bigger; otherwise a video camera would have been attached too! Not to worry though. As the seal molts, as they do each year, the transmitter and heart rate monitor, which is glued onto the seal’s fur, will come off! While the boat was sat stationary in the water near the South Sawyer glacier, there was a loud cracking sound. This signaled a carving of the ice from the face of the glacier. It sent ice crashing into the water with some force and in turn a wave was created that sent our boat rocking. Over the 45 minutes we were there, this braking up of the glacial ice happened four times. Looking out to the seals on the ice in this area, I wondered why they would stay on the ice so close to where this was happening, as it couldn’t be a pleasant ride with all the rocking. As it happens, these seals love this area, for exactly that reason. As the ice hits the water, it mixes the water below, sending the seal’s food source such as shrimp, closer to the surface. Basically the carving action brings dinner just one step closer to them – buffet service with a great view!

A tagged harbor seal with a transmitter attached to its head and a heart rate monitor to its chest.
A tagged harbor seal with a transmitter on its head and a heart rate monitor on its chest.

I have had just the best time onboard the JOHN N. COBB. Although my cruise was much shorter than I had expected, I saw many wonderful things that I had never done so before. I think that if you have to be stranded anywhere for a week, Alaska seems like a pretty good option to me!

Teacher at Sea, Clare Wagstaff in front of South Sawyer glacier.
Teacher at Sea, Clare Wagstaff in front of South Sawyer glacier.

Clare Wagstaff, June 5, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 5, 2008

NOAA Teacher At Sea Clare Wagstaff, Jon and Dave getting ready to depart the COBB in the JC-1.
NOAA TAS Clare Wagstaff, Jon and Dave getting ready to depart the COBB

Weather Data from the Bridge 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 6
Wave Height (feet): 0
Sea Water Temp (0C): 8.8
Air Temp (0C): 11

Science and Technology Log 

We are still anchored just outside of the native Alaskan village of Kake. Apparently another NOAA ship, the Rainier, is on its way to tug us back to Juneau late tonight. There was good news though! Dave knew of some haulout sites that he had observed and recorded data from in 2004. They were within approximately seven miles of where John N. COBB was located. So once again, we boarded the JC-1 and off we went!

Equipment on the Skiff 
The skiff is only a small-motorized boat but it can safely carry seven people and is essential in getting scientists to places unreachable by the COBB. The JC-1 is equipped with GPS, which also includes a Fathometer and depth gauge. Other basic equipment includes a magnetic compass and tachometer. Essential to any mission in the skiff is a console mounted and handheld radio so that we can stay in communication with the COBB. The operator of the skiff is required to have radio contact with the ship every hour and state our location for safety reasons. Flares, line bags and a first aid kit, all mean that our expeditions out on the JC-1 should be safe and enjoyable!

Seal Observations    
Although we saw lots of seals today, none of them from a distance of less than 200 meters. It seems these seals where much more skittish than at other areas we had previously visited and for good reason. Today’s haulout sites were within a few miles of a local village. Here, native Alaskan’s are still allowed to hunt seals. The seals we observed today seemed fully aware of their possible fate if they allowed us to get to close. On a more positive note, I am getting better at making estimates of numbers from a distance and spotting the pups in a large group. When they retreat to the water it is quite easy to spot mother and pup, as they tend to be very close together, with one head much larger than the other!

Harbor seals near Kake.
Harbor seals near Kake.

Recording the Data 

Dave Withrow uses the GPS to record new sites as well as plot routes to old sites.
Dave Withrow uses the GPS to record new sites as well as plot routes to old sites.

So what happens to all the data that we collect out at sea? Dave processes all the results we collect into a spreadsheet. Here the data is organized by ‘waypoint’ (name of location and/or latitude and longitude); it also displays the number of adult seals and pups, a long with environmental data such as tide height. Through some fancy GPS work, Dave can also record and download the route we took in the skiff, our speed and time. Plotting all this information together, gives a clear picture of patterns in the results collected. With his digital camera, Dave can also download the photos he has taken of the seals and through the wonders of modern technology synchronized them with the GPS information. This then links pictures taken at a specific site electronically to the recorded data.

In the past five years of this study, the proportion of adult seals present with a pup has remained approximately the same: 25% on rock substrate and approximately 70% on ice. Unfortunately because we have been unable to study many sites this season, the data we collected is inconclusive. However, with the effects of global climate change it seems unlikely that these percentages, particularly of pups on ice haulout sites, will continue to be as high. Adding to this data over the preceding years seems an absolute necessity for scientists to get a greater picture of the harbor seal population and its relating habitat.

A sea squirt? I will have to look it up when I get home.
A sea squirt? I will have to look it up when I get home.

Personal Log 

For the first time on the COBB, I slept through the night and well past my usual 04:00! I think I am starting to get used to this way of life. The crew on board the ship are light hearted, yet committed to their jobs: a good combination to be around onboard a ship like the COBB. Yet being stuck in Kake is really frustrating. Breaking down out at sea is not quite the same as doing it in a car: things take a lot longer to happen out here! Knowing that I will probably not get to see the glaciers, being so close is pretty heartbreaking. I’m keeping my fingers, toes and anything else crossed that the COBB gets fixed and ASAP!

“Animals Seen Today” 

While Dave and I were exploring the tidal pools on one of the small islands around Kake, we found this interesting creature. Partially buried in water, Dave dug it out to expose a rather funny shaped animal that ejected water from one end!

The bald eagle, majestic and beautiful!
The bald eagle, majestic and beautiful! 

Clare Wagstaff, June 4, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 4, 2008

Weather Data from the Bridge (information taken at 1200) 
Weather: Overcast and light rain
Visibility (nautical miles): 10
Wind Speed (knots): 16
Wave Height (feet): 1 – 2
Sea Water Temp (0C): 8.2
Air Temp (0C): 12

Day 4 

Oh what a rough night! Our anchor site was in a rather exposed channel just east of Warren Island and the ship was definitely rolling. So much so, I found the best way to secure myself in bed was to wedge my body in between the mattress and the woodened bed frame! At approximately 02:00 this morning the U.S. Coast Guard (USCG) cutter, the Anacapa, arrived from Juneau to tow us part of the way back to port. The USCG boarded the 250-ton COBB around sunrise and secured a towing line for the long return journey.

USCG Cutter Anacapa. It towed us from Warren Channel (55054’N 133049’W) to Kake (56057’N 133056’), 90 nautical miles to Juneau!
USCG Cutter Anacapa. It towed us from Warren Channel to Kake, 90 nm to Juneau!

Disappointed that this might signal the end of the cruise, Dave and I were left with little to do but read, listen to music and partake in a few hours of whale watching as the Anacapa pulled us along at approximately seven knots. At around 18:00 the USCG left us for another mission and the COBB was once again anchored down for the night near the small town of Kake. From the ship this native Alaskan town appears very small and quite rundown, although I did see a very new looking building that said ‘High School’ on it. Now once again stranded, the responsibility falls on the CO and XO to find us another tow the last 90 nautical miles back to Juneau. But with tugboats in the area all already with a full schedule and being astonishingly expensive, it seems unlikely that the journey home will be a quick or cheap one! However, the crew and I do get cell phone reception here, so all is not lost. A quick phone call back to our loved ones helps us all feel a little better about the day’s events.

Science and Technology Log – Whale Identification 

Although Dave and I were not able to venture out in the skiff today, I was able to observe, at a great distance, a number of humpback whales. But identification of these marine mammals is not as easy as it seems. Whales are mammals in the order Cetacea, along with dolphins and porpoises. Cetaceans spend their entire life in water: feeding, mating, giving birth and raising their young in this aquatic environment. They have adapted to breathe through a blowhole on the top of the head. The species we will most commonly observe during our cruise fall into two suborders: toothed whales (Odontoceti) and baleen whales (Mysticeti).

For the huge mass that a whale occupies, rarely do you see the majority of its body for identification. To accurately identify the correct species you need to make a number of observations regarding three main areas. Identification starts with observations of the whale’s blow (expelled air), in regards to the shape, height and angle. Baleen whales have two nostrils and toothed whales have one, which influence the pattern created by the blow. If observed head on, this is a simple way to distinguish between the two suborders. So far on this cruise though our observations have been from such a great distance away (minimum of half a mile away) that it has been difficult for me, a beginner, to make any accurate observations.

Screen shot 2013-04-19 at 9.01.39 PM

The next observation to make is of a whale’s dorsal fin that is located on its back and displayed, if present, when it surfaces and/or dives. If present, its size, shape and location should be recorded. The last basic observation is of a whale’s fluke and its shape. The most common whale seen in the southeast Alaska is the humpback. Protected from commercial harvest since 1966, it is still endangered and so seeing it is a very special occurrence. A humpback whale’s general characteristics are a two-nostril blow that is generally broad and bushy. It normally blows between four and ten times before diving. The dorsal fin is exposed as it blows but it is small in comparison to the rest of its body mass and located two thirds of the way along its back. Finally, its broad flukes tend to exhibit an irregular trailing edge and are displayed as it dives. The markings displayed on the whale’s fluke are unique to the individual, like that of a fingerprint, and allow scientists to track individual whale through sightings. Of course this is over simplifying things, but it gives me as a beginner a place to start!

“Did You Know” 

The Northern Right whale was named the ‘right’ whale by commercial whalers because it was easily approached, floats when killed, and is rich in oil. Today it is endangered and protected since 1935. Estimates suggest the population in the Alaska region could be as low as 100-200 individuals.

Clare Wagstaff, June 3, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 3, 2008

Weather Data from the Bridge (information taken at 1200) 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 12
Wave Height (feet): 3
Sea Water Temp (0C): 8
Air Temp (0C): 10.5

Setting off in the JC-1 skiff for a morning of harbor seal observations.
Setting off for a morning of seal observations.

Science and Technology Log 

This morning Skilled Fisherman (Mills), Dave and I headed out at low tide to explore an area called Big Port Walter. This is located in the next bay over from Little Port Walter where the COBB had docked for the night. Dave had not explored this area before and so he was keen to see if there were any new locations he could record. Sure enough, not long into the ride in the skiff, we came across a rocky reef and a group of harbor seals. Carefully, Mills brought the skiff around to the opposite side of the small island for us to disembark and walk gingerly over the slippery rocks covered with kelp and algae to get a closer look at these beautiful mammals. We were careful to keep a low profile and not make any large silhouettes that could alert them to our presence.

Identifying a Harbor Seal 

The question is, who is watching whom? Seals are mammals and so have hair covering their bodies. The underbelly of the seals pictured appears still wet, but their backs have dried in the sun and so appear more fur like
The question is, who is watching whom? Seals are mammals and so have hair covering their bodies. The underbelly of the seals pictured appears still wet, but their backs have dried in the sun and so appear more fur like

The similarities between the Alaskan Pinniped species can make the initial positive identification of a harbor seal (Phoca vitulina) challenging to the untrained eye. In the locations we are studying on this cruise the only seal species likely to be encountered is the harbor seal. However, these seals still have relatives that look very similar to them. Harbor seals, sea otters, California sea lion and Steller (Northern) sea lion are all carnivorous mammals in the suborder Pinnipedia. These animals have developed adaptations for deep diving, swimming, thermoregulation, water conservation and great sensory adaptations and can be easily misjudged in the water for one another.

So how can we tell them apart? Sea lions have external ear flaps (these are absent in seals) and use their long front flippers for propulsion. Otters are generally smaller and spend a large proportion of their time floating on their backs. A seal though does not do this, has shorter front flippers and is not as agile on land. Their appearance reminds me of an over inflated sausage-shaped balloon! Graceful underwater, they struggle and look awkward on land. Dave informed me that both the male and female harbor seals appear the same size and shape, making it difficult to tell them apart. Today I observed a variety of different colors of fur, ranging from nearly all white through to nearly all black. The fur markings also vary. Spots, rings, and blotches are common variations. These colorations and fur patterns of a seal are believed to be quite random. A mother lighter and more spotted in pattern does not guarantee an offspring of the same appearance. To date, I have only observed one pup, although Dave, with his keen eyes and experience, has recorded quite a few. Pups have no obvious markings to identify them by. However, they are smaller and will be generally located next to its larger mother, possibly even suckling. Although seals tend to haul out in large groups for safety, the mothers of particular young pups may be located towards the edge of the crowd.

The disused factory in Large Port Walter.
The disused factory in Large Port Walter.

Further Exploring 

We recorded a total of 17 seals and three possible pups this morning but our exploration didn’t end there! Further down into the bay we came across an old abandoned salting or canning factory probably for Herring, estimated to be from around the 1950’s. Broken down and severely rusting from the extreme elements and the effects of saltwater, it looks like something from a sci-fi movie! Its location here was probably due to the ready supply of fresh water from the impressive waterfalls and fast running stream close by. Its sheltered location probably protected it from the bigger storms and the deep water of the bay would have meant larger ships could have transported goods easily to and from it. 

NOAA Teacher At Sea, Clare Wagstaff, in her survival suit on the beach at Lovers Cove, Big Port Walter.
NOAA Teacher At Sea, Clare Wagstaff, in her survival suit on the beach at Lovers Cove, Big Port Walter.

Personal Log 

Today has been full of highs and lows. Seeing my first group of seals up close was something magical! Although we only observed them for approximately ten minutes, to see them so close and in the wild was amazing. Each seal seemed to have a personality. One scratching its face, another making grunting noises at another seal that appeared to be too close. As Dave and I sat there, it became obvious that a few of the seals were aware of our presence, their heads poking up looking at us. It made me wonder, who was really studying whom?!

Disaster on the COBB! 

Unfortunately, the rest of the COBB’s day was not so successful. Around 17:00 hours the crew heard a loud gratering sound coming from the ship as we were making our way to San Fernando Island. According to CO Chad Cary, a propulsion casualty has left us now anchored near Warren Island (550 54’N 1330 49’W) and the US Coast Guard is in transit to tow us part of the way back to Juneau. Hopefully, there a dive team will be able to assess the damage to the ship. If the damage is minor and easily repairable, then we will resume the mission focusing on last leg of the planned trip, the glacier area. But things aren’t looking too hopeful and we will probably be docked back in Juneau for sometime. Selfishly I don’t want to go home yet. There is so much to see here that three days is not enough! Looks like tomorrow will be a long day. 

Clare Wagstaff, June 2, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 2, 2008

Weather Data from the Bridge 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 12
Wave Height (feet): 1
Sea Water Temp (0C): 7
Air Temp (0C): 10.5

Science and Technology Log 

Late last night the JOHN N. COBB reached our anchor site at Tebenkof Bay (56O 23’N 134O 10’W). Situated just off the southern end of Chaptam Straight, the gentle rocking of the boat and the dull drone of the ship’s engine and generator had sent me off to sleep very quickly the night before. Keen to start the day though, and with the early morning sun shining in through my room’s porthole, I got up to a hearty breakfast and made ready to depart the COBB for a day of exploring. Around 06:30 the Chief Bosun (Joe), Dave, and I boarded the small skiff, referred to as the JC-1. The objective was to go visit known seal haulout sites that Dave had visited the year before. At each site the aim was to count the number of harbor seals present focusing particularly on the number of pups.

Equipment Required 

All of us on the JC-1 were dressed in cold weather and rain gear, even though it appeared to be a nice day, rain is always likely around this area! Dave kindly lent me his insulated Mustang survival gear to wear and I was very grateful! For conducting his research, Dave has certain pieces of equipment that he always brings when observing seals. To find the location of a known haulout site or to record the location of a newly discovered one, he has a handheld GPS that can accurately log coordinates. To observe the seals more closely Dave uses a pair of gyro-stabilized binoculars. These are essential as being on the water for most observations means the images produced through these binoculars are much clearer not as wobbly. For safety reasons, he also carries a satellite phone in case of emergencies and an PEPIRB in case of emergencies. A PEPIRB or Personal Epirb is a device that when activated, immediately notifies the US Coast Guard of your exact position by satellite. The data Dave collects is recorded on site in a waterproof notepad and through photographs that he regularly takes of the animals he observes.

An Ideal Site? 

The harbor seals typically haul out at low tide and seem to prefer sunny and warmer periods during the day, roughly between 11:00 and 16:00 hours. Unfortunately today, because of the tide cycle we were venturing out as the tide was gradually rising and much earlier in the day then is optimal to see the seals on land. However, there were a few seals present but their numbers were greatly reduced when compared to last year’s data. Dave did not seem overly concerned though because of the time of day we were making the counts. What was surprising was that certain sites we past looked like ideal locations for the seals to haulout on to. Seals like a variety of substrate (rock or sand), a reef with a steep drop off into the water, wind speed not above 35-40mph and good visibility to be able to see predators. We saw a number of sites that fit this description but there was a distinct lack of seals to be found at them, with no real explanation why. Researchers still have more to learn about seals and hopefully this cruise will add more data to help understand their behavior and choices.

Sea otters around Tebenkof Bay. Note the female in the center of the photograph carrying a baby on her stomach
Sea otters around Tebenkof Bay. The female in the center of the photograph carryies a baby on her stomach

Sea Otters 

One of the most interesting animals we observed today was a large number of sea otters. The otters regularly haul themselves out on to the rocks, like seals do, and seem to frequently be in the same area as the seals. While watching them in the water, a large number of the females were floating or swimming with a youngster on their stomachs! Otters, unlike seals, have little insulation so this technique demonstrated could be a method to protect the young from the elements and keep them safe near the parent. The key to making good observations of any of these wild animals is to approach them slowly and avoiding doing so head on. As we got closer, Jon would switch off the engine so as not to frighten or startle them. Unfortunately, when they do feel threaten, both the sea otters and harbor seals retreat back into the water. This happened on a number of occasions when we got a little too close for their comfort. This obviously makes the observations, identification and assessment of population numbers more challenging.

The entrance to Little Port Walter harbor. The ‘White House’ is where the researchers and seasonal workers live. Photograph courtesy of Dave Withrow.
The entrance to Little Port Walter harbor. The ‘White House’ is where the researchers and seasonal workers live.

Biological Field Station – Little Port Walter 

After approximately two and a half hours of observations we returned back to the COBB. The ship then set course for Little Port Walter, a NOAA Biological Field Station. It is a remote location but manned all year round. “Our nearest neighbors are only six miles away,” comments caretaker, Brad Weinlaeder. Access to this area is via boat or seaplane, so when the COBB docks here with a shipment, possibly four or five times a year, it receives a welcoming reception. Set in a beautiful bay off Chatham Strait, the residents say it gets the most rain anywhere in North America: and it is not hard to believe as a downpour starts as we arrive! The beautiful temperature rainforest around the bay is thanks to the plentiful rainfall it receives each year. But there’s a reason to have a research station in this location, and that reason is salmon. Each year the hatchery on site breeds a variety of fish for release into the wild, the most recent fish to be released where king salmon.

Tagging a Fish 

Brad Weinlaeder showing the incubation trays for the salmon eggs at the Biological Field Station at Little Port Walter.
Brad Weinlaeder showing the incubation trays for the salmon eggs at the Biological Field Station at Little Port Walter.

Although king salmon are not native to this particular section of water (the water is not cold enough), being the biggest and most rare specie of salmon gives them reasons to be studied. The eggs and sperm are collected from trapped king salmon when they reach sexual maturity and return to Little Port Walter, four to five years later. The fertilized eggs, the size of a pearl, are then incubated in early August for nine months until they are released. Unfortunately, that means that we had missed their release by just a few weeks. The process of producing these fish requires a variety of steps including identifying the fish by visual methods and internal tagging. The adipose fin (located between the dorsal and caudal fin) is simply cut off before the captive bred fish is released. Apparently this does not give the fish a survival disadvantage, but is a visual sign that it has been bred in captivity. Each fish released from the hatchery also has a small, stainless steal, identification tag placed in its nose.

When this fish returns to Little Port Walter at sexual maturity, the fish is collected and the tag removed. So small is this tag that that Brad comments, “it’s like trying to find a needle in a hay stack!” Yet this tag gives vital background information about the fish that is then used in selecting the best fish to breed with. Unfortunately removing the tag is fatally invasive. There are other methods for tracking fish that would allow it to survive such as using a small microchip, just like the ones used in identifying cats and dogs today. However, at ten times the price and requiring much more precision to insert it into the fish, is not a practical option on a large scale here. Especially as the fish are caught on their return migration and are already in the last stages of life. Held in giant fresh water tanks, the king salmon matures on a high protein pellet diet that not only they like, but so does the local bear population. It is common practice around Little Port Walter to carry a gun with rubber bullets. A wide shot fired is hopefully just enough to scare them away! This year the hatchery released 214,000 king salmon out into the wild. With an average 3% survival rate, only 1.5% will make it through their four to five year life span to return back to Little Port Walter. Fishermen will catch the other 1.5%.

Other Research 

There is a great deal of other research going on here at Little Port Walter. Currently in progress is the study of rockfish and their preferred habitat substrate in relation to predation. In the past scientists have also studied slug migration and tree ring analysis for the presence of iodine as it relates to fish populations. What makes this marine research station so important is that it has data going back to 1936, when it first opened. Researcher’s come from thousands of miles to compare what they find, to data that is already known and recorded here at Little Port Walter. Pretty fascinating stuff!

View of the hatchery where the salmon are placed when they are approximately 5-6cm long. Here they are fed and fresh water from upstream constantly flows into these holding tanks.
The hatchery where the salmon are when they are approximately 5-6cm long. They are fed and fresh water from upstream constantly flows into the holding tanks.

Personal Log 

Unfortunately, today was the day I experienced by first bout of sea-sickness! I had begun to feel that I had got my ‘sea legs’. But I had spoken too soon! After returning from our morning of observations, the COBB departed for Little Port Walter. In the late morning the ship began to cross Chatham Straight. The COBB was hitting 4-6ft high waves and crossing them at an angle called courtering. This means that the boat was yawing, which is a combination of a pitching motion (see-saw action) and rolling (side to side), basically bobbing around like a cork! As the motion got stronger, my stomach got weaker and I ended up out on the starboard deck trying to look at the horizon and stop feeling ill. Thankfully though the effects wore off quickly as the ship’s ride became smoother. Hopefully the rest of the cruise will be smoother!

Question of the Day for Miss Wagstaff’s Science Class 

Research in the field can be very different to research done in a laboratory at school. From the description written above about today’s seal study, try to think about the ways they differ. Consider such factors as time, variables, data collection etc.

Clare Wagstaff, June 1, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 1, 2008

Weather Data from the Bridge (information taken at 1200) 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 15
Wave Height (feet): 1
Sea Water Temp (0C): 13.4
Air Temp (0C): 11.3

Science and Technology Log 

The first morning on the JOHN N. COBB started early. I am a little apprehensive about the cruise. I have never been on a ship for any great length of time, so this will truly be a test of my sea fairing legs! Today will be a full day of traveling to Tebenkof Bay, situated south of Juneau it is reached by traveling down Stephen’s Passage and through part of Chatham Straight. The COBB travels at maximum of ten knots an hour. The wind, currents, sea conditions, the ship’s hull speed and horsepower can all affect this speed. This means that it will take us approximately 13 hours to reach our destination. My stateroom is located on the main deck and is next to the galley (the kitchen). Here three hearty meals are produced each day for the crew. The ship has three decks, with sleeping quarters spread out over all the levels. The crew generally works in rotation with six hours on, six hours off, to maintain the COBB. This requires all aboard the ship to be considerate of others sleeping at any hour of the day or night. The amenities on the ship are basic but comfortable and include two toilets (called the ‘head’), and a shower. The COBB carries all the water it requires for the entire two weeks cruise, so water conservation is a high priority. No long showers for anyone! On the upper deck is the bridge. It is here that the Commanding Officer (referred to as the CO or Captain) and Executive Officer (XO) control the vessel.

The JOHN N. COBB Crew 

Screen shot 2013-04-19 at 8.57.48 PMChad Cary, Commanding Officer (CO) 

Has authority over all embarked personnel and employees whenever aboard ship. Chad has been ‘Captain’ of the JOHN N. COBB for just over two years and is also the Safety Officer, so he has a lot of responsibility. He has a science background with a degree in Environmental Science and a Masters in Geography. Chad states that being away from his home and family is the hardest part of the job, especially as he is about to become a father for the first time very soon!

Screen shot 2013-04-19 at 8.57.55 PMJesse Stark, Acting Executive Officer (XO) 

Second in command to the CO and has primarily administrative duties. Jesses has 20 years of experience working on fishing vessels and ferries. He has a degree in Wildlife Management and thinks the one of the best aspects of the job is having the open water as his office.

Screen shot 2013-04-19 at 8.58.01 PMBill Lamoureux, Chief Steward (CS) 

Responsible for provisioning, feeding and berthing of the ship. Bill has worked for many years onboard a variety of vessels, including an Alaskan king crab ship further north. Bill always provides a feast for all those aboard and his homemade soups each lunch are legendary.

wagstaff_log2cMills Dunlop, Skilled Fisherman 

Participates in any required onboard activities necessary to complete the ships mission. Deploying and retrieving of equipment and personnel. This is Mills’ first season aboard the COBB, but he has been raised on the water all his life. With a witty personality, Mills comments that being on the water is both the most enjoyable and worst aspect about being a crewmember!

wagstaff_log2dDave Taylor, Fisherman 

Participates in any required activities necessary to complete the ship’s mission. Dave is in his second season working on the COBB. The biggest advantage to working at sea is his constant access to his favorite past time, fishing! In fact last year Dave caught an 110lb halibut off this ship!

wagstaff_log2eDave Withrow, Chief Scientist  

Shares the response with the Commanding Officer for the success of the mission. Dave has many years experience in research, having a degree in fisheries and psychology, he completed graduate work on Steller sea loins and was also as a killer whale trainer at an aquarium in Washington State. Dave has many fascinating stories about his research adventures: he needs to write a book!

Safety Is the Top Priority! A safety drill is required to take place within the first 24 hours at sea for “Abandon Ship” and “Fire”. Abandon ship is signaled by seven or more short blasts, then one long blast on the ship’s whistle, followed the announcement to abandon ship. The procedure in this instance is to report to your assigned life raft on the bridge deck. You should be wearing long sleeves, gloves and a hat, and bring with you your survival suit. This bright orange suit can protect a crewmember in the cold Alaskan waters for up to three days. In addition to aiding as a floatation device and protection from the cold, its bright orange color and strobe light gives the person wearing it, in the case of an emergency, the ability to survive in the harshest of conditions until rescued.

wagstaff_log2fPersonal Log 

I was initially surprised at how many people it took to operate a vessel such as the COBB. Having seen the ship in action for a few hours now, I can see why they are all needed. Technically there are many aspects to running a ship safely. Jobs include, but are not limited to: navigating the vessel, maintaining the engine room and feeding the hungry crew.

It functions like a small army, with everyone in their place doing their specific job. Each person is necessary for the others to operate and complete their tasks. I do feel a little out of place at the moment, as I am yet to do anything to help the crew or Dave. I am sure over the next few days though that will change. Everyone has been very patient with me repeatedly asking questions about every aspect of the cruise: “How do you know that was a Humpback Whale?” “What is a Fathom?” “Why do you measure distance in nautical miles rather than land miles?” “Which side is port?”

It’s only the first day, yet while standing on the bridge we spot a humpback whale! At some distance off, the crew assured me that that wouldn’t be the best view I would get of one, but I was still very excited! What a truly amazing place and beautiful day!

Question of the Day for Miss Wagstaff’s Science Class  

In science you are constantly asked to provide evidence to support you ideas and conclusion. With is in mind: which job aboard the COBB do you think is the most important? Be able to support you decision.

Clare Wagstaff, May 31, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska – Juneau
Date: May 31, 2008

NOAA Teacher At Sea, Clare Wagstaff, at the Mendenhall Glacier near Juneau, AK
NOAA Teacher At Sea, Clare Wagstaff, at the Mendenhall Glacier near Juneau, AK

Pre-departure (-2 days) 

From door to door, it took me roughly 21 hours to get from Buffalo, NY to Juneau AK, but it was definitely worth it! Flying in from Seattle the view from the air was just breathtaking. Massive mountain rangers visible from the air thousands of feet up looked just like grey and white crumpled up pieces of paper reaching up through the sky. Flying above the clouds, these magnificent mountain formations poked up through the fluffy, white, marshmallow-like skyline below, WOW! Still a little overwhelmed at where I was and having arrived late into Juneau, I headed straight for my hotel to grab a few hours of sleep.

Juneau’s Location 

Juneau is the capital city of Alaska and it is situated in part of the panhandle that stretches south and east of the main body of the state. This area is predominately covered by Sitka spruce and Western Hemlock trees that make up the Tongass National Forest. This forest is in turn part of the largest temperate rainforest in the world. Juneau is braced on the side of the snow capped Mt. Juneau (3576ft) and Mt. Roberts (3819ft). These mountains make up part of a range of coastal mountains that protect Juneau from the harsher extremes experienced in the Gulf of Alaska. Juneau is a relatively small city, yet during the summer months, huge cruise ships dock daily and consume Juneau, turning it into a major tourist attraction. This is also the only state capital in North America not to be accessible by road. Juneau is located 58O 18’ N latitude, 134O 25’ W longitude, compared to my hometown of Buffalo, NY 420 52’N, 780 55’ W.

Pre-departure (-1 day) 

A juvenile black bear seen while hiking near the Mendenhall Glacier.
A juvenile black bear seen while hiking near the Mendenhall Glacier.

Sunrise was at around 4:00am this morning! Juneau is on AST (Alaskan Standard Time), which is four hours behind Buffalo, which is on EST (Eastern Standard Time). Because I was still disorientated with the time zone changes (four in one day!), 4:00am felt more like 8:00am and time to rise and shine! Juneau will receive just over 18 hours of sunlight each day during this expedition and I’m hoping that will give me a chance to experience as much as I can in the two weeks. Back home in Buffalo the daylight hours will be shorter with just in excess of 15 hours of daylight each day. Today is sunny and bright, unexpected for Juneau. Typically it receives 225 days of rain a year! I am hoping though that I have brought the good weather with me for the trip.

The Scientific Objectives of the Cruise 

The cruise is supported by the National Oceanic and Atmospheric Administration (NOAA) and its branches: the National Marine Mammal Laboratory (NMML), the National Marine Fisheries Service (NMFS) and the Alaskan Fisheries Science Center (AFSC). I will be joining Dave Withrow, Chief Scientist on board the JOHN N. COBB for a cruise based out of Juneau, AK. The objective is to visit known haulout sites of  harbor seals at, or near, low tide base initially around areas off lower Chatham Straight. The return leg of the voyage will focus on haulout sites at three main glacial sites. Similar research cruises have been carried out in previous years to examine the critical habitat for harbor seals, particularly in regards to glacial ice during the pupping season. We will determine which haulout sites are used for pupping, how many pups are born, and the approximate size and age of the pups present. Dave has a wide range of experience in the field, having worked for NOAA since 1976 and he has studied a variety of fish and marine mammals. Dave’s enthusiasm for his research and keenness to pass on his knowledge is contagious and makes me extremely excited to be apart of this expedition.

The JOHN N. COBB docked in the National Marine Fisheries Service (NMFS) Subport in Juneau.
The JOHN N. COBB docked in the National Marine Fisheries Service (NMFS) Subport in Juneau.

Local Sightseeing 

Prior to our departure Dave kindly got me acquainted with the local area and took me to the Mendenhall Glacier located just north of Juneau. A tidal glacier, it is retreating and fed by the Juneau icefield that also supports numerous other glaciers around the area. What a surprise! A bear! While Dave and I were hiking around the Mendenhall Glacier a small juvenile black bear appeared within a few feet of us. Apparently oblivious to the humans around it, she happily kept eating the young shoots and sprouting vegetation. A US Forest Service Wilderness Ranger close by explained that this was not an uncommon sighting, especially with so many people around on the viewing platform near the glacier. “The adult bears are cautious of people and the juveniles know this,” said the Ranger. “When humans are around the youngsters know that it is safe to come out and feed.” Bears are easily distinguishable from one another. Bears differ in facial features, along with fur colorations and other marks such as scars. The ranger identified her as a regular to the area: a two and a half year old female, and cinnamon in color. Although she had struggled to survive her first year alone, this season she seemed much healthier. A glacier and bear in one day, not a bad start to my Alaskan experience!

The JOHN N. COBB 

Dwarfed by the massive cruise ships in dock, Dave and I arrived at the JOHN N. COBB in the early afternoon, our home for the next two weeks. The COBB is the oldest and only wooden vessel in NOAA’s fleet of 17 ships. It’s relatively small size of 93 feet long and shallow draft of 12 feet means that this ship can reach areas larger vessels might not. It was built in 1950 and named after John Nathan Cobb (1868 – 1930), the first dean of the University of Washington School of Fisheries. The COBB requires a skilled crew of eight to operate it and can accommodate up to four scientists on board. Each crewmember has a specialized job to maintain the running of the ship and allow Dave and I to undertake the scientific research as efficiently and safely as possible.

wagstaff_log1cInteresting Fact 

Although the metric system is widely used in science today, even being employed by NASA in space, sailing has still retained the mariner traditional system. It uses the following in its measurements: Fathom = depth of water (6 feet to one fathom). Nautical mile = distance over water (1 nautical mile is equal to one minute of latitude at the equator, or 6,076.12 feet). Knots = speed (1.6877 feet per second or 0.5144 meters per second). Time is measured using the 24-hour clock, so 2:00am would be 02:00 and 2:00pm would be 14:00.  

Miss Wagstaff’s Science Class Question  

Why does Juneau, AK currently (May 31, 2008) have more daylight hours than Buffalo, NY?

Beth Carter, June 27, 2007

NOAA Teacher at Sea
Beth Carter
Onboard NOAA Ship Rainier
June 25 – July 7, 2007

Mission: Hydrographic Survey
Geographical Area: Gulf of Esquibel, Alaska
Date: June 27, 2007

Weather Data from Bridge 
Visibility:  6 miles
Wind direction:  034 degrees
Wind speed:  5 mph
Sea Wave Height:  none
Swell Wave Height:  none
Seawater temperature:  12.2 degrees C
Sea level pressure:  1017.2 mb
Dry Bulb Temperature: 12.2
Wet Bulb Temp:  11.7
Cloud cover, type: 8/8, stratus and cumulus
Depths: 31 fathoms

Researchers are kneeling in a sitka spruce forest as they check the computer that is collects and records tidal data on a small island in Nossuk Bay, Alaska.
Researchers are kneeling in a Sitka spruce forest as they check the computer that is collects and records tidal data on a small island in Nossuk Bay, Alaska.

Science and Technology Log 

On Tuesday afternoon, June 26, I went out with a crew of researchers to check the equipment that collects tidal data for Esquibel Bay. There are six main pieces of equipment used to collect this data: 1) a cylinder of nitrogen, 2) a hose attached to the nitrogen cylinder that emits small bubbles of nitrogen into the water, 3) a computer that collects and records data, 4) a solar collector to power the computer’s battery, 5) a  transmitter that sends the data to a satellite, and 6) the tide staff (an actual wooden staff in the water), and GPS benchmarks. The staff is set and readings taken so that the vertical measurements of the staff are linked to the benchmarks. The gage, which is officially a “tertiary” gage, is set up concurrent with a “primary” gage that has been acquiring data for over one epoch (19 years or more). Sitka, Alaska, is the site of NOAA’s primary gage, which has similar tidal characteristics to the area that we are working now. Thus, only an amplitude and phase differential must be applied to the Sitka gage to get a water level for this area.  Without the staff readings, there would be no way to tie the “bubbler” level to the ground surrounding the gage site, and thus no way to recover the actual local vertical datum (water level) relative to the gage in Sitka.

The nitrogen cylinder slowly leaks bubbles through the hose, which are released into the water. When the tide is high, there is more water and pressure above the hose which makes it more difficult for the bubbles to escape the hose. When the tide is low, there is less water above the hose, and therefore less pressure, which makes it easier for the bubbles to escape. Readings are recorded digitally every six minutes, averaged every six seconds. Staff-to-gage measurements are also recorded every six minutes whenever the site is visited, and 3 hours’ worth are recorded at  installation and removal, so that the vertical measurements of the station  are effectively “tied” to the measurements at the primary water level station at Sitka. (Good Working Question: Download data from both  stations and compare the two – are there differences? Next, compare Sitka and Ketchikan and Kodiak – are there bigger differences?).

ENS Meghan McGovern, Junior Officer of RAINIER, and Shawn Gendron, survey technician, position the tripod which will hold the transmitter to collect the GPS information needed by the RAINIER.
ENS Meghan McGovern, Junior Officer of RAINIER, and Shawn Gendron, survey technician, position the tripod which will hold the transmitter to collect the GPS information needed by the RAINIER.

For some reason, the transmitter is not emitting signals that can be read by the satellite, and therefore by the scientists at NOAA headquarters. This is why the skiff took several technicians over to check the equipment to see if it is still functioning and recording properly. They downloaded the water level data to send to headquarters via email while also setting up GPS equipment so that an ellipsoidal (GPSrelative) height can also be linked to the orthometric (gravitational) elevation determined through water level measurement, and will return to the ship and process the GPS data. The tides are important to hydrographic surveying, because obviously, the water is deeper at high tide than at low tide. The goal is to collect accurate information on tides, and then combine that with the data collected by the launches, in order to get accurate depth information.  The tide-corrected depths on the chart they want to show are relative to the mean low low water, which is the average of the lowest of daily tides taken over the last 19 years. On the Atlantic Ocean, tides are semi-diurnal. This means that there are two high tides and two low tides per 24 hours. But, on the Northeastern Pacific, tides are mixed.  See here for more details.

Today, (Wed. June 27), the crew returned to the small island to check on the HorCon station, which stands for Horizontal Controls.  The RAINIER established this water level station in April of 2007, and set into place 5 benchmarks which are tied into the international framework of benchmarks that make it possible to utilize GPS, or Global Positioning Satellites to determine one’s exact location. RAINIER’s researchers placed a receiver antenna on top of a tripod, which was positioned exactly above the center of the metal disc benchmark cemented into a rock.  The antenna receives from some of the 11 Global Positioning System satellites that orbit the earth and constantly change their relative positions. For a final position to be accurate, at least four satellites must be recorded in two different sessions of more than six hours duration separated by at least one day. They connected the cables, turned on the GPS receiver and then waited for the satellite constellation (also known as the ephemeris) to be downloaded so that all available satellites could be tracked. The first satellite was tracked around 1 hour later, and then we left the island, as the equipment was to be left in place for at least 6 hours.  When we returned 6 hours later, 8 satellites had made contact, and the recordings were noted and will be taken for evaluation onboard the ship.

Anna-Liza Villard-Howe, the Navigation Officer of the RAINIER, explained to me that the GPS measurements of benchmarks are being conducted in order to get as precise a determination of sea level as is possible, so that all the hydrographic information collected by the RAINIER can be referenced to the ellipsoid. Sea level has changed in Alaska in the recent past due to glacial rebound, which means that as the glaciers recede, the land is actually rising. Also, many large earthquakes have occurred in Alaska in the last century, which also changed the shape of some landforms and affected sea level readings. Online Sea Floor Mapping Activity Targets Kids (CED, OCS). In celebration of World Hydrography Day, NOAA’s Ocean Service  Communications and Education Division, in cooperation with NOAA’s Office  of Coast Survey, launched a new educational offering — Sea Floor Mapping —  on the National Ocean Service Education Web site. It is designed for students at the 3rd – 5th grade level, and the media-rich activity teaches young people about mapping the seafloor and why it is important.  This activity also conveys information about NOAA’s missions of discovery and service. The Sea Floor Mapping Activity is available online here.

Questions of the Day 

  1. Why are tides in the Pacific and Atlantic different?  What are the factors that affect tidal changes?
  2. Look up a tidal chart for the inlet or beach nearest to your home.  How far apart are the high and low tides?
  3. Who (which country or countries/which agencies) is responsible for the maintenance of the 11 Global Positioning Satellites that are now orbiting the earth?  If a satellite fails, would it be replaced?  By what agency?

Personal Log 

While on the tiny island, one of the officers carried a shotgun…in case we met a bear!  I’m pleased to say we didn’t encounter a bear, but did discover animal scat, and two eagle feathers. One was a tail feather – beautifully white – and we didn’t collect the feathers because it is illegal to collect eagle feathers.  We also saw 7-8 harbor seals on a rock outcropping. We tried to sneak up on them to get good photographs, but they bobbed and rocked and slipped into the water before we got very close. Also, on the island I was surprised to find many clumps of saltwort, which Eastern coast students (and my first grade class!) should recognize from the mud flat near the salt marsh.  It tastes….salty! No surprise there.

On Wednesday, there were so many white gnats that we sent the skiff back to the ship for bug repellant. They were like No-See-Ems, only we could See Em and Feel Em!  We built a small, smoky fire, which made things somewhat better.   The highlight of the day for me was kayaking after dinner with the XO (Executive Officer) of the ship, and Ian Colvert, an assistant survey technician.  We saw a rainbow and paddled through a misty rain, then sunshine…a beautiful evening.

Tara Fogleman, June 11, 2007

NOAA Teacher at Sea
Tara Fogleman
Onboard NOAA Ship John N. Cobb
June 1 – 14, 2007

Mission: Alaskan Harbor Seal Pupping Phenology and Site Monitoring
Geographical Area: Southeast Alaska
Date: June 11, 2007

During the past two days, we have been monitoring seal haulouts in glacial areas such as the LeConte Glacier and the Dawes Glacier (located in Endicott Arm).  These areas are very different from the sites that we have been visiting in the previous part of this study—instead of hauling out on rocky reef islands, the seals in this area haul out on floating ice that has calved, or broken off, from the glaciers.  Because the ice is always available for haulout, regardless of the tides, we are less constricted by the tides when planning our visits to these haulout sites.

Dave Withrow, Chief Scientist aboard the JOHN N. COBB, took several photos of Dawes Glacier and stitched them together to create this panoramic view.  Photos such as these, along with GPS coordinates, can help scientists monitor changes in the glacier over time.
Dave Withrow took several photos of Dawes Glacier and stitched them together to create this panoramic views that can help scientists monitor changes in the glacier over time.

Glaciers—Ice on the Move 

Glaciers are basically frozen rivers of ice that form between mountain peaks, due to the accumulation and compaction of years of snowfall.  As the surface of these glaciers melt due to heat from the sun, meltwater plunges through open crevices in the ice, breaking up the ice and lubricating its base, causing the glacier to move towards the water.  Of course, snowfall continues to replenish the tops of these moving glaciers; however, due to an increase in global temperatures during the recent years, these glaciers are melting faster than they can be replenished and are currently moving towards the water at unprecedented rates.  Mountain glaciers play an important role in the ecology of Alaska—these ice reservoirs serve as water banks and, as mentioned earlier, provide a place for female harbor seals to give birth to their pups.  Scientists are very concerned about the retreat of the glaciers in Alaska, and as a component of our study, we will attempt to document the location of the glaciers that we visit and compare our data with previous years.

LeConte Glacier 

Harbor seals haul out on floating ice that calves from nearby glaciers.  In this photo of the LeConte Glacier, three harbor seals are visible.
Harbor seals haul out on floating ice that calves from nearby glaciers. In this photo of the LeConte Glacier, three harbor seals are visible.

After staying the night in Petersburg, Dan (our Executive Officer) drove the JOHN N. COBB through Frederick Sound, on our way to LeConte Bay.  Once anchored, Dave and I secured a packed lunch from Bill, the Chief Steward, and headed in the small skiff towards the LeConte Glacier. The area around the LeConte Glacier was filled with floating ice, which made for a bumpy and loud boat ride.  We bounced off chunks of ice as we made our way toward the glacier, stopping to survey the area for harbor seals about every quarter of a mile.  Generally, I observed female/pup pairs hauled out on smaller pieces of ice that allowed easy access to the water. However, as we moved towards the face of the glacier, I observed a greater number of seals hauling out in groups, usually without pups. These groupings are most likely pregnant females who have not given birth yet. The glacial sites were different from the rocky reef sites, where the seals were generally concentrated in one area of the reef. Here, near LeConte, the seals were more evenly spread out and in pairs or small groups, which made it a little more difficult to count.

This female harbor seal and her pup were photographed near the LeConte Glacier in southeastern Alaska
This female harbor seal and her pup were photographed near the LeConte Glacier

Because the female harbor seals give birth to their pups on these floating ice surfaces, we commonly saw icebergs bathed in bright red blood from the birthing process.  Dave told me that he has often seen birds, such as bald eagles, feeding on the afterbirth that is delivered after the seal pup is born. This afterbirth also contains white hair, called lanuga, which covers the pup in the uterus and is shed prior to the birth.  Other closely-related seals, such as the spotted seal found in the Arctic, are born with this lanuga still covering the body. The white hair provides camouflage, allowing the white seal pup to blend in with the ice and snow. After a few weeks, when the pup is stronger, the lanuga is shed. Scientists believe that harbor seals and spotted seals most likely evolved from a common species, and the development and shedding of lanuga reinforces this belief.   

Chief Scientist Dave Withrow poses on an iceberg near the LeConte Glacier.
Chief Scientist Dave Withrow poses on an iceberg near the LeConte Glacier.

After surveying for seals and eating a quick lunch, we spent some time photographing and admiring the scenery around LeConte.  Because of the large chunks of ice that knocked against each other in the water, it was difficult to maneuver the boat up to the glacier to get a close-up view. However, the area had many other amazing sights, including steep, snow-topped mountains, roaring waterfalls, and large, breathtaking icebergs. Hunks of ice floated around the boat in a variety of shades of white, gray, and blue, some towering thirty feet above us.  The bright sun melted them as we passed by, sculpting the ice into fantastic shapes.

Dawes Glacier 

The weather turned colder and the sky became cloudier on the morning that we set out for Dawes Glacier at the end of Endicott Arm. I bundled up in layers of long underwear, polypropylene, and wool, and on top of that, I donned my Mustang suit—a thick orange and black suit that protects from cold temperatures and provides personal flotation in an emergency.  Our visit to the glacier would take several hours, and it was important that I was protected from the cold wind that blows off of the glacial ice.  The Dawes Glacier site provided a better opportunity to approach the actual glacier, as compared to LeConte, where the floating ice made it difficult to maneuver the small skiff. As we traveled towards the glacial ice, we stopped periodically to scan for harbor seals and their pups. As in LeConte, we observed nearly 300 seals, mostly consisting of mom and pup pairs. The seals at this site seemed less afraid of our skiff, most likely due to increased boat traffic in the area.  In fact, while we were visiting the site, I noticed at least four small skiffs transporting tourists in the same area that we were conducting our study.

At Dawes Glacier, the seals seemed less frightened of boat traffic, most likely due to the increasingly large number of tour boats and vessels that make their way into Endicott Arm each day.
At Dawes Glacier, the seals seemed less frightened of boat traffic, most likely due to the increasingly large number of tour boats and vessels that make their way into Endicott Arm each day.

Throughout my cruise, I have noticed that the water in Alaska varies in color, from steel gray to a bright blue-green. Here at the Dawes Glacier, the water was a light, translucent teal—almost resembling the color of a glass Coke bottle.  Chunks of ice were scattered along the surface, moving slowly with the tide and the strong winds.  Some of these bergs were translucent and glass-like; others were a cloudy light blue.  As we approached the glacier, the water became more opaque, due to a larger amount of sediment stirred up by the calving of the glacier in front of us. The melting glacial ice also forms a layer of fresh water on top of the surrounding saltwater, which can add to the cloudy appearance as the two water types mix slowly.

Tara Fogleman, a NOAA Teacher at Sea participant, poses on an iceberg in southeastern Alaska.
Tara Fogleman, a NOAA Teacher at Sea participant, poses on an iceberg in southeastern Alaska.

From far away, the Dawes Glacier looks like a giant, frozen river wedged between two rows of mountains.  It is unevenly streaked with lines of gray sediment picked up as the glacier makes its slow movements across the land.  However, I couldn’t grasp the enormity of the glacier until we traveled up to the face, where the ice intermittently calves from the glacier.  Up close, the glacier face is daunting and deceivingly large—the bottom is cut away due to the continuous lapping of the tides, and the glacial ice forms towering peaks, caves, and valleys that seem to be on the verge of collapsing into the water below. As we watched, several parts of the face fell into the water, one at a time, creating a large splash and a booming sound that resembled thunder.  Often, the large splash of the falling ice created waves that slowly moved towards and rocked our small skiff. We were amazed as the large chunks of opaque ice fell into the water, disappeared for a few seconds, and then bobbed to the top, like ice cubes dropped into a glass of water.   

After observing the glacial calving for about an hour, we headed back to the JOHN N. COBB for a warm dinner and a hot shower.  Temperatures continued to drop as the sun began to set, and we were all fairly cold, regardless of how many layers we were wearing! Tomorrow we will head to another glacial site, the glacier at Tracy Arm, as we begin to wrap up our study.

Tara Fogleman, June 9, 2007

NOAA Teacher at Sea
Tara Fogleman
Onboard NOAA Ship John N. Cobb
June 1 – 14, 2007

Mission: Alaskan Harbor Seal Pupping Phenology and Site Monitoring
Geographical Area: Southeast Alaska
Date: June 9, 2007

In this photo, a female harbor seal and her pup are hauled out on a rocky reef island covered in kelp.  At high tide, many of these rocky reef islands are completely submerged in water.
A female harbor seal and her pup are hauled out on a rocky reef island covered in kelp. At high tide, many of these reef islands are completely submerged.

During the past few days, we have continued to monitor seal haulout sites in waterways between Wrangell and Petersburg.  At each rocky reef site, Dave Withrow (Chief Scientist) observes the seals from the small skiff and makes an initial count of adults and pups using his gyrostabilized binoculars. These binoculars are an important tool because they provide a clear, stabilized image of the seals, even when the user is on a movable object such as the skiff.  If possible, Dave then directs Chris to drop us off at a nearby rocky island, so that we can observe the seals on land from a closer viewpoint.  Throughout the observation process, it is important that we do not “spook” the seals— they are easily frightened by the sounds of nearby boats or visual cues such as the shape of a human figure.  When the seals feel threatened, they quickly slip off of the rocks and into the water, making it difficult to get an accurate count.

The JOHN N. COBB has also made two stops along the way at the towns of Wrangell and Petersburg. At both towns, we have picked up supplies for the rest of our journey, including a fuel filter and extra fuel for the small skiff and groceries for the remainder of our meals.  Because we docked at each town overnight, I was able to get off the boat and do some exploring at each location.

Wrangell

Petroglyphs, which are ancient carvings created by the native people of southeastern Alaska, are found on several boulders along the beaches of Wrangell.
Petroglyphs, which are ancient carvings created by the native people of southeastern Alaska, are found on several boulders along the beaches of Wrangell.

Wrangell is the smaller of the two towns, with a population of only 2,500 residents.  The primary industries of this town are crab, shrimp, and fish processing, though tourism has played an increasing role in the recent years.  Dave, Dan, and I walked through the downtown area, which was mostly shut down for the night since we had arrived after six.  However, some kids were still out, skateboarding on the empty sidewalks or hanging out at the local ice cream shop and arcade.  We purchased ice cream (a luxury not available on the JOHN N. COBB!) and walked down to Petroglyph Beach, an area of beach strewn with rocks and boulders that contain carvings created by the Tlingit, the natives of Alaska. The forty-something carvings scattered along the beach consisted of spirals, circles, and other geometric images that represent a variety of animals and objects from the daily life of the Tlingit.    

Petersburg

A few days later, the JOHN N. COBB docked in Petersburg.  This town is slighter larger than Wrangell and is located at the northern end of the 21-mile Wrangell Narrows.  As we approached Petersburg from the water, I could see rows of neatly painted houses in an assortment of bright colors and a large marina filled with fishing vessels and smaller boats. The town was laid out by a Scandinavian Peter Buschmann, who started a salmon cannery and sawmill there in 1897.  The Scandinavian influence can still be observed today—I encountered numerous Viking references as I strolled through the town, including a large statue of a Viking ship and ancient Viking symbols etched into the downtown sidewalks. The town of Petersburg continues to thrive today, due to successful fishing, tourism, and shellfish processing industries.

The town of Petersburg, Alaska was laid out by a Scandinavian man named Peter Buschmann, who started a salmon cannery and sawmill in the town in 1897.  Evidence of Petersburg’s heritage is found throughout the town, and each year, the town holds a Viking celebration that draws residents and numerous visitors.
The town of Petersburg, Alaska, was laid out by a Scandinavian man named Peter Buschmann, who started a salmon cannery and sawmill in the town in 1897. Evidence of Petersburg’s heritage is found throughout the town, and each year, the town holds a Viking celebration that draws numerous visitors.

After walking around downtown Petersburg for a couple of hours, a few of us decided to take a hike to stretch our legs and get a little exercise (it’s hard to get a good workout on the JOHN N. COBB!).  The day was unseasonably warm—temperatures were in the 70s—and so we grabbed some water, put on some walking shoes, and headed up Mt. Petersburg. The scenery was beautiful, and as we neared the peak of the mountain, we encountered snow! Being from Georgia, we don’t see much snow—and we never see snow in June—so I was quite excited. After making a few snow angels and having a small snowball fight, the sun began to set and so we headed back down the mountain.

Visiting these two towns was a wonderful cultural experience—I had a chance to see a glimpse of life in a small fishing town in Alaska.  The people of these towns were rugged and good-natured, and they seemed to be excited about the upcoming summer season.  For many of them, their lives depend on the oceans, and it is important to them that the natural resources contained in their waters are protected and sustained for future generations.

Tara Fogleman, June 4, 2007

NOAA Teacher at Sea
Tara Fogleman
Onboard NOAA Ship John N. Cobb
June 1 – 14, 2007

Mission: Alaskan Harbor Seal Pupping Phenology and Site Monitoring
Geographical Area: Southeast Alaska
Date: June 4, 2007

We’ve been at sea now for nearly four days, and Dave Withrow, the Chief Scientist, and I have had a chance to visit several haulout sites to count harbor seals.  Harbor seals tend to haul out on rocky islands or reefs that provide protection from predators or strong winds.  Generally, the harbor seals “haul out”, or leave the water, at low tide, so all of our work is done around this time.  We travel to these rocky sites via a small boat that is launched from the JOHN N. COBB, and because the sound of the boat can frighten the seals, we usually jump out at a nearby island, hike to a hidden viewpoint, and use binoculars to count them.  When there is no viewpoint available, Dave must count the seals from the boat; however, this isn’t ideal, since using binoculars from a moving, bumpy boat can be quite difficult.

A female harbor seal and her pup haul out on a rocky reef covered in kelp during low tide.  This photo was captured by Dave Withrow (Chief Scientist) during a study of harbor seals and pupping phenology in southeastern Alaska.
A female harbor seal and her pup haul out on a rocky reef covered in kelp during low tide. Photo by Chief Scientist Dave Withrow.

Don’t Forget the Equipment!

There are several pieces of equipment that are important for the study.  Dave uses a GPS (Global Positioning System) unit to locate sites that he has visited previously—using this tool, he can identify the precise location of a seal haulout that he has visited in the past, or mark a new location for future reference.  He also uses special gyrostabilized binoculars which maintain a stable image, even when his hands are unsteady or he is counting seals from a moving location, such as a boat.  All of his data are recorded in a waterproof notebook. Dave brings camera equipment so that he can take photographs of the seals, which can be used later to recheck counts.  He also carries a radio so that he can communicate with the driver of the small boat (for this cruise, a coxswain named Chris) and the Commanding Officer of the JOHN N. COBB.  Safety equipment is also important, particularly when working in the unpredictable weather of southeastern Alaska. On each boat trip, Dave brings a satellite phone and a GPS-linked emergency transmitter called a PEPIRB (Personal Emergency Position Indication Radio Beacon) that can alert the US Coast Guard if Dave (or anyone else on the small skiff) is experiencing trouble and needs to be rescued. Other safety devices that are commonly used on small boats during field studies include a basic first aid kit, mini signal flares, a bright orange rescue streamer, fire-starting material, extra food and water supplies, and a pocketknife/hand tool such as a Leatherman.

Visiting the Haulout Sites

Tara Fogleman studied harbor seals in southeastern Alaska
Tara Fogleman studied harbor seals in southeastern Alaska

Harbor seals haul out for several reasons, including temperature regulation and the conservation of energy. However, in June, the primary reason for hauling out is due to the pupping season, during which females give birth to their young on land and care for them.  Dave will compare the number of seals hauling out during the pupping season to the number of seals that haul out during the molting season in August, when the seals shed their fur. We have visited several haulout sites during the past few days, and I have become much more adept at counting the seals and recognizing their shape and color from a distance.  Harbor seals vary in color, including shades of white, gray, and brown-black.  Often, the lighter-colored seals are older and larger individuals, while the pups are a darker color.  At first glance, the seals appear defenseless, like large sausages washed up on to the rocks during a high tide. Their movements are awkward on land—they make their way across the jagged rocks by back-and-forth rocking of their bodies, and once situated, they rest in closely-packed groups, with the pups alongside their mothers.  However, upon seeing the silhouette of a person or hearing an approaching boat, the seals smoothly enter the water and swim to safety, suddenly becoming graceful and quick.

Tide pools that form among the depressions in the rocky reefs provide a habitat for a variety of invertebrates, including sea anemones, sea stars, and bryozoans.  Photo courtesy of Dave Withrow.
Tide pools that form among the depressions in the rocky reefs provide a habitat for a variety of invertebrates, including sea anemones, sea stars, and bryozoans.

As mentioned earlier, harbor seals tend to haul out on rocky reefs that fringe small islands or the coastline. These rocky sites are only exposed at low tide, and become completely submerged by water during high tides.  Because we visit the reefs at low tide, the rocks are partially covered in layers of slimy, light-green kelp and green algae that reek of a strong, ammonia-like odor and make for a slippery climbing surface.  Small tide pools in the crevices between the rocks provide a close-up look at purple and orange sea stars, green sea anemones, small fish, and other tide pool organisms.

Humpback Up Ahead!

I finally had a chance to see my first humpback whale yesterday morning.  From a distance, it was easy to spot the spray from the whale as it exhaled out of its blowhole.  As the whale approached our boat and we turned the engine off, we could hear the exhale as well, and I was able to grasp the immense size of this marine mammal.  The humpback whale can reach lengths of up to 45 feet and weigh up to 45 tons, and it is clearly recognizable by the small “hump-like” dorsal ridge that surfaces from time to time. To avoid injuries to the whale, Chris (our coxswain) kept the outboard motor running so that the whale would be able to identify our exact location.  Dave attempted to take photos of the underside of the humpback whale’s flukes, or tail fin, so that the whale could be identified. Each whale has an individually unique pattern on its flukes, which acts like a “fingerprint” that can be matched for identification.  Using these photos, researchers can track individual whale movements within and between seasons.  The master north Pacific humpback database is maintained by NOAA’s National Marine Mammal Laboratory in Seattle where Dave works. We snapped a few photos as it maneuvered through the shallow waters and then headed back to the JOHN N. COBB for a late lunch.  Scientists can use photographs of a humpback whale’s tail flukes to identify the organism because the pattern on each whale’s tail fin is unique.

Tara Fogleman, a NOAA Teacher-at-Sea participant, took this photograph of a humpback whale as it rose to the surface for another breath.
Tara Fogleman, a NOAA Teacher-at-Sea participant, took this photograph of a humpback whale as it rose to the surface for another breath.

We are slowly making our way toward Wrangell, a small coastal town located south of Juneau. After making a pit stop there tomorrow night to purchase fuel and a fuel filter, we will proceed towards the tidewater glaciers at Tracy Arm and Endicott Arm and continue our study of haulout sites.

Tara Fogleman, June 1, 2007

NOAA Teacher at Sea
Tara Fogleman
Onboard NOAA Ship John N. Cobb
June 1 – 14, 2007

Mission: Alaskan Harbor Seal Pupping Phenology and Site Monitoring
Geographical Area: Southeast Alaska
Date: June 1, 2007

The boat set sail today as we headed for our first haulout sites.  Because this first day was a traveling day, where no sampling would be conducted, I had a chance to explore the JOHN N. COBB, speak with the crew, and become better acquainted with life at sea.

Our Boat, the JOHN N. COBB— 

The JOHN N. COBB is the oldest vessel and the only wooden ship in NOAA’s research fleet. She was built in 1950 and named after John Nathan Cobb, the first dean of the University of Washington School of Fisheries.  The boat is 93 feet long, has a beam of 26 feet, and a draft of 12 feet. The JOHN N. COBB typically cruises at speeds of around 10 knots, propelled by a 325 hp diesel engine. She has a crew of 8 and can carry up to 4 scientists.

The JOHN N. COBB spends most of her time in the waters of southeast Alaska, supporting the research of the National Marine Fisheries Service (NMFS).  The ship can collect fish and crustacean specimens using a trawl and longline, or sample fish larvae, eggs, and plankton using plankton nets and surface or midwater larval nets.  Marine mammal studies, such as the one that I will be part of, are conducted aboard or by the use of smaller boats stored on the JOHN N. COBB.

Daily Life on the JOHN N. COBB— 

Life on board the JOHN N. COBB is exciting but intimate—the entire crew and scientists must work together to keep the ship clean and in working order so that the scientific research can be done. As mentioned earlier, the ship has several crew members, and each of the crew has important responsibilities that are integral to the proper working of the ship.

  • The Commanding Officer—Our Commanding Officer, Chad, has authority over all other crew members and ship personnel.  He drives the ship on alternating 6-hour shifts and is responsible for medical care in the event that anyone were to get hurt.
  • The Executive Officer—Dan is the Executive Officer (also referred to as the XO) for the JOHN N. COBB on this cruise.  He is the direct representative of the Commanding Officer, and is therefore responsible for executing the policies and orders issued by the Commanding Officer.  He also drives the ship for 6-hour shifts, alternating with the Commanding Officer.
  • The Chief Marine Engineer—Del, or “Chief”, serves as our Chief Marine Engineer.  Because his main responsibilities are to oversee the Engineering Department and fix any problems with the mechanical or electrical systems on the ship, he is usually down below in the engine room.
  • The Chief Steward—Bill, our Chief Steward, is in charge of the galley, or kitchen, of the ship. He provides the crew and scientists with three meals everyday, all cooked on a diesel stove. Because the galley on the JOHN N. COBB is very small, it is very important that those onboard the ship are clean and respect the requests made by the Chief Steward.
Bill, the Chief Steward of the JOHN N. COBB, cooks a delicious dinner for the crew.
Bill, the Chief Steward of the JOHN N. COBB, cooks a delicious dinner for the crew.

There are also other crew members that are responsible for duties such as relieving the Chief Engineer, keeping the boat clean, and driving the skiffs stored on the JOHN N. COBB during scientific operations.  The crew members and scientists sleep in various locations on the boat—though some have it better than others! Most of the crew members, with the exception of the Commanding Officer and Executive Officer, sleep in one large room at the front of the boat. Their room includes bunks, drawers and storage space for their clothing, a small sink, and a couple of benches that also serve as storage units.  Because there is always someone sleeping aboard the ship, curtains can be pulled across each bunk to block light and provide privacy. The scientists are housed in staterooms located just behind the galley, and these rooms provide more space to allow the scientists to work.  Each stateroom has two bunks, a small desk, a sink, and a couple of storage units for clothes and other personal belongings. The bathrooms, or heads, are located in the hallway and are shared by all on board, and there is one community shower for all crew and scientists to use. All of our meals are served in the galley at specific times of the day.  Bill, the Chief Steward, rings a bell when a meal is served, and we each take a designated seat at the table. Meals are served family-style, where the dishes are placed on the table and we serve ourselves. The crew generally consists of some big guys, and so there’s a lot of eating at each meal!  At the end of the meal, we clear our plates, thank the Steward, and head off to do our daily work.

However, life on the JOHN N. COBB isn’t always just about work—the crew enjoy their time off by fishing when the boat is anchored, reading magazines, watching movies, or playing games such as cribbage or solitaire.  There is even a treadmill and rowing machine for those crew members that want to fit a workout into their busy schedule.  Often, the scientists are busy with entering their data and preparing for the next day’s operations. Because there are always some crew members who are sleeping on the boat, it is important that noise is kept to a minimum at all times.

Safety First: Preparing for Emergencies at Sea— 

Tara Fogleman, a NOAA Teacher-at-Sea participant, hangs out in her bottom bunk aboard the JOHN N. COBB.
Tara Fogleman hangs out in her bottom bunk.

It is standard practice for the crew and scientists to perform safety drills during the first 24 hours at sea, and this cruise was no exception.  After lunch, we practiced the “Abandon Ship” drill and the “Fire” drill.  During the “Abandon Ship” drill, everyone aboard was required to report to a life raft and bring (and put on) their survival suit, gloves, and hat. The survival suit is a bright orange outfit intended to cover nearly your entire body (excluding the face), provide insulation from the cold water, and provide floatation. It also has several safety features, including a strobe light and whistle.  During the “Fire” drill, everyone aboard the ship plays a crucial role—many of the crew don protective fire gear and prepare the fire hose, while others assist as needed.  Because everyone plays a role in these emergency situations, it is important that the scientists become familiar with their responsibilities before performing the drills.

Dolphins and Humpbacks and Bears, Oh My!— 

Alaska is beautiful—rugged mountains topped with snow, extensive spruce forests, and dark-blue water that can be so calm in the bays that it appears we’re on a lake.  There were two exciting finds on the way out of Gastineau Channel—we saw the spray of a humpback whale off in the distance (though I can’t truly say I’ve seen a humpback yet) and I saw a group of Dall’s porpoises riding the waves at the bow of the boat.  The Dall’s porpoises are very different from the Atlantic bottlenose dolphins that I commonly see off the coast of Georgia—they are black and white in color (like an orca), they have a smaller dorsal fin, and they are nearly 8 feet in length—but their behavior is similar, as they travel in groups and enjoy riding the waves.  We also spotted two brown bears, most likely a mother and her cub, and several bald eagles while we were anchored in a bay.  Bald eagles are fairly common here, and they are easy to spot because their bright, white heads easily stand out among the dark green of the spruce trees and the grayish-black color of the rocks.

Tomorrow, we’ll begin traveling to haulout sites at low tide (which falls in the morning, between 8 AM and 10 AM) to count harbor seals and their pups.  So with that in mind, I’m off to bed—we have a busy morning tomorrow and I need my rest!

This photo of two brown bears was captured by Chief Scientist Dave Withrow as the JOHN N. COBB anchored in Gut Bay, Alaska.
This photo of two brown bears was captured by Chief Scientist Dave Withrow as the JOHN N. COBB anchored in Gut Bay, Alaska.

Tara Fogleman, May 31, 2007

NOAA Teacher at Sea
Tara Fogleman
Onboard NOAA Ship John N. Cobb
June 1 – 14, 2007

Mission: Alaskan Harbor Seal Pupping Phenology and Site Monitoring
Geographical Area: Southeast Alaska
Date: May 31, 2007

Tara Fogleman, a NOAA Teacher-at-Sea participant, sailed on the JOHN N. COBB while taking part in an Alaskan harbor seal study.
Tara Fogleman, a NOAA Teacher-at-Sea, sailed on the JOHN N. COBB for an Alaskan harbor seal study.

Personal Log 

After a long day of plane travel to Juneau, I found the JOHN N. COBB, located my stateroom for the length of the cruise, unpacked, and quickly fell asleep.  It wasn’t until today that I was able to explore Juneau by foot.  Immediately upon leaving the boat, I could tell that I was a long way from Savannah, Georgia!  The weather in June is still cold and unpredictable here—temperatures can fluctuate from 40°F and raining to 75°F and sunny, so it is important to dress in layers.  The sky here is often overcast or partly cloudy, and today was no exception.

The area of Juneau closest to the NOAA boat dock is a tourist-ridden area because it is a popular drop-off site for people sailing on cruise ships—however, I maneuvered around quickly, enjoying the local art shops, murals and statues, and learning about the history of the area at the local historic sites, such as the Governor’s House and the Alaska State Capitol.

Exploring Juneau and its History— 

A view of the town of Juneau, Alaska taken from the JOHN N. COBB as the ship began its journey.
A view of the town of Juneau, Alaska taken from the JOHN N. COBB as the ship began its journey.

The first residents of Juneau, the Tlingit people, fished and hunted in the Gastineau Channel for centuries. I observed evidence of their culture, including decorative artwork and totems, throughout the city. In the 1870s, a mining engineer named George Pilz offered a reward to anyone who could lead him to gold.  Chief Kowee, of the Auk Tlingit tribe, approached him with samples of gold from the Gastineau Channel, and a search party was sent to investigate.  When the mother lode was found in Silver Bowl Basin, prospectors began to arrive by boat with hopes of finding gold and making it rich.  On October 18, 1880, a 160-acre town site was staked out on the beach, and Juneau was born.  Within a few years, Juneau was transformed from a native fishing village to a large-scale mining industry.

The city of Juneau is located in the middle of the Tongass National Forest, which is the largest temperate rainforest in North America.  This forest, which covers nearly 17million acres, is dominated by the Sitka spruce, which is Alaska’s state tree. The Sitka spruce is identified by its very straight top and sharp-tipped needles, and can reach ages of 200 to 700 years old. The Tongass is a temperate rainforest, which differs from a tropical rainforest in two ways:  temperate forests are much cooler, and they are inhabited by fewer species of plants and animals.  However, though temperate rainforests are less diverse than tropical rainforests, they contain a high amount of biomass.  Animals such as bald eagles, black bears, marmots, and porcupines inhabit the Tongass, and organisms such as harbor seals and salmon can be found in the coastal waters.  After exploring Juneau, I headed back to the boat to speak with Dave Withrow, the Chief Scientist for the mission.  We spoke briefly about the procedures for the study and the major objectives that we will try to achieve while aboard the JOHN N. COBB.

 Mendenhall Glacier is located just outside of Juneau, Alaska.  The glacier is retreating at an alarming rate.
Mendenhall Glacier is located just outside of Juneau, Alaska. The glacier is retreating at an alarming rate.

The Objectives of the Study— 

During this cruise, Dave will be exploring selected areas of southeastern Alaska to: 1) determine population counts of harbor seals, with a special emphasis on which sites are being used for pupping, 2) identify how many pups are born and the approximate age and size of these pups, and 3) identify potential haulout sites for long-term studies, such as sites that are inhabited by large numbers of seals (more than 200).  Identifying critical habitat is an important component of this study, because many of these habitat areas are experiencing a decline.  Harbor seals use the floating ice calved from tidewater glaciers to pup, nurse their young, and molt, because these areas are free from most predators and disturbance. However, these tidewater glaciers are disappearing at an alarming rate; in 1983, there were 52 recorded tidewater glaciers, and in 2004, only 31 of these documented glaciers remained, and all but 5 of them were receding.  This reduction of pupping habitat could have a significant impact on harbor seal populations.

More Sightseeing Around Juneau— 

Prior to setting sail, I ran errands with the crew around Juneau to pick up miscellaneous gear needed for the cruise, and I even stopped at the Alaskan Brewery to take a tour of their facilities. Later that evening, Dave Withrow took me to the Mendenhall Glacier— this is a glacier located just outside of Juneau.  He told me that the glacier has been retreating at an alarming rate during the past years.  I was particularly amazed at the light blue-green color of the glacial ice that floated in the water in front of the glacier—it is unlike anything I have ever seen.

I’m off to bed for now—tomorrow we set sail for our first study sites.

Jacquelyn Hams, August 3, 2006

NOAA Teacher at Sea
Jacquelyn Hams
Onboard NOAA Ship Rainier
July 24 – August 11, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 3, 2006

TAS Jacquelyn Hams viewing sonar images on a survey boat
TAS Jacquelyn Hams viewing sonar images on a survey boat

Weather
Partly cloudy
Visibility: 10 nm
Wind direction: 305
Wind speed: 8 knots
Sea Wave height: 0-1 ft.
Seawater temperature: 11.1 degrees C
Sea level pressure: 1002.2 mb
Temperature dry bulb: 14.4 degrees C
Temperature wet bulb: 11.1 degrees C

Science and Technology Log

The day begins with a Damage Control Meeting at 0830.  This is an all hands meeting for everyone aboard the ship. Safety is stressed aboard the RAINIER at all times.  All hands are shown equipment, patches, and fixes for damages resulting from water, electrical problems, and fire. We are also told where the equipment is stored.

A CTD (Conductivity, Temperature, and Depth) sensor
A CTD (Conductivity, Temperature, and Depth) sensor

After lunch I go out on one of the survey boats equipped with multibeam sonar for a hydrography survey. NOAA personnel on the boat are: ENS Jamie Wasser, Junior Officer, ENS Megan McGovern, Junior Officer, Carl Verplank, Seaman Surveyor, and Leslie Abramson, Able Seaman.  The goal of this leg of the cruise is to accurately chart the waters off Nagai Island, Alaska.  The boat I am on will survey the area of Northeast Bight.

In order to measure depth, the equation D=S*T is used.  The time it takes for the sound to bounce off the bottom and return is known.  In order to calculate the distance, the speed at which sound travels through the water must be known. To determine the speed at which sound travels through the water column, the RAINIER collects conductivity, temperature, and pressure data using a CTD sensor called a SEACAT. From these measurements depth and salinity can be derived.

View of radar screen at coxswain’s station on survey boat.
View of radar screen at coxswain’s station on survey boat.

This instrument is deployed into the water at least every four hours during multibeam acquisition. As sound travels through the water, it can be affected by differences in salinity, temperature, and pressure. Therefore, all soundings acquired by the CTD need to be corrected for these effects to accurately chart the survey area. The SEACAT is placed just below the water’s surface for two minutes to allow the sensor to obtain its initial readings. It is then lowered one meter per second through the water column until it reaches the seafloor. Then it is hoisted back to the surface. As the instrument runs through the water column, the sensor obtains conductivity, temperature, and pressure data. Once the SEACAT is aboard, it is connected to a computer.  The sensor data is downloaded using a special program. A survey technician or junior officer uses the program to analyze the data.

Leslie Abramson, Able Seaman and coxswain, steers the survey boat
Leslie Abramson, Able Seaman and coxswain, steers the survey boat

If the data looks reasonable, the launch or ship will begin or continue to acquire soundings. It is very important for the coxswain (person who is driving the boat) to steer the boat along the survey lines so that the final data will be accurate.  Leslie Abramson assists me while I attempt to steer the boat along the survey line. I find that it is easier to steer the RAINIER than a survey boat!

Personal Log 

I have been on the RAINIER for two weeks now, and have been observing how long the days are for the officers on board. After talking with ENS Olivia Hauser, RAINIER Junior Officer, certain things are now clear.  There are no other scientists aboard the RAINIER.  On other NOAA ships, scientists are hosted by the ship and plan and conduct the research operations. On the RAINIER, the officers are the hydrographers or scientists.  In addition to their regular duties, the officers have to plan survey lines, review them at the end of the day, and make plans for the next day.  In addition, they go out on the survey boats to view data acquisition. This makes for an incredibly long day and lots of responsibilities for the officers. I am impressed with their energy and dedication to the job. I had the opportunity to take the classic geology photographs shown below from the survey boat.

 Repeat display of Hy Pack navigation and chart at coxswain’s station
Repeat display of Hy Pack navigation and chart at coxswain’s station
A classic U-shaped glacial valley
A classic U-shaped glacial valley
Is this a cirque or a caldera?
Is this a cirque or a caldera?

Stephanie Wally, September 3, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: September 3, 2005

The Columbia Glacier
The Columbia Glacier

Weather Data from Bridge 

Time: 0800
Cloud Cover: Low Clouds, Stratocumulus
Visibility: 10 nm (nautical miles)
Wind Direction: 60°
Sea Wave Height: 0’
Swell Wave Height: 0’
Sea Water Temperature: 11.7°C
Sea Level Pressure: 1013.5 mb (millibars)
Temp: 11.1°C

Science and Technology Log 

This evening, after the regular workday and data gathering were complete, some of the crew visited the face of the Columbia Glacier.  We headed there in a skiff, driven by Coxswain Carl Verplank. The Columbia Glacier is the Sound’s largest tidal glacier.  In 1984 it began to recede, going through a process called “calving.”  We were lucky enough to witness this process, as huge chunks of the glacier broke off and plummeted to the water. Fortunately, we were at a far enough distance away not to capsize from the swell. The iceberg pieces that break off do not make a soft “kerplunk” sound, but rather a loud, grinding noise that echoes around the face.  As seen in the photo below, the massive glacier towers over our crew and skiff.

I have been onboard for nearly a week now, away from the city, immersed in nature.  In contrast to city life in the San Francisco Bay area, wildlife is everywhere here in Prince William Sound.  It’s not every day in San Francisco that I see the back of a humpback whale slowly moving through the water, or a Golden Eagle taking off from a nearby rock.  In Alaska, these sights are common when one takes the time to observe.  On the launch boats, it’s easy to spend time studying the shoreline through binoculars or just listening to the quiet calm of the surrounding water. The ice often makes a crackling noise while it is floating and breaking on the water, giving way to our “icebreaker” skiff.

Also of note in the below photo are the snowy peaks of the Chugach Range, which is one of the most precipitous coastal mountain ranges in the world.  As the glacier retreats toward the mountain backdrop, harbor seals and sea otters find new feeding areas, and birds find new places to nest.  In class, we will further investigate how the geological process affects ecosystem habitats. NOAA is on the forefront of this exploration since they are the ones collecting the data of the surrounding ocean floor and water depth.

Question of the Day: What is a glaciologist?