Ragupathy Kannan: Ocean Salinity to Ocean Sunfish, August 26, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast U.S. Atlantic Ocean

Date: August 26, 2019

Weather Data from the Bridge

Latitude: 41.27688
Longitude: -67.03071
Water temperature: 18.4°C
Wind Speed: 14.8 knots
Wind Direction: 41°
Air temperature: 18.6°C
Atmospheric pressure: 1021 millibars
Sky: Cloudy


Science and Technology Log

We entered Canadian waters up north in the Gulf of Maine, and sure enough, the waters are cooler, the sea choppier, and the wind gustier than before.  And the organisms are beginning to show a difference too.  Our Chief Scientist Harvey Walsh showed me a much longer arrow worm (Chaetognatha) from the plankton samples than we had encountered before (see photo below).  And there are more krill (small planktonic crustaceans) now. 

arrow worm
We got this beautiful arrow worm in our plankton sample as we entered colder waters

So far in my blogs, I have focused on sampling of biological organisms like plankton.  But recall that in an ecosystem monitoring survey like ours, we need to measure the abiotic (non-biological) aspects too because the word Ecosystem covers a community of organisms along with their biotic and abiotic environment. 

In today’s blog, I will highlight the ways various important abiotic components are measured.  You will learn about the interdisciplinary nature of science.  (Feel free to pass this blog on to physics, chemistry, and engineering majors you know—it may open up some career paths they may not have explored!).  I will come back to biotic factors in my next blog (seabirds and marine mammals!).

CTD

The CTD is a device that measures Conductivity, Temperature, and Depth.  We lower a heavy contraption called a Rosette (named due to its shape, see photo below) into the water. It has bottles called Niskin bottles that can be activated from a computer to open at specific depths and collect water samples.  Water samples are collected from various depths.  Electrical conductivity measurements give an idea of salinity in the water, and that in turn with water temperature determines water density.  The density of water has important implications for ocean circulation and therefore global climate.  In addition, dissolved inorganic carbon (DIC) is also measured in labs later to give an idea of acidity across the depths.  The increased CO2 in the air in recent decades has in turn increased the ocean’s acidity to the point that many shelled organisms are not able to make healthy shells anymore.  (CO2 dissolves in water to form carbonic acid).  Addressing the issue of increasing ocean acidity and the resulting mass extinction of shell-building organisms has become a pressing subject of study.  See the photos below of CTD being deployed and the real-time data on salinity and temperature transmitted by the CTD during my voyage.

lowering the CTD
I assist lowering the CTD Rosette into the water. The gray cylinders are Niskin bottles that can be activated to open at various depths.
CTD data
This display shows the real time data from each scan the CTD sends back to the computer. The y-axis is depth in meters, with sea surface at the top. The instrument was sent down to 500 meters deep. The green lines show fluorescence, an estimate of phytoplankton production. Note that the phytoplankton are at the photic (top) zone where more light penetrates. The blue line shows water temperature in degrees Celsius and the red line shows salinity. (Photo courtesy: Harvey Walsh)

EK-80

The ship is equipped with a highly sensitive sonar device called EK-80 that was designed to detect schools of fish in the water. (See photo of it attached to the hull of our ship, below).  It works by sending sound waves into the water.  They bounce off objects and return.  The device detects these echos and generates an image.  It also reflects off the sea bottom, thus giving the depth of the water.  See below an impressive image generated by our EK-80, provided kindly to me by our amicable Electronics Technician, Stephen.

EK-80 display
A remarkable screen shot of the EK-80 display of our ship passing over the Chesapeake Bay Bridge Tunnel as we headed out to sea from Norfolk, Virginia. To the left is a huge mound of dirt/rock, and just to the right of the mound, is a ravine and the tunnel (has a small peak and spikes). To the right (seaward side of the tunnel) you can see dredge material falling from the surface. We observed the sand and silt on the surface as we were passing through it. (Courtesy Stephen G. Allen).

The Acoustic Doppler Current Profiler (ADCP)

Scientists use this instrument to measure how fast water is moving across an entire water column. An ADCP is attached to the bottom of our ship (see photo below) to take constant current measurements as we move.  How does it work? The ADCP measures water currents with sound, using a principle of sound waves called the Doppler effect.  A sound wave has a higher frequency as it approaches you than when it moves away. You hear the Doppler effect in action when a car speeds past with a building of sound that fades when the car passes. The ADCP works by transmitting “pings” of sound at a constant frequency into the water. (The pings are inaudible to humans and marine mammals.) As the sound waves travel, they bounce off particles suspended in the moving water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the particle and the water around it are moving. (From whoi.edu)

The University of Hawaii monitors ocean currents data from ADCPs mounted in various NOAA ships to understand global current patterns and their changes. 

hull of NOAA Ship Gordon Gunter
The hull (bottom surface) of the ship showing the EK-80 and ADCP systems, among other sensors. Photo taken at the ship yard. (Courtesy: Stephen G. Allen)

Hyperpro

Hyperpro is short for Hyperspectral profiler, a device that ground truths what satellites in outer space are detecting in terms of light reflectivity from the ocean.  What reflects from the water indicates what’s in the water.  Human eyes see blue waters when there isn’t much colloidal (particulate) suspensions, green when there is algae, and brown when there is dirt suspended in the water.  But a hyperpro detects a lot more light wavelengths than the human eye can.  It also compares data from satellites with what’s locally measured while actually in the water, and therefore helps scientists calibrate the satellite data for accuracy and reliability.  After all, satellites process light that has traversed through layers of atmosphere in addition to the ocean, whereas the hyperpro is actually there. 

deploying hyperpro
A Hyperpro being deployed

Career Corner

Three enterprising undergraduate volunteers.

Volunteers get free room and board in the ship in addition to invaluable, potentially career–making experience.

undergraduate volunteers
David Caron (far side), Jessica Lindsay, and Jonathan Maurer having some much-needed down time on the flying bridge

David Bianco-Caron is doing his B.A. in Marine Science from Boston University (BU).  His undergraduate research project at the Finnerty Lab in BU involves a comb-jelly (Ctenophore) native to the West Atlantic but which has become an introduced exotic in the East Atlantic.  David studies a cnidarian parasite of the comb-jelly in an attempt to outline factors that could limit the comb-jelly.  The project has implications in possible biological control. 

Jessica Lindsay finishes a B.S. in Marine Biology later this year and plans to get her Small Vessels operating license next year.  This is her 2nd year volunteering in a NOAA ship.  She received a NOAA Hollings Scholarship which provides up to $9500 for two years (https://www.noaa.gov/office-education/hollings-scholarship).  It entailed 10 weeks of summer research in a lab.  She studies how ocean acidification affects shelf clams. 

Jonathan Maurer is a University of Maine senior working on a B.S. in Climate Science.  He studies stable isotopes of oxygen in ocean waters to understand ocean circulation.  The project has implications on how oceanic upwelling has been affected by climate change.  He intends to go to graduate school to study glaciers and ocean atmosphere interactions. 

See my previous blog for information on how to become a volunteer aboard a NOAA research ship.

I also had the pleasure of interviewing our Executive Officer (XO), LCDR Claire Surrey-Marsden.  Claire’s smiling face and friendly personality lights up the ship every day. 

XO Claire Surrey-Marsden
Our Executive Officer (XO), LCDR Claire Surrey-Marsden

Claire is a Lieutenant Commander in the NOAA Corps:

The NOAA Commissioned Officer Corps is made up of 321 professionals trained in engineering, earth sciences, oceanography, meteorology, fisheries science, and other related disciplines. Corps officers operate NOAA’s ships, fly aircraft, manage research projects, conduct diving operations, and serve in staff positions throughout NOAA. Learn more: https://www.omao.noaa.gov/learn/noaa-commissioned-officer-corps

Q. Thanks for your time, Claire. You’re the XO of this ship.  What exactly is your role?

A. The Executive Officer is basically the administrator on board.  We help with staffing, we manage all the crew, we have a million dollar budget for this ship every year that we have to manage.  Everything from food to charts to publications, all these get managed by one central budget. I’m kind of the paper work person on board.

Q. What’s your background?

A. I have a marine biology degree from Florida Tech. I’ve done marine mammal work most of my career. I joined NOAA in 2007, before that I was a biologist for Florida Fish and Wildlife [FFW].

Q. I heard you have done necropsies of marine mammals?

A. I was a manatee biologist for FFW for 3 years, we also dealt with lots of whales and dolphins that washed up on shore. I’ve also done marine mammal work in my NOAA career.  Worked with Southwest Fisheries Science Center on Grey Whales and dolphins, and worked with Right Whale management with the maritime industry and the coast guard.

Q. About a 100 college students, maybe even more are following my blog now.  What’s your advice to them, for someone interested in marine biology/NOAA Corps, what should they be doing at this stage?

A. Great question. Volunteer! Find all the opportunities you can to volunteer, even if it’s unpaid.  Getting your face out there, letting people see how good a worker you are, how interested and willing you are, sometimes you will be there right when there is a job opening. Even if it seems like a menial task, just volunteer, get that experience. 

Q. NOAA accepts volunteers for ships every summer?

A. Yes, ecomonitoring and other programs takes students out for 2-3 weeks, but there are other opportunities like the local zoo.  Even stuff that isn’t related to what you’re doing. Getting that work experience is crucial.

Q. What’s the most challenging part of your job as an XO in a ship like this?

A. Living on a small boat in the middle of the ocean can be challenging for people working together harmoniously.  Just making sure everyone is happy and content and getting fulfillment for their job.

At the end of the interview, Claire handed me a stack of brochures describing the NOAA Corps and how you can become part of it. Please stop by my office (Math-Science 222) for a copy.

Personal Log

The seas have become decidedly choppier the past few days.  It’s a challenge to stay on your feet!  The decks lurch unexpectedly.  Things get tossed around if not properly anchored.  I have fallen just once (touchwood!) and was lucky to get away with just a scratch.  I’ve had to take photo backups of my precious field notes lest they get blown away.  They came close to that once already.

The ship has a mini library with a decent collection of novels and magazines plus a lounge (with the ubiquitous snacks!).  I found a copy of John Grisham’s The Whistler, and this has become my daily bed time reading book. 

The lounge and library on board
The lounge and library on board

Interesting animals seen lately

I started this blog with a photo of an exceptionally long arrow worm.  The cold waters have brought some other welcome creatures.  I created a virtual stampede yesterday in the flying bridge when I yelled Holy Mola!  Everyone made a mad dash to my side to look over the railings at a spectacular Ocean Sunfish (Mola mola) floating by.  The name Mola comes from the Latin word meaning millstone, owing to its resemblance to a large flat and round rock.  I have been looking for this animal for days!  Measuring up to 6 feet long and weighing between 250 and 1000 kg, this is the heaviest bony fish in the world.  The fish we saw was calmly floating flat on the surface, lazily waving a massive fin at us as though saying good bye.  It was obviously basking.  Since it is often infested with parasites like worms, basking helps it attract birds that prey on the worms.

mola mola
Ocean Sunfish Mola mola. We saw this behemoth lying on its side basking, waving its massive dorsal fin as though greeting us. They allow birds and other fish to pick their ectoparasites as they float (from baliscuba.com)

Another animal that almost always creates a stir is the dolphin.  Schools of dolphins (of up to 3 species) never cease to amuse us.  They show up unexpectedly and swim at top speed, arcing in and out of the water, often riding our bow.  Sometimes, flocks of shearwaters circling around a spot alert us to potential dolphin congregations.  Dolphins drive fish to the surface that are then preyed upon by these birds.  My colleague Allison Black captured this wonderful photo of Common Dolphins frolicking by our ship in perfect golden evening light.

common dolphins
Common Dolphins swimming by our ship (Photo by Allison Black)

Did You Know?

Molas (Ocean Sunfish) are among the most prolific vertebrates on earth, with females producing up to 300,000,000 eggs at a time (oceansunfish.org).

Parting shot

NOAA does multiple concurrent missions, some focused on fisheries, some on oceanography, and some hydrography.  It has a ship tracker that tracks all its ships around the world.  Our ET Stephen Allen kindly shared this image of our ship’s location (marked as GU) plus the locations of two other NOAA ships. 

location on shiptracker
Our exact location (GU) on 25 August 2019, captured by NOAA’s ship tracker (Courtesy Stephen G. Allen)

Susan Dee: To the Gulf of Maine and Georges Bank, June 1, 2018

 

NOAA Teacher at Sea

Susan Dee

Aboard NOAA Ship Henry B. Bigelow 

May 23 – June 7, 2018

Mission:  Spring Ecosystem Monitoring Survey

Geographic Area of Cruise: Northeastern Coast of U.S.

Date:  June 1,  2018

Weather From Bridge

Latitude: 41° 25.4′ N
Longitude: 068° 16.3′ W
Sea Wave Height: 1-2 ft
Wind Speed: 16 kts
Wind Direction: SE
Visibility: Hz
Air Temperature:  12.5°C
Sky:  OVC

Science and Technology Log

After completing a southern route past Long Island, New Jersey and Delaware, the Henry B. Bigelow  headed north to the Gulf of Maine (GOM).  The first sampling stations in GOM were  located on the continental shelf close to the slope. After sampling in  the  Northeast Channel of the GOM, stations will be dispersed throughout the Gulf of Maine. Phytoplankton is continuously imaged through the Imaging Flow Cyto Bot and collection is going well. Below is a recent image taken.  Can you  find Thallasonemia  or Ceratium?  

phytoplankton 3
Image of Phytoplankton taken by IFCB

At various stations instead of  towing  bongo nets  with a CTD attached,  a CTD, Rosette, is deployed with niskin bottles.  CTD contain sensors that measure Conductivity (salinity), Temperature and Depth.   The data gathered provides profiles of chemical and physical parameters of the ocean.

CTD with 12 canisters on deck
CTD on bottom of instrument with 12 Niskin bottles forming a rosette.

 

CTD Rosette entering-water.jpg
CTD, commonly known as Rosette. Note the rosette shape at top of bottles

The great feature of the rosette is its ability to collect water using Niskin bottles as hydrographic instruments.  Opened bottles are lowered into the ocean and at the desired depth a   bottle is closed and brought to the surface without mixing with other water so pure samples can be taken at different depths. Back on board, water is  taken from the Niskin bottles and  nutrient, chlorophyll and carbon dioxide tests are run on the samples.

taking water samples susan
Susan taking water samples from niskin bottles to perform chlorophyll tests at 3 different depths.

chlorophyll extraction
Chlorophyll extraction set up

Georges Bank is  in the southern part of the Gulf of Maine.  The bank separates the Gulf of Maine from the Atlantic Ocean.  It is a huge shoal that is 100 meters higher  than the surrounding ocean floor and is a very productive area of the continental shelf.   The mingling of the Labrador current from the north and the Gulf stream on the eastern edge plus sunlight in shallow waters, creates an ideal environment for phytoplankton and zooplankton. Once a bountiful fishery, it is presently recovering from over fishing. Federal Fishery regulations aim to ensure recovery of the area and future sustainability. The data samples collected will give a good idea of the recovery of this area.    The pink line below shows  the route taken by our ship in the southern Gulf  of Maine and  Georges Bank.

IMG_2518

When  we were near the Northeast  Channel  in the Gulf of Maine, Latitude 41° 53.2′ N and Longitude 65°47.0′ W,  I deployed a  satellite-tracked Drifter Buoy decorated with our school name May River Sharks.  The drifter buoy will send GPS and temperature data to a NOAA website and students will be able to track its path.  This area was chosen to deploy because the Labrador current   from the north meets with the Gulf Stream and hopefully the buoy will get caught up in one of the currents. It will be fun  for students to track the buoy path in the fall. Wonder where it will go???

 

Susan&Buoy
Susan decorating Buoy- May River High School Sharks

 

 

Buoy 1
Buoy READY

 

Buoy Released
Buoy Released

 

DCIM100GOPROG0021640.
Buoy splashing into water

buoy floating
Oh where, oh where, will you go?

 

Personal Log:

So far this trip the weather has been great. Seas have been calm and temperatures good. I have fallen into a nice routine each day.  My shift concludes at midnight; I go to bed till 9:00AM; work out; shower and get ready for next 12 hour shift. I eat lunch and dinner each day and a midnight snack.  The days are long but never boring. The crew aboard the Henry B Bigelow  is awesome.  Internet is sporadic but  I was able to face-time with my daughter. Technology is a big part of this whole operation. All the programs collecting temperature, salinity and phytoplankton rely on computer programs to run. Second  to the chef, the IT person is invaluable.  They are trouble shooting problems all day to make sure the collection  of data is working.   During the longer steams from station to station, I  have the opportunity to talk to crew and other scientists.  Each person is excited about science.  I have never  been involved in real  science research and I  find each day to be fascinating. There is so much time and effort put into collecting the samples.  This cruise  will collect samples from over 100 stations that will be analyzed and supply much data to give a good picture of the state of our Northeast coastline waters and fisheries.

Today was the last day of school for the year for May River High School.  Graduation is Tuesday and my thoughts will be with everyone.  Congratulations to all my students, especially the seniors.

Answers to Phytoplankton Identification:

Thallasonemia- upper left corner

Ceratium- middle top

Sam Northern: Finding My Sea Legs, June 1, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 1, 2017

Weather Data from the Bridge:

Latitude: 40°58’N

Longitude: -67°03.9’W

Sky: Patchy Fog

Visibility: 2-5 Nautical Miles

Wind Direction: 215°SW

Wind Speed: 6 Knots

Sea Wave Height: 1-2 Feet

Swell Wave: 2-5 Feet

Barometric Pressure: 1012.5 Millibars

Sea Water Temperature: 11.2°C

Air Temperature: 11.2°C

Science and Technology Log

Marine Traffic May30_2
Approximate location of our first oceanography station [Source — Marine Traffic]

IMG_8622
The J-Frame is used to deploy equipment into the water.

En route to our first oceanography station just past Nantucket, Electronics Technician Tony VanCampen and my fellow day watch scientist Leann Conlon gave me an overview on how each sampling is conducted. This is where the pieces of equipment I described in my previous blog post (bongo nets and CTD) come into play.

Science is very much a team effort. I learned that a deck crew will be in charge of maneuvering the winch and the J-frame. Attached to the cable will be the bongo nets and the CTD which are carefully lowered into the ocean.

Bongo nets allow scientists to strain plankton and other samples from the water using the bongo’s mesh net. At each station the bongo will be sent down to within 5 meters of the bottom or no more than 200 meters. After the bongo has reached its maximum depth for a particular station, the net is methodically brought back to the surface—all the while collecting plankton and sometimes other small organisms like tiny shrimp. It usually takes about 20 minutes for the bongo nets to be cast out and returned on board with the samples.

IMG_8665.JPG
Here I am in my gear preparing to launch the first bongo nets.

Once the bongo nets have returned from the water to the aft (back) deck, our work begins. As a part of the Science Party, it is my job to rinse the entire sample into containers, place the plankton into jars, add formalin to jars that came from the big bongos and ethanol to jars that came from the small bongos. These substances help preserve the specimens for further analysis.

At the conclusion of the cruise, our plankton samples will be sent to the Sea Fisheries Institute in Poland where scientists and lab crew sort and identify the plankton samples which gives NOAA scientist an idea of the marine environment in the areas in which we collected samples.

IMG_8763.JPG
Flowmeter

Our Chief Scientist is David Richardson. Dave has been with NOAA since 2008. He keeps track of the digits on the flowmeter (resembles a small propeller) inside the bongo. The beginning and ending numbers are input into the computer which factors in the ship’s towing speed to give us the total volume of water sampled and the distance the bongo net traveled.

 

IMG_8629.JPG
CTD (Conductivity, Temperature, & Depth)

At various oceanography stations we perform a CTD cast which determines the conductivity, temperature, and depth of the ocean. The CTD is attached to the bongo nets or the CTD is mounted within a frame, which also holds several bottles for sampling seawater along with a mechanism that allows scientists on board the ship to control when individual bottles are closed. The CTD is connected to the ship by means of a conducting cable and data are sent electronically through this cable, in real-time, to the scientists on the ship. The scientists closely monitor the data, looking for temperature and particle anomalies that identify hydrothermal plumes. As the CTD is sinking to the desired depth (usually 5-10 meters from the bottom), the device measures the ocean’s density, chlorophyll presence, salinity (the amount of salt in the water), temperature, and several other variables. The CTD’s computer system is able to determine the depth of the water by measuring the atmospheric pressure as the device descends from the surface by a certain number of meters. There is a great deal scientists can learn from launching a CTD in the sea. The data tells us about dissolved inorganic carbon, ocean water nutrients, the levels of chlorophyll, and more. From the information gathered during CTD casts, researchers can investigate how factors of the ocean are related as well as the variation of organisms that live in the ocean.

Map of Leg 2 Stations
The highlighted lines are stations completed in the first leg. The circle indicates the stations for my leg of the survey.

It is fascinating to see the communication between the scientists and the NOAA Corps crew who operate the ship. For instance, NOAA officers inform the scientists about the expected time of arrival for each station and scientists will often call the bridge to inquire about Gordon Gunter’s current speed and the weather conditions. Even computer programs are connected and shared between NOAA Corps crew and the scientists. There is a navigation chart on the monitor in the bridge which is also displayed in the science lab so everyone knows exactly where we are and how close we are to the next station. The bridge must always approve the deployments and recovery of all equipment. There are closed circuit video cameras in various places around the ship that can be viewed on any of the monitors. The scientists and crew can see everything that is going on as equipment gets deployed over the side. Everyone on Gordon Gunter is very much in sync.

Personal Log

First Day at Sea (Tuesday, May 30)

img_8539.jpgToday, my shift began at 12 noon. It probably was not the best idea to have awakened at 6:00 a.m., but I am not yet adjusted to my new work schedule and I did not want to miss one of Margaret’s hearty breakfasts.

We cast out from the Naval Station Newport mid-morning. It was a clearer and warmer day compared to the day before—perfect for capturing pictures of the scenic harbor. I spent much of the morning videoing, photographing, and listening to the sounds of waves as they moved around the ship. I like to spend a lot of time on the bow as well as the flying bridge (the area at the top of the ship above the bridge where the captain operates the vessel). Before lunch, I was beginning to feel a little sea sick from the gentle swaying of the ship. I could only hope that I would find my sea legs during my first watch.IMG_8549.JPG

Gordon Gunter gracefully made its way alongside Martha’s Vineyard and Nantucket—two islands off the coast of Cape Cod. Standing on the flying bridge and looking out at the horizon alleviated my sea sickness. At this position I was able to observe and photograph an abundance of wildlife. Seeing the sea birds in their natural habitat is a reminder that I am just a visitor on this vast ocean which so many animals call home. Watching birds fly seamlessly above the waves and rest atop the water gives me a yearning to discover all I can about this unique ecosystem and ways in which we can protect it.

Scroll around the video to see the view from the ship’s bow in all 360-degrees. 

The phrase, “to find one’s sea legs” has a meaning much deeper than freedom from seasickness. Finding your sea legs is the ability to adjust to a new situation or difficult conditions. Everything on board Gordon Gunter was new and sometimes difficult for me. Luckily, I have help from the best group of scientists and NOAA Corps crew a Teacher at Sea could ask for.

At 8:00 p.m. I was part of the leg’s first oceanography station operation. I watched closely as the bongo nets were tied tightly at the end then raised into the air by the winch and J-Frame for deployments into the sea. While the bongo nets and CTD were sinking port side, I looked out at the horizon and much to my amazement, saw two humpback whales surfacing to the water. The mist from their blows lingered even after they descended into the water’s depths.

IMG_8680
Phytoplankton

Once the bongo nets where recovered from the ocean, the crew and I worked quickly but with poise. We used a hose to spray the nets so that all the plankton would reach the bottom of the net when we dumped them into a container. I observed fellow scientist Leann pour each bongo’s sample into a jar, which she filled with water and then a small portion of formalin to preserve the samples. It began and was over so quickly that what took about an hour felt like ten minutes.

An hour later we reached our second station, and this time I was ready! Instead of mostly observing as I did during the first time, this time I was an active participant. Yes, I have a lot left to learn, but after my first day at sea and three stations under my belt, I feel like my sea legs are growing stronger.

Scroll around the 360-degree video to see the Science Party retrieve samples from bongo nets.

Becoming a Scientist (Wednesday, May 31)

I am not yet used to working until midnight. After all, the school where I teach dismisses students by 3:30 p.m. when the sun is still shining. Not to worry, I will adjust. It is actually exciting having a new schedule. I get to experience deploying the CTD and bongo nets during day light hours and a night time. The ocean is as mysterious as it is wide no matter the time of day.

You never quite know what the weather is going to be from one day to the next out at sea. Since my arrival at the ship in Newport, Rhode Island I have experiences overcast skies, sunshine, rain, and now dense fog. But that’s not all! The forecast expects a cold front will approach from the northwest Friday. Today’s fog made it difficult for the animal observers to spot many birds of whales in the area. Despite low visibility, there is still a lot to do on the ship. After our first bongo station in the early afternoon, we had a fire and abandon ship drills. Carrying out of these drills make all passengers acquainted with various procedures to be followed during emergency situations.

I thoroughly enjoy doing the work at each station. Our sampling is interesting, meaningful, and keeps my mind off being sea sick. So far, I am doing much better than expected. The excitement generated by the science team is contagious. I now long for the ship to reach each oceanography station so I can help with the research.

Marine Traffic May31.png
Approximate position of our last station on May 31 in Georges Bank.

Animals Seen

So far the animals seen have been mostly birds. I am grateful to the mammal and seabird observers, Glen Davis and Nicholas Metheny. These two are experts in their field and can ID a bird from a kilometer away with long distance viewing binoculars.

IMG_6472
Glen and Nicholas on the lookout.

 

New Terms/Phrases

[Source — Merriam-Webster Dictionary]

  • Barometer: an instrument for determining the pressure of the atmosphere and hence for assisting in forecasting weather and for determining altitude.
  • Altimeter: an instrument for measuring altitude; especially an aneroid barometer designed to register changes in atmospheric pressure accompanying changes in altitude.
  • Flowmeter: an instrument for measuring one or more properties (such as velocity or pressure) of a flow (as of a liquid in a pipe).
  • Salinity: consisting of or containing salt.
  • Conductivity: the quality or power of conducting or transmitting.
  • Chlorophyll Maximum: a subsurface maximum in the concentration of chlorophyll in the ocean or a lake which is where you usually find an abundance of phytoplankton.
  • Ethanol: a colorless flammable easily evaporated liquid that is used to dissolve things
  • Formalin: a clear, water like solution of formaldehyde and methanol used especially as a preservative.

Did You Know?

The average depth of the ocean is about 12,100 feet. The deepest part of the ocean is called the Challenger Deep and is located beneath the western Pacific Ocean in the southern end of the Mariana Trench. Challenger Deep is approximately 36,200 feet deep. It is named after the HMS Challenger, whose crew first sounded the depths of the trench in 1875. [Source — NOAA Official Website].

This slideshow requires JavaScript.

Trevor Hance, Gone Fishin’, June 24, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 24, 2015

Gone Fishin’

Lean and mean, the Leg III Scallop Survey Class of 2015
Lean and mean, the Leg III Scallop Survey Class of 2015

Unfortunately, as is the case with life at sea, the weather can change in a heartbeat and the seas apparently had enough of the spoon feeding we were enjoying.  Our last couple of days were supposed to be spent exploring some new lobster habitat, but it just wasn’t in the cards for us and our cruise was terminated a day or two earlier than anticipated.

When the weather got harsh while heading in, I asked our Captain if he would take a picture of me in the Crow’s Nest, doing my best Lt. Dan impression.  He just smiled, shook my hand; “No” was all he said.
When the weather got harsh while heading in, I asked our Captain if he would take a picture of me in the Crow’s Nest, doing my best Lt. Dan impression.  He just smiled, shook my hand; “No” was all he said.

I’m off the vessel, but, the learning is still sinking in.  Today I’ll visit a little about the importance of annotating photos and round out the discussion with some explanation of how these scallop surveys play in commercial fisheries management, and then I’ll cut you loose for the summer.

Ropes, used on hatches, which we may or may not have battened.
Ropes, used on hatches, which we may or may not have battened.

Questioning the Data

We’ve been doing science 24/7 while at sea, and even with twelve highly accomplished people in the science party, I know we only scratched the surface and these folks have mountains of work ahead of them back at their offices in Woods Hole. I also know that much of that work will involve healthy doses of pretty complex math.  I saw an episode of NOVA recently that said something like “science is the story of everything, but the language of that story is told through mathematics.”  Let kids do science; through those experiences, they’ll learn more and ask more questions than they can answer and before they realize it, have learned a ton of math – and how to solve their own problems.

Wet-lab whiteboard humor
Wet-lab whiteboard humor

Before these scientists can really dig in on the heavy math, the data we were collecting has/had to be sorted and organized appropriately. On the dredge, we did most that in the wet-lab, where we physically counted, classified, measured and weighed the species we caught. While using HabCam, we were in the dry lab and the photos and data was collected on the PCs connected to the fiber-optics cable.

What’s up Watch Chief! That’s the wet lab, which is a trailer set up between the vestibule and dredge deck
What’s up Watch Chief! That’s the wet lab, which is a trailer set up between the vestibule and dredge deck

Dredge Data

The hands-on, real-person data collection associated with the dredge is important in fisheries science for many reasons.  For example, estimated weights of things seen in the HabCam photos can only be estimated with any degree of accuracy if they are based on actual data.  Additionally, there are some things you simply cannot determine through non-invasive means, as I experienced first hand assisting Dr. Gallager in the wet lab.  While weighing and measuring the organs of his scallop sample we saw that scallop populations in warmer water had spawned, but some of those in deeper/colder water had not yet done so.  People like Drs. Gallager and Shank can use that information and combine it with data relating to currents and historical data as they develop hypothesis of where to expect scallop populations (they call them “recruitments”) to develop in the future.

A simple graph showing fish length
A simple graph showing fish length

One of my jobs was to be in charge of a tool called “Star Oddi” which consists of a small, bullet-shaped underwater data logger that collects information such as temperature, depth, salinity and tilt of the dredge (it does get flipped over from time to time) as it is towed along the sea floor.  I would trade out the data-logger between each dredge, upload the data to a PC, and tell our watch chief if I noticed anything outside of the expected ranges.

Physically counting and measuring the weight of starfish helps establish reliable estimates of predator affect on scallop population
Physically counting and measuring the weight of starfish helps establish reliable estimates of predator effect on scallop population

HabCam Data / Annotation

Between times piloting the HabCam, we would help annotate some of the photographs, identifying substrate and species seen in the individual photos. For scallops, we used the mouse to draw a line indicating the size of each scallop.

There are four scallops in the annotated photo below.  I’ve drawn a line (in green) from the scallop’s umbo to the front of their shells, or across their width if they didn’t completely fit on the screen. The shadows could also help us identify whether they were swimming or stationary on the sea floor.  Using the HabCam’s recorded distance from the ground, the computer could then determine their respective sizes with relative certainty, which will help scientists estimate their respective weights, which all plays into determinations of how many scallops there are and whether the species, as a whole, is healthy.

Data, informing decisions
Data, informing decisions

The mosaics of HabCam photos sometimes reminded me of stars in the night time sky
The mosaics of HabCam photos sometimes reminded me of stars in the night time sky

I’ll share some more photos taken while annotating in the photblog, for now, let’s put my degrees in economics and law to use…

Fisheries

Many people hear the word “fishery” and think of a plants and a “nursery,” and they are similar in that they are places where something is raised for commercial purposes, but, most fishery production occurs in what would be considered publicly accessible water, like the ocean.

In our earlier discussions, you realized that with its favorable water and currents, Georges Bank is ripe territory for marine life, and historically, Georges Bank has been considered the world’s most productive fishery.  Indeed, Georges Bank has played a key role in the culture and economy of New England for more than 400 years. An April 2012 issue of Down East magazine (note to folks who don’t have a “Mainah” for a mom:  “Down East” is a slang term typically applied to the upper east coast of Maine) noted that by the time of the Mayflower voyage, the cod fishing stations at Damariscove and Monhegan islands had been operating year-round for the better part of a decade.

But just like my trip aboard the Sharp, all good things must come to an end, and over the past century, the environment has changed, human populations grew, demand increased, and technology made fishing faster, safer, bigger and more predictable.  Fortunately, they still call it fishing…

…I mean, if you caught one every time, they’d change the name to “catchin’!”
…I mean, if you caught one every time, they’d change the name to “catchin’!”

Texas Standards: A Teachable Moment

In Texas, we are tied to state standards called “Texas Essential Knowledge and Skills,” or “TEKS.”  One of our G5 TEKS states that by the end of the year, “The student is expected to predict the effects of changes in ecosystems caused by living organisms, including humans, such as the overpopulation of grazers or the building of highways.

Locally, my students are in the middle of a real world study of this TEKS, as a recently elected Austin city councilman has proposed a road through the middle of the Balcones Preserve behind our school, saying the road will provide a “fire break.”  As you might imagine, the idea has gotten the attention of some local interest groups and home owners in the neighborhood around the school.

For the lesson, my students were told that their role was simply to read the articles about the proposed road and combine it with existing knowledge gained in my classroom, follow the TEKS, and predict changes to the ecosystem if the road is ultimately built.

Photo from fourpointsnews.com
Photo from fourpointsnews.com

While for my students, their predictions relate to the “highway” aspect of the TEKS, “overgrazing by humans” and the idea of “a ship highway” in the seas offer some parallels to the fisheries we’ve been surveying on this cruise.

Back to the Bank

For nearly 350 of the 400 years commercial fishing has been happening off the coast of New England, regulations were negligible, and the area experienced heavy fishing by American fishers as well as vessels from other countries.  It wasn’t until 1976 that the federal government adopted the Magnuson Fishery Conservation and Management Act, which gave the United States the exclusive economic zone that includes Georges Bank and set up a system of industry regulation.

While the Act gave the U.S. government some power to regulate fishing in the area over the long term, the initial intent was aimed more at helping to protect American fishers more than the fish, and in the first 20 years of the Act, the fish continued to suffer.  In the 1990s, protection efforts picked up, and in 1996, President Bush amended the Act to better promote conservation by focusing on rebuilding overfished fisheries, protecting essential fish habitat, and reducing bycatch (which is the catching of fish you aren’t actually trying to catch.)

There are four or five main players in the equation, with each having a fair and logical argument of why their interests should receive priority:

  • Fishermen:  In one chair sit the fishermen and the people who work for them.
  • Companies: In another chair sit the non-fishing companies who meet market demand, buying, selling, processing, transporting, etc., seafood.
  • Consumers: In another chair sits the consumers who buy and eat seafood.
  • Environmental/non-profit groups: Standing on a truffula tree stump, speaking on behalf of the fish.
  • The last chair belongs to the government:  “of the people, by the people, and for the people.”

Whoa, what’s up with the blood pressure spike? Did I strike a chord?

I’ll let you work out in your mind whom you believe should get priority… (note: If you get it right, you might pass fifth grade and get your PhD in one fell swoop!)

Specifically, Scallop

Today, when it comes to management of the scallop fishery, NOAA Fisheries is the lead agency, while the New England Fishery Management Council assesses and makes policy recommendations for the Northeast, and the Mid-Atlantic Fishery Management Council does so for the area down to the Mid-Atlantic region. These organizations have implemented several management tools intended to support conservation.  Some examples of regulatory tools they’ve used include:

  • Regulating the number of vessels allowed to fish for scallop and people aboard those vessels;
  • Regulating the length of a fishing season and limiting days vessels can remain at sea;
  • Regulating the amount of fish that can be caught as well as the amount of bycatch allowed
  • Closing areas to fishing; and,
  • Increasing the size of the rings on the dredge-net (note: recall, the dredge is like a big sieve; bigger holes allow smaller things to filter through)

Through these management efforts, scallop populations have rebounded significantly, with the permitted (dredge-net) ring-size, limitation of days at sea/total allowable catch, and “closed-area” management tools getting much of the credit. The rebound is certainly noteworthy considering that the Atlantic Sea Scallop fishery, which extends from the Mid-Atlantic area near Cape Hatteras, NC up to Georges Bank, is the largest and most valuable wild scallop fishery in the world, valued at nearly $580 million in 2011.

While much of the research and management is funded by the government, it is important to acknowledge the commercial fishery’s contribution through the Scallop Research Set-Aside Program.  Through that program, 1.25 million pounds of the allowed scallop harvest is set aside each year to fund scallop habitat research and surveys to better inform future policy/management decisions.

So, What’s Next?

Well, that’s the million-dollar question, isn’t it?

Scallop populations have responded well to these regulatory/management efforts, while other species, such as cod, continue to struggle mightily.

As the scallop population returns to (and maybe even starts to exceed) what have been called “sustainable numbers,” the “closed areas” management tool presents some unique questions, primarily relating to an idea called “carrying capacity.” Carrying capacity essentially asks “how many scallop can survive here before there are too many for the system to stay healthy?”  For the fishers, the water can seem bluer on the other side of the fence (or, um, something like that) and they want to see these areas re-opened, but variables have to be considered and data confirmed for conclusions to be both reliable and valid.  In other words, there is a risk of irreparable harm if an area is opened for fishing too soon or too late.

I mention carrying capacity because while I was aboard the Sharp, the New England Fisheries Management Council announced that it was going to recommend that one of the closed areas of Georges Bank, known as the Northern Edge, be reopened to fishing.  The newspapers I read showed that there has been a predictably mixed reaction to the announcement.  NOAA Fisheries will consider the recommendation by the New England Council and their decision on the recommendation is not expected to be final until some time in 2016.

Now, about that proposed road through our Preserve…

Lagniappe

In the last few weeks I’ve introduced you to a few scientists and talked about my role helping to give students an avenue to explore, question and pursue learning about things that interest them in a safe, supportive environment.  I’m going to close out the Lagniappe section of my TAS blog by introducing you to “what’s next” in scallop science through a conversation with fellow day-watch science-crew member, and Cornell PhD candidate, Katie Kaplan.

That’s Katie in the hat and sunglasses, avoiding the paparazzi
That’s Katie in the hat and sunglasses, avoiding the paparazzi

Katie is a volunteer on this cruise.  She’s using HabCam data as part of the work towards her PhD and wanted to get a first hand peek at the HabCam in action (I mean, who wouldn’t want to fly over the sea floor and pick fights with crabs and lobsters!), so, she signed up.  Katie’s work fits nicely in today’s blog for several reasons, largely because her work centers on what is happening with the scallops in one of the closed areas I discussed above.

Specifically, Katie is evaluating the impacts of marine protected areas on interactions of sea scallops and other species in benthic (i.e. – “seafloor”) ecosystems.  In particular she is evaluating the relationship between an invasive tunicate species, Didemnum vexillum and scallops and the impact of the closed areas on this relationship. The invasive tunicate has spread in Georges Bank since 2002 and threatens scallop habitat since they compete for the same space (note: with tunicate species being commonly referred to by names like sea “squirts,” “pork,” and “livers,” you might get the impression their “invasion” isn’t perceived as favorable). After a few weeks in my class it should be obvious, but studying interactions among species as they relate to fishery resources is essential to ensuring fish habitat remains viable and fisheries remain productive to meet our needs as consumers.

On a more personal note, Katie grew up just outside of New York City and headed to Grinnell College in Iowa for her undergraduate studies.  After graduation, she taught English in Ecuador and while living there and on Galapagos, decided to pursue a career that combined her interests in the ocean with her wicked good biology skills (whoa, did I just use “wicked” as an adjective?  I’ve been up north too long!). I need to add that while it’s too long a story for the blog, I seem to be having a “Cornell year,” so it is entirely appropriate that I met my new friend Katie on this cruise.

Katie became inspired to study marine science while swimming with sea lions and sea turtles in Galapagos (um, who wouldn’t, Katie!?!).  While there she studied vulnerable fish habitat on the islands — including nursery areas for sharks!  She decided to devote her life to conservation and management of marine life due to concerns of human caused destruction of the environment.  She hopes “to make a positive impact by contributing to conservation based research and helping humans learn to interact with the environment in a less destructive way.”

Kudos, my friend.  I’m so happy we were on watch together, it was so nice of you to distract the paparazzi…

Photoblog:

Nothing really to annotate in this shot, but, you can see the whole screen.
Nothing really to annotate in this shot, but, you can see the whole screen.

Creeeeeeeeeeeeeeepy
Creeeeeeeeeeeeeeepy

Waved whelk, heading to the 01.
Waved whelk, heading to the 01.

HabCam scared a flatfish.  He was slingin' gravel and puttin' a ton of dust in the air.
HabCam scared a flatfish. He was slingin’ gravel and puttin’ a ton of dust in the air.

Nature
Nature

Textures of the sea
Textures of the sea

Not at all like the blue points down here on the coast that will snip at you
Not at all like the blue points down here on the coast that will pinch you in a heartbeat

I saw this hermit crab out of his shell and heard Dumbledore’s voice in my head saying “You cannot help it;” it was only weird when I looked up and realized I was not in Kings Cross Station
I saw this hermit crab out of his shell and heard Dumbledore’s voice in my head saying “You cannot help it;” it was only weird when I looked up and realized I was not in Kings Cross Station

...I was always on the lookout for the Nisshin Maru; never saw it.
…I was always on the lookout for the Nisshin Maru; never saw it.

Students, always clean up your lab!
Students, always clean up your lab!

More nature.
More nature.

Winslow Homer would be so mad if he knew he could've painted this while hanging out with Rachel Carson at Woods Hole.
Winslow Homer would be so mad if he knew he could’ve painted this while hanging out with Rachel Carson at Woods Hole (her:  “I had my first prolonged contact with the sea at Woods Hole. I never tired of watching the swirling currents pour through the hole — that wonderful place of whirlpools and eddies and swiftly racing waters.”)

DSCN0006

So, that’s about it.  I loved my time aboard the R/V Hugh R. Sharp, have made some new friends, and will always treasure the memories made as a 2015 NOAA Teacher at Sea.  Thanks again, NOAA, what a grand adventure…

Airplane Playlist to Texas:  James Taylor (“Carolina”, “Angels of Fenway”), Robert Earl Keen, Jr. (I’m Comin’ Home); Alpha Rev (“Sing Loud”); Keane (“Somewhere Only We Know”); Avett Brothers (“Spanish Pipedream”); Jim & Jesse (“Paradise”); Amos Lee (“Windows Are Rolled Down”); Bobby Darin (“Beyond The Sea”)

Go outside and play.  Class dismissed.

Mr. Hance

Trevor Hance: Life, As You (Already) Know It… June 21, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 21, 2015

Teacher at Sea?
Teacher at Sea?

Science and Technology Log

The rhythm of a ship rocking and rolling through varied wave heights while catching some zzzz’s in a small, curtain-enclosed bunk provides an opportunity to get some really amazing deep sleep.  Last night I had a dream that one of my childhood friends married Dan Marino.  It seemed completely bizarre until I remembered we saw lots of dolphins yesterday.

Dan? Mrs. Marino? Is that you?
Dan? Mrs. Marino? Is that you?

Seas have calmed substantially from the ride we had a couple of days ago, and for the past few days the ride has been so smooth I feel more like a “Teacher at Pond” than “Teacher at Sea.”  Unfortunately, it looks like that awful weather system my friends and family have been dealing back home in Texas is about to make its way to us here off the coast of New England (what many Texans consider “the southern edge of Santa-land”) and there’s even a chance today might be our last full day at sea.

At the helm: Estoy El Jefe!
At the helm: Estoy El Jefe!

Operations

Operationally, we’ve shifted back and forth from dredge to HabCam work and it is a decidedly different experience, and as with everything, there are pros and cons.

HabCam

As mentioned in an earlier blog, the HabCam requires two people to monitor two different stations as pilot and co-pilot, each with several monitors to help keep the system running smoothly and providing updates on things like salinity, depth and water temperature (currently 4.59 degrees Celsius – yikes!!!).

Views of the screens we monitor: from 6 o’clock, moving clockwise:  the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel
Views of the screens we monitor: from 6 o’clock, moving clockwise: the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel

The pilot gets to drive the HabCam with a joystick that pays-out or pulls in the tow-wire, trying to keep the HabCam “flying” about 2 meters off the sea floor.  Changes in topography, currents, and motion of the vessel all contribute to the challenge. The co-pilot primarily monitors and annotates the photographs that are continually taken and fed into one of the computers in our dry-lab.  I’ll share more about annotating in the next blog-post, but essentially, you have to review, categorize and sort photos based on the information each contains.

The winch has its own monitor
The winch has its own monitor

Driving the HabCam gives you a feeling of adventure – I find myself imagining I am driving The Nautilus and Curiosity, but, after about an hour, things get bleary, and it’s time to switch and let one of the other crew members take over.  My rule is to tap-out when I start feeling a little too much like Steve Zissou.

Dredge

Dredge work involves dropping a weighted ring bag that is lined with net-like material to the sea floor and towing it behind the vessel, where it acts as a sieve and filters out the smallest things and catches the larger things, which are sorted, weighed and measured in the wet lab on the back deck.

Close up of the dredge material
Close up of the dredge material; HabCam in the background

Dredge work is a little like the “waves-crashing-across-the-deck” stuff that you see on overly dramatized TV shows like “Deadliest Catch.”  As my students know, I like getting my hands dirty, so I tend to very much enjoy the wind, water and salty experience associated with a dredge.

Yours truly, sporting my homemade jolly roger t-shirt after a successful dredge
Yours truly, after a successful dredge, sporting my homemade Jolly Roger t-shirt

While the dredge is fun, my students and I use motion-triggered wildlife cameras to study the life and systems in the Preserve behind our school, and I fully realize the value those cameras provide — especially in helping us understand when we have too much human traffic in the Preserve. The non-invasive aspects of HabCam work provide a similar window, and a remarkable, reliable data source when you consider that the data pertaining to one particular photograph could potentially be reviewed thousands of times for various purposes.  The sheer quantity of data we collect on a HabCam run is overwhelming in real-time, and there are thousands of photos that need to be annotated (i.e. – reviewed and organized) after each cruise.

More Science

Anyway, enough of the operational stuff we are doing on this trip for now, let’s talk about some science behind this trip… I’m going to present this section as though I’m having a conversation with a student (student’s voice italicized).

Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain't no party like a dead skate party...
Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain’t no party like a dead skate party…

Mr. Hance, can’t we look at pictures instead of having class?  I mean, even your Mom commented on your blog and said this marine science seems a little thick.

We’ll look at pictures in a minute, but before we do, I need you to realize what you already know.

The National Wildlife Federation gives folks a chance to support biodiversity by developing a “Certified Wildlife Habitat” right in their own backyard.  We used NWF’s plan in our class as a guideline as we learned that the mammals, amphibians, reptiles and birds we study in our Preserve need four basic things for survival:  water, food, shelter and space (note:  while not clearly stated in NWF’s guidelines, “air” is built in.)

This same guide is largely true for marine life, and because we are starting small and building the story, we should probably look at some physics and geology to see some of the tools we are working with to draw a parallel.

Ugh, more water and rocks?  I want to see DOLPHINS, Mr. Hance!

Sorry, kid, but we’re doing water and rocks before more dolphins.

Keep in mind the flow of currents around Georges Bank and the important role they play in distributing water and transporting things, big and small.  Remember what happened to Nemo when he was hanging out with Crush? You’ll see why that sort of stuff loosely plays in to today’s lesson.

Let There Be Light! And Heat!
Let There Be Light! And Heat!

As I mentioned in an earlier post, Georges Bank is a shallow shoal, which means the sea floor has a lot more access to sunlight than the deeper areas around it, which is important for two big reasons. First, students will recall that “light travels in a straight line until it strikes an object, at which point it….” (yada, yada, yada).  In this case, the water refracts as it hits the water (“passes through a medium”) and where the water is really shallow, the sunlight can actually reflect off of the sea floor (as was apparent in that NASA photo I posted in my last blog.)

Also important is the role the sun plays as the massive energy driver behind pretty much everything on earth.  So, just like in our edible garden back at school, the sun provides energy (heat and light), which we know are necessary for plant growth.

Okay, so we have energy, Mr. Hance, but what do fish do for homes?

The substrate, or the sediment(s) that make-up the sea floor on Georges Bank consists of material favorable for marine habitat and shelter.  The shallowest areas of Georges Bank are made mostly of sand or shell hash (“bits and pieces”) that can be moved around by currents, often forming sand waves.  Sand waves are sort of the underwater equivalent of what we consider sand dunes on the beach.  In addition to the largely sandy areas, the northern areas of the Bank include lots of gravel left behind as glaciers retreated (i.e. – when Georges Bank was still land.)

Moving currents and the size of the sediment on the sea floor are important factors in scallop population, and they play a particularly significant role relating to larval transportation and settlement.  Revisiting our understanding of Newton’s three laws of motion, you’ll recognize that the finer sediment (i.e. – small and light) are easily moved by currents in areas of high energy (i.e. – frequent or strong currents), while larger sediment like large grains of sand, gravel and boulders get increasingly tough to push around.

Importantly, not all of Georges Bank is a “high energy” area, and the more stable areas provide a better opportunity for both flora and fauna habitat.  In perhaps simpler terms, the harder, more immobile substrates provide solid surfaces as well as “nooks and crannies” for plants to attach and grow, as well as a place for larvae (such as very young scallop) to attach or hide from predators until they are large enough to start swimming, perhaps in search of food or a better habitat.

With something to hold on to, you might even see what scientists call “biogenic” habitat, or places where the plants and animals themselves make up the shelter.

Substrate samples from one of our dredges; sand, rocks/gravel/pebbles,
Substrate samples from one of our dredges; shells, sand, rocks/gravel/pebbles, “bio-trash” and a very young crab

There is one strand of a plant growing off of this rock we pulled up.  Not much, but it's something to hold on to!
There is one strand of a plant growing off of this rock we pulled up. Not much, but it’s something to hold on to!

Hmmmmmmmmmmmmm, rocks and one weed, huh… I wonder what’s happening at the pool…

Whoa, hold on, don’t quit — you’re half way there!

Before you mind drifts off thinking that there are coral reefs or something similar here, it is probably important that I remind you that the sea floor of Georges Bank doesn’t include a whole lot of rapid topography changes – remember, we are towing a very expensive, 3500 lb. steel framed camera at about 6 knots, and it wouldn’t make sense to do that in an area where we might smash it into a bunch of reefs or boulders.  Here, things are pretty flat and relatively smooth, sand waves and the occasional boulder being the exceptions.

Okay, our scallops now have a place to start their life, but, what about breathing and eating, and why do they need “space” to survive?  Isn’t the ocean huge?

As always, remember that we are trying to find a balance, or equilibrium in the system we are studying.

One example of a simple system can be found in the aquaponics systems we built in our classroom last year. Aquaponics is soil-less gardening, where fish live in a tank below a grow bed and the water they “pollute” through natural bodily functions (aka – “poop”) is circulated to the grow bed where the plants get the nutrients they need, filter out the waste and return good, healthy water back to the fish, full of the micronutrients the fish need to survive.  I say our system is simple because we are “simply” trying to balance ammonia, nitrates and phosphates and not the vast number of variables that exist in the oceans that cover most of our Earth’s surface.  Although the ocean is much larger on the spatial scale, the concept isn’t really that much different, the physical properties of matter are what they are, and waste needs to be processed in order for a healthy system to stay balanced.

Our simple classroom system
Our simple classroom system

Another aspect of our aquaponics system that provides a parallel to Georges Bank lies in our “current,” which for us is the pump-driven movement of water from the fish to the plants, and the natural, gravity-driven return of that water to the fish.  While the transportation of nutrients necessary to both parties is directionally the exact opposite of what happens here on Georges Bank (i.e. – the currents push the nutrients up from the depths here), the idea is the same and again, it is moving water that supports life.

But, Mr. Hance, where do those “nutrients” come from in the first place, and what are they feeding?

Remember, systems run in repetitive cycles; ideally, they are completely predictable.  In a very basic sense where plants and animals are concerned, that repetitive cycle is “life to death to life to death, etc…”  This is another one of those “here, look at what you already know” moments.

When marine life dies, that carbon-based organic material sinks towards the bottom of the ocean and continues to break down while being pushed around at depth along the oceans currents. Students will recognize a parallel in “The Audit” Legacy Project from this spring when they think about what is happening in those three compost bins in our edible garden; our turning that compost pile is pretty much what is happening to all of those important nutrients getting rolled around in the moving water out here – microscopic plants and animals are using those as building blocks for their life.

Our new compost system
Our new compost system

Oh wait, so, this is all about the relationship between decomposers, producers and consumers?  But, Mr. Hance, I thought that was just in the garden?

Yes, “nutrient rich” water is the equivalent of “good soil,” but, we have to get it to a depth appropriate for marine life to really start to flourish.  Using your knowledge of the properties of matter, you figured out how and why the currents behave the way they do here.  You now know that when those currents reach Georges Bank, they are pushed to the surface and during the warm summer months, they get trapped in this shallow(ish), warm(ish) sunlit water, providing a wonderful opportunity for the oceans’ primary producers, phytoplankton, to use those nutrients much like we see in our garden.

Ohhhhhhhhhhhh, I think I’m starting to see what you mean. Can you tell me a little more about plankton?

The term plankton encompasses all of the lowest members of the food chain (web), and can be further divided into “phytoplankton” and “zooplankton.”  Yes, “phyto” does indeed resemble “photo,” as in “photosynthesis”, and does indeed relate to microscopic plant-like plankton, like algae.  Zooplankton pertains to microscopic animal-like plankton, and can include copepods and krill.

Plankton are tiny and although they might try to swim against the current, they aren’t really strong enough, so they get carried along, providing valuable nutrients to bigger sea creatures they encounter.  Just like on land, there are good growing seasons and bad growing seasons for these phytoplankton, and on Georges Bank, the better times for growing coincide with the spring-summer currents.

Dude, Mr. Hance, I didn’t know I already knew that…. Mind…. Blown.

Yeah little dude, I saw the whole thing. First, you were like, whoa! And then you were like, WHOA! And then you were like, whoa…  Sorry, I got carried away; another Nemo flashback. While I get back in teacher-mode, why don’t you build the food web. Next stop, knowledge…

You've got some serious thrill issues, dude
You’ve got some serious thrill issues, dude

But, Mr. Hance, you are on a scallop survey.  How do they fit into the food web? You told us that you, crabs and starfish are their primary natural predators, but, what are they eating, and how?

Scallops are animals, complete with muscles (well, one big, strong one), a digestive system, reproductive system, and nervous system.  They don’t really have a brain (like ours), but, they do have light-sensing eyes on their mantle, which is a ring that sits on the outer edge of their organ system housed under their protective shell.  Acting in concert, those eyes help scallops sense nearby danger, including predators like those creepy starfish.

Predators
Predators

Scallops are filter feeders who live off of plankton, and they process lots of water.  With their shells open, water moves over a filtering structure, which you can imagine as a sort of sieve made of mucus that traps food.  Hair-like cilia transport the food to the scallop’s mouth, where it is digested, processed, and the waste excreted.

DSCN0154
The text is small, but, it describes some of the anatomy of the scallop. Click to zoom.

DSCN0158

But, Mr. Hance, do they hunt? How do they find their food?

Remember, scallops, unlike most other bivalves such as oysters, are free-living, mobile animals; in other words, they can swim to dinner if necessary.  Of course, they’d prefer to just be lazy and hang out in lounge chairs while the food is brought to them (kind of like the big-bellied humans in my favorite Disney film, Wall-E), so can you guess what they look for?

Gee, Mr. Hance…. Let me guess, water that moves the food to them?

Yep, see, I told you this was stuff you already knew.

I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.
I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.

While plankton can (and do!) live everywhere in the shallow(ish) ocean, because they are helpless against the force of the current, they get trapped in downwellings, which is a unique “vertical eddy,” caused by competing currents, or “fronts.”  Think of a downwelling as sort of the opposite of a tug-o-war where instead of pulling apart, the two currents run head-on into one another.  Eventually, something’s gotta give, and gravity is there to lend a hand, pushing the water down towards the sea floor and away, where it joins another current and continues on.

Those of you who have fished offshore will recognize these spots as a “slick” on the top of the water, and there is often a lot of sea-foam (“bubbles”) associated with a downwelling because of the accumulation of protein and “trash” that gets stuck on top as the water drops off underneath it.

Those
Those “smooth as glass” spots are where currents are hitting and downwellings are occurring

This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)
This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)

Because plankton aren’t strong enough to swim against the current, they move into these downwellings in great numbers.  You can wind up with an underwater cloud of plankton in those instances, and it doesn’t take long for fish and whales to figure out that nature is setting the table for them.  Like our human friends in Wall-E, scallops pull up a chair, put on their bibs and settle at the base of these competing fronts, salivating like a Pavlovian pup as they wait on their venti-sized planko-latte (okay, I’m exaggerating; scallops live in salt water, so they don’t salivate, but because I’m not there to sing and dance to hold your attention while you read, I have to keep you interested somehow.)

If you become a marine scientist at Woods Hole, you’ll probably spend some time looking for the “magic” 60m isobaths, which is where you see scallop and other things congregate at these convergent fronts.

Before you ask, an isobaths is a depth line.  Depth lines are important when you consider appropriate marine life habitat, just like altitude would be when you ask why there aren’t more trees when you get off the ski lift at the top of the mountain.

Um, Mr. Hance, why didn’t you just tell us this is just like the garden!  I’m immediately bored.  What else ya got?

Well, in the next class, we’ll spend some time talking about (over-)fishing and fisheries management, but for now, how about I introduce you to another one of my new friends and then show you some pictures?

I don’t know, Mr. Hance, all of this talk about water makes me want to go swimming.  I’ll stick around for a few minutes, but this dude better be cool.

Lagniappe: Dr. Burton Shank

Today, I’ll introduce another important member of the science crew aboard the vessel, Dr. Burton Shank.  As I was preparing for the voyage, I received several introductory emails, and I regret that I didn’t respond to the one I received from Burton asking for more information.  He’s a box of knowledge.

That's Burton, on the right, sorting through a dredge with lots and lots of sand dollars.
That’s Burton, on the right, sorting through a dredge with lots and lots of sand dollars.

Burton is a Research Fishery Biologist at National Marine Fisheries Service in Woods Hole working in the populations dynamic group, which involves lots of statistical analysis (aka – Mental Abuse To Humans, or “MATH”).  Burton’s group looks at data to determine how many scallops or lobsters are in the area, and how well they are doing using the data collected through these field surveys.  One of my students last year did a pretty similar study last year, dissecting owl pellets and setting (humane) rat traps to determine how many Great Horned Owls our Preserve could support.  Good stuff.

Burton is an Aggie (Whoop! Gig ‘Em!), having received his undergraduate degree from Texas A&M at Galveston before receiving his master’s in oceanography from the University of Puerto Rico and heading off as a travelling technical specialist on gigs in Florida, Alaska and at the Biosphere in Arizona.  For those unfamiliar, the biosphere was a project intended to help start human colonies on other planets, and after a couple of unsuccessful starts, the research portion was taken over by Columbia University and Burton was hired to do ocean climate manipulations.  Unlike most science experiments where you try to maintain balance, Burton’s job was to design ways that might “wreck” the system to determine potential climate situations that could occur in different environments.

As seems to be the case with several of the folks out here, Burton didn’t really grow up in a coastal, marine environment, and in fact, his childhood years were spent in quite the opposite environment:  Nebraska, where his dad was involved in agricultural research.  He did, however, have a small river and oxbow like near his home and spent some summers in Hawaii.

It was on during a summer visit to Hawaii at about 9 years old that Burton realized that “life in a mask and fins” was the life for him.  On return to Nebraska, home of the (then!) mighty Cornhusker football team, many of his fellow fourth grade students proclaimed that they would be the quarterback at Nebraska when they grew up.  Burton said his teacher seemed to think being the Cornhusker QB was a completely reasonable career path, but audibly scoffed when he was asked what he wanted to be and said he would be a marine biologist when he grew up.  I welcome any of you young Burton’s in my class, anytime – “12th Man” or not!

Photoblog:

RSCN0090
Sheerwater, I loved the reflection on this one

Such a nice day
Such a nice day

You'll never look at them the same, will you?
You’ll never look at them the same, will you?

Cleaning up after a dredge
Cleaning up after a dredge; shot from vestibule where wet-gear is housed.  We spent lots of time changing.

So fun to see lobsters and crabs when
So fun to see lobsters and crabs when “HabCam’ing.” They rear back and raise their claws as if to dare you to get any closer.

Good night!
Good night!

Playlist:  Matisyahu, Seu Jorge, Gotan Project, George Jones

Okay, that’s it, class dismissed.  Get outta here…

Mr. Hance

Trevor Hance: Water, Water Everywhere… Time for a Bath(ology), June 17, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 17, 2015

Science and Technology Log

We’re now at the half-way point of this journey and things continue to run well, although the weather has picked up a bit.  I mentioned to one of my fellow crew members that the cloud cover and cool weather reminded me of “football and gumbo” and he said, “Yeah… around here, we just call it ‘June’.” Touché, my friend.

“June,” huh…. Hey, this guy got jokes!

I am continually impressed by both the ship’s crew and the science party’s ability to identify work that needs to be done and set a course towards continued, uninterrupted success of the mission.  The depth and breadth of knowledge required to navigate (all puns intended!) extended scientific expeditions requires professional dedication matched with a healthy sense of humor, and it is truly an honor to be invited to participate in this unique opportunity for teachers. I am learning volumes each day and will forever treasure this wonderful adventure.  Thanks again, NOAA!

Remember students, don’t kiss frogs.  Gigantic lobsters?  Well…
Remember students, don’t kiss frogs. Gigantic lobsters? Well…

Science and Math

My instructional path is rooted in constructivist learning theory, and I work diligently to secure resources for my students to have authentic, project-based learning experiences where they determine budgets, necessary tools and physically build things that we use on our campus.

Most recently, my math class designed and built some raised mobile garden beds that will be used by the youngest students on our campus as well as those with unique mobility challenges.  Through these hands-on learning experiences, I expect my students to develop a solid working-level of mathematic and scientific literacy, and I’m proud of the fact that when I present a new concept, my students never ask “When am I going to have to use this in real life?”

My students doing math.  More doing, more learning...
My students doing math. More doing, more learning…

I believe fifth grade students can understand any science concept, and I am seeing additional opportunities to test that idea using what I learn out here, so thought I’d share a few examples of some of the things I’ve learned as they will be presented in my G5 classroom starting this fall.

With a basic understanding of the objective for this survey presented in the last blog, I’ll explore some of the geographic and hydrodynamic concepts associated with this part of the world in this post.  In the next blog, I’ll dive deeper into a specific study of scallops and lobsters, and in the fourth post I’ll talk more about the effects of current marine/fisheries management practices, with particular focus on those relating to closed areas (somewhat akin to the Balcones Preserve behind our campus.)

This is a Sculpin Longhorn, distantly related to BEVO
This is a Sculpin Longhorn, distantly related to BEVO

Georges Bank…water, water everywhere, time for a bath(ology)

We all know that water is central to our survival, and “playing” with water provides a strong anchoring point (am I pushing the puns too far?) for understanding systems relationships as students progress through their educational path.  For the past couple of years, I have been accepted to participate in a “Scientist in Residence” program offered through the University of Texas’ Environmental Science Institute, which pairs local teachers with a graduate level scientist for an entire school year.  In my first year, I was paired with (recently graduated) Dr. Kevin Befus, whose work focuses on hydrology.  Through my work with Kevin (note to students:  I can call him Kevin, you call him Dr. – he’s earned it!), I learned much about water and the importance of “flow,” and when you understand some of the “flow” relating the world’s most productive fishery, Georges Bank, I think you’ll agree with me.

Dolphin splashin’, getting everybody all wet
Dolphin splashin’, getting everybody all wet

Georges Bank is an oval shaped shoal, which is essentially a submerged island that lies about 60 miles off the coast of Cape Cod, and covers nearly 150 square miles.  “The Bank,” or “Georges,” as many people aboard the vessel refer to it, is only recently submerged (i.e. – within the last 100,000 years).  As recently as ten years ago scientists found mastodon tusks on the Bank, and legend holds that in the early 1900s, fishing vessels would stop on an island in Georges Bank (now submerged to about 10m) and play baseball (note:  I have yet to find a bat and ball aboard the Sharp, but hope remains!)

Just like good soil helps support plant life, good water helps support marine life, and the key to the abundant life along Georges Bank lies in the nutrient rich water that is pushed towards the surface as it approaches Georges from the north and south.  On three sides of Georges Bank, the sea floor drops dramatically.  To the north sits the Gulf of Maine, which drops to approximately 1000m deep, and to the east and south, the Atlantic Ocean quickly reaches depths of over 2500m.

NASA photo
NASA photo

Almost all water enters Georges Bank from the north via the Gulf of Maine. The Gulf of Maine is fed via natural river discharges (including those from the Damariscotta and Merrimack Rivers) and the Labrador Currents that hug the coastline south around Nova Scotia before turning west into the Gulf of Maine.  Water also enters the Gulf of Maine through The North Channel on the east side of Maine from the Gulf Stream and that very salty, warm water is important, particularly when it comes to the biology of Georges Bank (as we’ll look at more in the next blog entry.)

Much of the water exiting the Gulf of Maine enters The Great South Channel, which is something like a “river in the ocean” that runs between Cape Cod and Georges Bank.  Deep within the Channel is a “sill,” which is a type of landform barrier, similar to a fence that doesn’t reach up to the surface.  The sill rises quickly from the sea floor and extends across the Great South Channel, effectively blocking the deepest, densest water, resulting in strong, deep, cold currents that are pushed east around the outer edge of Georges Bank before returning towards the United States’ east coast in a clockwise path, resembling “from 11 until 7” on a clock’s face.  Yes students, I do mean an analog clock!

After the deep currents make their way back to southern Massachusetts, they head south on the Longshore Coastal Current, which is like a “jet” of water that sprints southbound right along the eastern United States coastline (note:  those of us from the Gulf Coast frequently hear friends wonder why the Atlantic Ocean is so cold when they visit Florida, and this is partly why!)

At this point, I’m going to take a moment and speak directly to my students:   Just as the water flows into and mixes at Georges Bank from different directions, I’m hopeful that your thoughts are starting to swirl as you recognize the connection to concepts we have studied relating to energy, weather and climate, mixtures and solutions, salinity (and conductivity/resisitivity) and density (and buoyancy) – they are all evident and part of this story! And YES — this WILL be on the test!

b3g - 4 shells
I pulled these four scallops from one of our dredges to show the unique, beautiful patterns we find while sorting

While the deep-water currents that circle around Georges Bank’s edges exist year-round, in the winter there isn’t tremendous difference in the three primary water measurements (“Conductivity, Temperature and Density,” or “CTD”) between the water in The Great South Channel versus that sitting atop Georges Bank.  As you might recognize, in normal conditions, there shouldn’t be much cause for warm or fresh water to be added to the area during the cold winter months, as our part of the world seems to slow down and a goodly amount of water freezes.  In the spring, however, the northern hemisphere warms and ice melts, adding lots of warmer-and-fresh water to the Labrador Current and river discharges I mentioned above, ultimately sending that water south towards Georges Bank.  At this point, things get really interesting…

The new, warmer water is less dense than the deeper water. The warm and cold water ultimately completely decouple and become fully stratified (i.e. – there are two distinct layers of water sitting one on top of the other.)  The stratified layers move in separate currents:  the deeper, colder, more-dense layer continues its clockwise, circular path along the outer edge of the Bank before heading south; and the top, “lighter” layer gets “trapped” in a clockwise “gyre,” which is the formal word for a swirling “racetrack” of a current that sits on the Bank. This gyre goes full-circle atop Georges Bank approximately 2.5 to 3 times per summer season.

Bigelow and Bumpus:  Going with the Flow

The stratified/gyre relationship was confirmed almost 90 years ago by Henry Bigelow (note: those familiar with NOAA will no doubt recognize his name for several reasons, including the fact that a ship in the NOAA fleet is named after him).  Essentially, Bigelow used a type of “weighted-kite-and-floating-buoy” system to observe and confirm the two layers.  Bigelow’s “floating-buoy” was tied to the “weighted-kite” (actually called a drogue) and set at various depths, with each depth tested as an independent variable.  Once set, Bigelow drogued the water, chasing after the floats-and-kites, ultimately confirming that the stratified currents did in fact exist.  When you look at our dry lab here on the Sharp, complete with dozens of computers constantly monitoring hundreds of variables, Bigelow’s paper-and-pencil study aboard a 3-masted schooner is pretty awesome, and makes me feel a little lazy!

Source:  Bigelow, HB (1927): Physical Oceanography of the Gulf of Maine
Source:  Bigelow, HB (1927): Physical Oceanography of the Gulf of Maine

In a different study conducted later in the 1900s that perhaps might evoke romantic images of the sea, physical oceanographer Dean Bumpus performed a study similar to Bigelow’s, but in a slightly different fashion. Over the course of a few years, Bumpus put notes in over 3,000,000 test-tubes and set them adrift from Georges Bank.  The notes provided instructions on how to contact Bumpus if found, and he used the returned notes to determine things like current speed and direction.  While I’m not sure if Bumpus also used this methodology to find true love, the experiment did reinforce the idea of the currents that exist around Georges Bank!

b3i - Bumpus

Yep, it’s pretty cool to hear stories of those old-school scientists getting their names in the history books by just going with the flow.

Gulf Coast Style Kicking It Up North

One other unique hydrologic influence on Georges Bank relates to “meanderings” by the Gulf Stream.  Normally, as the Longshore Coastal Current sprints southbound along the east coast faster than a recent retiree snowbirding to Florida, a little further offshore, the Gulf Stream is heading north, bringing with it warm water.  As the water moves towards Georges Bank, the bank does its thing, acting as a berm (my BMX students might better identify with that term), and pushes that water off towards the east.  The warm water ultimately reaches England, and when mixed with the cool air there, causes the cloudy conditions and fog we frequently associate with life in the U.K.

Shark!
Shark!

The unique aspect of this relationship occurs when, from time to time, the Gulf Stream misses the turn and a “slice” of the Gulf Stream breaks away.  When this happen, the split portion spins in a counter clockwise fashion and breaks into Georges Bank, bringing with it warm water — and all the chemistry and biology that comes with it.  More on that later…

Water Summary 

So, in a nutshell, that’s the system.  The coldest water at the headwaters of rivers in Maine and that in the arctic freezes and becomes ice.  Deep water doesn’t have access to the warm sunlight, so it stays colder than the warm, less dense water at the surface that is hoping for the chance to boil over and soar up into the skies as water vapor.  Newton tells us that things like to stay still, but will stay in motion once they get started.  Things like sills and submerged islands get in the way of flowing water (yeah, more Newton here), resulting in mixtures and unique current patterns.

From a biological standpoint, the traditional currents associated with Georges Bank bring the deep, nutrient rich waters to the surface. As that water is pushed to the surface, algae and phytoplankton grow in great numbers.  Phytoplankton attracts zooplankton, fish larvae eat the zooplankton, and eventually, “circle gets a square,” the trophic pyramid is complete, and nature finds its equilibrium.

If only it was that easy, right?

Unfortunately, the frequency of warmer weather over the past century has had an impact on the ecology of Georges Bank.  Scientists have noticed more warm water from the north as ice continues to melt and increased frequency of the Gulf Stream meandering from the south. I’m told that 20 years ago, Red Hake were rare here, but I’ve noticed very few of our dredges where Red Hake weren’t at least the plurality, if not majority, of fish we caught.  As Mr. Dylan says, “the times, they are a changin’.”

Okay.  That’s it!  Congratulations students! You have passed Oceanography: Hydrodynamics Short Course 101 and it is time to move on to Oceanography:  Shellfish Biology 101, which we will cover in the next blog.

My students get scribbled maps like this from me all the time. I didn’t draw this one, but it did make me feel good about my methods!
My students get scribbled maps like this from me all the time. I didn’t draw this one, but it did make me feel good about my methods!

Lagniappe:  Dr. Scott Gallager

My students and friends know that I am continually working to learn new things.  I am surrounded by experts on this cruise and I need to go ahead and admit it:  I feel sorry for these folks because they are trapped and can’t escape the questions I’ll wind up asking them about their incredibly interesting work!

As I mentioned earlier, depth of knowledge is important to success of these missions, but, breadth is equally important.  Addressing challenges and solving problems from different perspectives is essential, and it sure would be nice to have a Boy Scout out here.  Oh wait, we actually have a long time Scout Master among us, Dr. Scott Gallagher.  There, I feel better already…

Scott is a scientist at the Woods Hole Oceanographic Institution (“WHOI”), where his work focuses on biological and physical interactions in oceanography, which can perhaps be a little better explained as “working to understand the physical properties and processes of the ocean that impact biological abundance and populations (aka – distributions).”  In other words, “where are the scallops, how many are there, and why are they there and at that number?”

From a scientific perspective, there are three primary controls to analyze when studying shellfish populations:  the total amount of larvae spawned; the transportation, or “delivery”, of the larvae through the water column to the place where they settle; and, post-settlement predatory relationships (aka – the sea stars, crabs, and humans all out to feast on these delicious creatures)… Seems like an easy-peasy career, right? (I kid. I kid.)

This is a shot of the specimen count in the wet lab
This is a shot of the specimen count in the wet lab

Scott cut his teeth as an undergrad at Cornell, starting off in electrical engineering, and ultimately earning degrees in both pre-med and environmental science (see, I told you he could see things from a variety of perspectives!).  In his environmental science courses, Scott studied the Seneca and Cayuga Lakes, and after graduating from Alfred University/Cornell University, moved on and earned a master’s degree in Marine Biology at the University of Long Island.  Over the next several years, he worked at Woods Hole as a research assistant, first working in bivalve (shellfish) ecology, and quickly moving up through the ranks to research specialist.  After a couple of years at WHOI, the magnitude and awesome wonder of the life in our oceans presented Scott with more questions than answers, and he realized it was time to return to school and obtain his PhD so he could start answering some of the questions swimming around in his head (okay, no more puns, I promise).

In our discussion, Scott described the challenge of decoupling the biological processes of the ocean as a fascinating mystery novel that never ends, and never allows you to put the book down or stop turning the pages to see what comes next.  After only a week out here with these good folks, it is evident that passion and curiosity exists in each of them, and it is really cool to feel their continued excitement about their work.

Our live aquarium
Our live aquarium

Aboard the ship, I’ve been fortunate to spend some time working with Scott in the wet-lab, where he helps conduct a more intensive study of a sample of 5-7 scallops from each dredge, according to survey protocol: taking photos, measuring the scallop size and weight, and recording whether it is male or female.

While the survey work is the mission of this cruise, it was the development and operational support for the HabCam that really got Scott working aboard these cruises, and members of his team are aboard each of the three legs every summer to participate in the survey work and provide technical assistance for the HabCam.  I think of my time driving the HabCam of what it must be like to explore Mars with Curiosity.

In addition to his mission-specific field-work, Scott has set up an onboard live aquarium in one part of the deck, using nothing more than an air hose, fresh sea water, and a tote.  The aquarium is a temporary home for many of the unique species we’ve caught on our dredge.  Most species are only kept long enough for me to nerd-out and take some photos, and it has been very interesting to see the interaction of the animals in the confined habitat that would normally only be seen on the sea floor.

Photoblog:

The pasta-looking stuff on the top of the clam shell are wavedwelk eggs. You can see a black-and-white wavedwelk poking out of the shell just to the right of the clam
The pasta-looking stuff on the top of the clam shell are wavedwelk eggs. You can see a black-and-white wavedwelk poking out of the shell just to the right of the clam

Sea urchins.  We catch many of these.  Zoom in on the one on the right.  Yeah, that’s its mouth.  Life’s at sea is tough!
Sea urchins. We catch many of these. Zoom in on the one on the right. Yeah, that’s its mouth. Life’s at sea is tough!

An ocean pout.  They crush sand dollars and eat them for breakfast.
An ocean pout.  They crush sand dollars and eat them for breakfast.

The smaller birds were enjoying that fish until the big dog bombed them and stole it away. Katie said it was cleptoparasitism; Fancy Nancy would approve.
The smaller birds were enjoying that fish until the big dog bombed them and stole it away. Katie said it was cleptoparasitism; Fancy Nancy would approve. 

Barnacles growing atop this scallop.  I think this was one of the designs tossed around for NASA’s recent “UFO” launch
Barnacles growing atop this scallop.  I think this was one of the designs tossed around for NASA’s recent “UFO” launch

It’s remarkable watching these guys zig-and-zag through rough seas, their wings not ever touching the water, but sometimes too close to it to see light peeking through from the other side
It’s remarkable watching these guys zig-and-zag through rough seas, their wings not ever touching the water, but sometimes too close to it to see light peeking through from the other side

I kept looking for a button to push and see if it would sing “Feliz Navidad”
I kept looking for a button to push and see if it would sing “Feliz Navidad”

Stars on the water
Stars on the water

Don't be a skater-hater
Don’t be a skater-hater

Dredge playlist:  Metallica, Dierks Bentley, Spoon, The National

Special thanks to Dr. Gallager for his help with this one.

Okay, that’s it, class dismissed…

Mr. Hance

Tom Savage: Whales to the Left, Whales to the Right, June 12, 2015

NOAA Teacher at Sea
Tom Savage
On Board NOAA Ship Henry B. Bigelow
June 10 – 19, 2015

Mission: Cetacean and Turtle Research
Geographic area of Cruise: North Atlantic
Date: June 12, 2015

Weather Data from the Bridge
Air temperature: 18 C
Wind speed: 10 knots
Wind direction: coming from north west
Relative humidity: 90%
Barometer: 1015 millibars

Personal Log

Today is my second day at sea and I can finally walk to various places on the ship in less time. I have found sleeping on the ship to be very easy as the ship rocks back and forth. I really enjoy being at sea; it is very tranquil at times and I am not rushed to go anywhere except my assigned duty locations. While on deck observing, the sights and smell of the ocean invokes memories of my former home in Bar Harbor, Maine.

After a full day of observing whales in the sunshine I was very excited to conduct some star-gazing at night. At 2200, as I opened the first hatch outside, I walked into a wall of fog and was reminded quickly that I am miles offshore on Georges Bank in June!

Science and Technology Log

Sighting whales yesterday was very slow, but today made up for it. The weather was perfect, as the sky was mostly sunny with few high cirrus clouds early. Today I was assigned to the Flying Bridge for observations all day. There are three stations and we rotate every thirty minutes. The stations are Big Eyes on port and starboard sides and a computer in the center for data entry. We use different terms for orientation on the ship. For instance, the front of the ship is called the bow. While facing the bow, the left side is called the port and the right side starboard.

DiscussingSightings
Discussing sightings on the “Fly Bridge”

My rotation began on the port side of the ship using the “Big Eyes”. After a half hour, your eyes become tired, strained and shifting to the computer to enter whale sighting helps. At the computer we enter whale sighting data called out by observers.

LookingThroughBigEyes
Looking through the “Big Eyes”. Do you see anything?

In addition to recording the identification of animals; other important attributes are called out by the observers such as bearings and direction headings. Looking through the “big eyes”, a range finder is located from center with a scale from 0 – 24, and is called the reticle. To properly calculate distance, the observer needs to adjust the “Big Eyes” to align zero with the ocean horizon. This is very difficult since the ship is always in motion. The “Big Eyes” in the image above is not correctly aligned. There is a chart we used to translate the reticle values to distance.

An early morning break was followed by an amazing hour of multiple whale sightings. Fin, humpback whales and pods of Atlantic white-sided dolphin sightings were all around the ship. One humpback whale came within twenty feet of the boat. The afternoon was less active but we tracked pilot whales later which were not seen during morning rotations.

ViewFlyBridge
View from the “Fly Bridge” looking down on the “Rolling Bridge”

 

Until next time, happy sailing!

~ Tom

 

Tom Savage, Introduction, June 2, 2015

NOAA Teacher at Sea
Tom Savage
     (Almost)  On Board NOAA Ship Henry B. Bigelow
        June 10 – 19, 2015

Mission: Cetacean and Turtle Research
Geographic area of Cruise:  North Atlantic
Date: June 2, 2015

Personal Log

Greetings from Western NC.  My name is Tom Savage, and I am a Science teacher at the Henderson County Early College in Flat Rock, NC. I currently teach Chemistry, Earth Science, Biology and Physical Science. In a few days I will be flying to Rhode Island and boarding NOAA ship Henry B. Bigelow, a research vessel. We will be traveling in the North Atlantic region, mostly in Georges Bank which is located east of Cape Cod and the Islands.  The research mission will focus on two types of whales: Sei and Beaked Whales. Our primary goals will be photo-ID and biopsy collection, acoustic recording, and prey sampling.  I am looking forward to learning about the marine life and ocean ecosystem, and I look forward to sharing this knowledge with my students.

This will not be the first time that I have been out to sea.  A few years ago, I spent a week with eighteen other science teachers from across the county, scuba diving within the Flower Garden Banks National Marine Sanctuary. This week long program was sponsored by the Gulf of Mexico Foundation and NOAA.  This exceptional professional development provided an opportunity to explore, photograph and develop lesson plans with a focus on coral reefs. I also learned about how important the Gulf of Mexico is to the oil industry.  I had the opportunity to dive under an abandoned oil platform and discovered the rich, abundant animal life and how these structures improve the fish population.

Prior to becoming a teacher, I worked as a park ranger at many national parks including the Grand Canyon, Glacier and Acadia. Working at these national treasures was wonderful and very beneficial to my teaching.

Providing young adults with as many experiences and career possibilities is the hallmark of my teaching. During the year, I arrange a “Discover SCUBA” at the local YMCA. Students who have participated in this have gone on to become certified. In the fall I have offered “Discover Flying” at a local airport, sponsored by the “Young Eagles” program. Here students fly around our school and community witnessing their home from the air. A few students have gone on to study various aviation careers.

Flying
“Discover Flying”

 

I am very excited in learning about the many career opportunities that are available on NOAA research vessels. It would be very rewarding to see a few of my students become employed with the NOAA Corps or follow a career in science due to this voyage.

Regards,

~  Tom

 

 

DJ Kast, Bongo Patterns, June 1, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical areas of cruise: Mid Atlantic Bight, Southern New England, George’s Bank, Gulf of Maine
Date: June 1, 2015

Science and Technology Log:

Bongo Patterns!

Part of my job here on NOAA Ship Henry B. Bigelow is to empty the plankton nets (since there are two we call them bongos). The plankton is put into a sieve and stored  in either ethanol if they came from the small nets (baby bongos) or formalin if they came from the big nets (Main bongos).

What are plankton? Plankton is a greek based word that means drifter or wanderer. This suits these organisms well since they are not able to withstand the current and are constantly adrift. Plankton are usually divided by size (pico, nano, micro, meso, macro, mega). In the plankton tows, we are primarily focused on the macro, meso and megaplankton that are usually with in the size range of 0.2- 20 mm  (meso), 2-20 cm (macro), and above 20 cm (mega) respectively.

Group Size range Examples
Megaplankton > 20 cm metazoans; e.g. jellyfish; ctenophores; salps and pyrosomes (pelagic Tunicata); Cephalopoda; Amphipoda
Macroplankton 2→20 cm metazoans; e.g. Pteropods; Chaetognaths; Euphausiacea (krill); Medusae; ctenophores; salps, doliolids and pyrosomes (pelagic Tunicata); Cephalopoda; Janthinidae (one family gastropods); Amphipoda
Mesoplankton 0.2→20 mm metazoans; e.g. copepods; Medusae; Cladocera; Ostracoda; Chaetognaths; Pteropods; Tunicata; Heteropoda
Microplankton 20→200 µm large eukaryotic protists; most phytoplankton; Protozoa Foraminifera; tintinnids; other ciliates; Rotifera; juvenile metazoansCrustacea (copepod nauplii)
Nanoplankton 2→20 µm small eukaryotic protists; Small Diatoms; Small Flagellates; Pyrrophyta; Chrysophyta; Chlorophyta; Xanthophyta
Picoplankton 0.2→2 µm small eukaryotic protists; bacteria; Chrysophyta
Femtoplankton < 0.2 µm marine viruses

(Omori, M.; Ikeda, T. (1992). Methods in Marine Zooplankton Ecology)

We will be heading to four main geographical areas. These four areas are: the Mid Atlantic Bight (MAB), the Southern New England (SNE), Gulf of Maine (GOM), and George’s Bank (GB). I’ve been told that the bongos will be significantly different at each of these sites.  I would like to honor each geographical area’s bongos with a representative photo of plankton and larval fish.  There are 30 bongos in each area, and I work on approximately 15 per site.

DJ Kast holding the large plankton net. Photo by Jerry P.
DJ Kast holding the large plankton net. Photo by Jerry Prezioso

Bongos in the Sunset. Photo by DJ Kast
Bongos in the Sunset. Photo by DJ Kast

Here is a video of a Bongo launch.

 

Flow Meter Data. It is used how to count how far the plankton net was towed. Used to calculate the amount of animals per cubic meter. Photo by DJ Kast
Flow Meter Data. It is used how to count how far the plankton net was towed to calculate the amount of animals per cubic meter. Photo by DJ Kast

 

The plankton nets need to be wiped down with saltwater so that the plankton can be collected on the sieve.

 

Day 1: May 19th, 2015

My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast
My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast

Day 1: Fish Larvae and Copepods. Photo by: DJ Kast
Day 1: Fish Larvae and Copepods. Photo by: DJ Kast

 

 

Day 2: May 20th, 2015

Larval Fish and Amphipods! Photo by: DJ Kast
Larval Fish and Amphipods! Photo by: DJ Kast

Day 3: May 21st, 2015

IMG_7096
Day 3, the plankton tows started filling with little black dots. These were thousands of little sea snails or pteropods. Photo by DJ Kast

IMG_7100
Clogging the Sieve with Pteropods. Photo by DJ Kast

IMG_7110
Close up shot of a Shell-less Sea Butterfly. Photo by: DJ Kast

IMG_7121
Glass Eel Larva. Photo by DJ Kast

 

Day 4: May 22nd, 2015

Butterfly fish found in the plankton tow. Photo by; DJ Kast
Butter fish found in the plankton tow. Photo by; DJ Kast

IMG_7187
Baby Triggerfish Fish Larvae Photo by: DJ Kast

Swimming Crab. Photo by DJ Kast
Swimming Crab. Photo by DJ Kast

IMG_7174
Megalops or Crab Larva. Photo by: DJ Kast

IMG_7176
Polychaete Worms. Photo by: DJ Kast

IMG_7165
Salp. Photo by: DJ Kast

 

Day 5: May 23, 2015

Unidentified organism Photo by DJ Kast.
Unidentified organism
Photo by DJ Kast.

Sand Lance Photo by DJ Kast
Sand Lance Photo by DJ Kast

Polychaete worm. Photo by DJ Kast
Polychaete worm. Photo by DJ Kast

3 amphipods and a shrimp. Photo by DJ Kast
3 amphipods and a shrimp. Photo by DJ Kast

Such diversity in this evenings bongos. Small fish Larva, shrimp, amphipods. Photo by DJ Kast
Such diversity in this evening’s bongos. Small fish Larvae, shrimp, amphipods. Photo by DJ Kast

Small fish Larva. Photo by DJ Kast
Small fish Larvae. Photo by DJ Kast

Below are the bongo patterns for the Southern New England area.

I have learned that there are two lifestyle choices when it comes to plankton and they are called meroplankton or holoplankton.

Plankton are comprised of two main groups, permanent or lifetime members of the plankton family, called holoplankton (which includes as diatoms, radiolarians, dinoflagellates, foraminifera, amphipods, krill, copepods, salps, etc.), and temporary or part-time members (such as most larval forms of sea urchins, sea stars, crustaceans, marine worms, some marine snails, most fish, etc.), which are called meroplankton.

Day 6: May 24th, 2015

Copepod sludge with a fish larva. Photo by: DJ Kast
Copepod sludge with a fish larva. Photo by: DJ Kast

Baby Bongo Sample in ethanol. Photo by: DJ Kast
Baby Bongo Sample in ethanol. Photo by: DJ Kast

Megalops? Photo by: DJ Kast
Megalops?
Photo by: DJ Kast

Fish Larvae. Photo by: DJ Kast
Fish Larvae. Photo by: DJ Kast

Side station sample from the mini bongos on the sieve. Photo by: DJ Kast
Sample from the mini bongos on the sieve. Photo by: DJ Kast

Day 7: May 25th, 2015

???? Photo by DJ Kast
???? Photo by DJ Kast

Tiny Snail. Photo by DJ Kast
Tiny Snail. Photo by DJ Kast

Georges Bank- It is a shallow, sediment-covered plateau bigger than Massachusetts and it is filled with nutrients that get stirred up into the photic zone by the various currents. It is an extremely productive area for fisheries.

Photo by: R.G. Lough (NEFSC)
Photo by: R.G. Lough (NEFSC)

Today, I learned that plankton (phyto & zoo) have evolved in shape to maximize their surface area to try and remain close to the surface. This makes sense to me since phytoplankton are photosynthesizers and require the sun to survive. Consequently, if zooplankton are going to consume them, it would be easier to remain where your food source is located. I think this would make for a great lesson plan that involves making plankton-like creatures and seeing who can make them sink the least in some sort of competition.

Photo by DJ Kast
Photo by DJ Kast

Harpactacoid Copepod. Photo by DJ Kast
Harpactacoid Copepod. Photo by DJ Kast

The Biggest net caught sand lance (10 cm). Photo by DJ Kast
The Biggest net caught sand lance (10 cm). Photo by DJ Kast

Fish Larvae. Photo by DJ Kast
Fish Larvae. Photo by DJ Kast

Day 8: May 26th, 2015 Very Diverse day,  Caprellids- skeleton shrimp, Anglerfish juvenile, Phronima inside of salp! Photo by DJ Kast

Photo by: DJ Kast
Juvenile Anglerfish aka Monk Fish. Photo by: DJ Kast

IMG_7483
Sand Shrimp. Photo by DJ Kast

IMG_7469
A tiny krill with giant black eyes. Photo by DJ Kast

IMG_7454
A small jellyfish! Photo by: DJ Kast

IMG_7451
A phronima (the bee looking thing inside the translucent shell) that ate its way into a salp and is using the salp as protection. Photo by: DJ Kast

Video of the phronima:

Caprellids or Skeleton Shrimp. Photo by DJ Kast
Caprellids or Skeleton Shrimp. Photo by DJ Kast

Video of the Caprellids:

Day 9:  May 27th, 2015= Triggerfish and colorful phronima (purple & brown). Our sieves were so clogged with phytoplankton GOOP, which is evidence of a bloom. We must be in very productive waters,

Evidence of a Phytoplankton bloom in the water, Photo by: DJ Kast
Evidence of a Phytoplankton bloom in the water. Photo by: DJ Kast

Juvenile Triggerfish. Photo by: DJ Kast
Juvenile Triggerfish. Photo by: DJ Kast

Day 10: May 28th, 2015= change in color of copepods. Lots of ctenophores and sea jellies

A Sea jelly found in George's Bank. We are in Canada now! Photo by: DJ Kast
A comb jelly (ctenophore) found in George’s Bank. We are in Canada now! Photo by: DJ Kast

Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast
Sea Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast

Did you  know? Sea Jellies are also considered plankton since they cannot swim against the current.

Day 11: May 29th, 2015: Border between Georges Bank and the Gulf of Maine!

Krill found in the Gulf of Maine. Photo by DJ Kast
Krill found in the Gulf of Maine. Photo by DJ Kast

Callenoid Copepods. Photo by DJ Kast
Callenoid Copepods- its so RED!!! Photo by DJ Kast

Gulf of Maine! Water comes in from the North East Channel (the Labrador current), coast on one border and George’s  Bank on the other. Definitely colder water, with deep ocean basins. Supposed to see lots of phytoplankton. Tidal ranges in the Gulf of Maine are among the highest in the world ocean

Gulf of Maine currents! Photo by NEFSC NOAA.
Gulf of Maine currents! Photo by NEFSC NOAA.

Day 12: May 30th, 2015: day and night bongo (Just calanus copepods vs. LOTS of krill.)

Krill, Krill, Krill! Photo by DJ Kast
Krill, Krill, Krill! Photo by DJ Kast

Krill are normally found lower in the water column. The krill come up at night to feed and avoid their predators and head back down before dawn. This daily journey up and down is called the vertical migration.

Video of Krill moving:

Day Sample. Photo by DJ Kast
Day Sample. Photo by DJ Kast

Night Sample. Photo by DJ Kast
Night Sample (look at all those krill). Photo by DJ Kast

Day 13: May 31th, 2015: Calanoid Copepod community.  Calanoida feed on phytoplankton (only a few are predators) and are themselves the principal food of fish fry, plankton-feeding fish (such as herring, anchovies, sardines, and saury) and baleen whales.

Calanious Community. Its so RED! Photo by DJ Kast
Calanus Community. It’s so RED! Photo by DJ Kast

Day 14: June 1st, 2015:

Brittle Stars caught in the Plankton Tow. Photo by DJ Kast
Brittle Stars caught in the Plankton Tow. Photo by DJ Kast

Tusk shell. Photo by DJ Kast
Tusk shell. Photo by DJ Kast

Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast
Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast

Shrimp Head. Photo by DJ Kast
Shrimp Head. Photo by DJ Kast

Shrimp Tail with Babies. Photo by DJ Kast
Shrimp Tail with Babies. Photo by DJ Kast

Day 15: June 2nd, 2015: Last Day

Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast

Map of all the Bongo and CTD/ Rosette Stations. Photo by DJ Kast.
Map of all the Bongo and CTD/ Rosette Stations (153 total). Photo by DJ Kast.

Through rough seas and some amazingly calm days, we have all persevered as a crew and we have done a lot of science over the last 16 days. We went through 153 stations total. I have learned so much and I would like to thank Jerry, the chief scientist for taking me under his wing and training me in his Ecosystem Monitoring ways.  I would also like to thank Dena Deck and Lynn Whitley for believing in me and writing my letters of recommendation for the Teacher at Sea program. I would love to do this program again! -DJ Kast

DJ Kast, Interview with Jessica Lueders-Dumont, May 22, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 22, 2015, Day 4 of Voyage

 

Interview with Jessica Lueders-Dumont

Who are you as a scientist?

Jessica Lueders-Dumont is a graduate student at Princeton University and has two primary components of her PhD — nitrogen biogeochemistry and historical ecology of the Gulf of Maine.

Jessica Lueders- Dumont, graduate student at Princeton cleaning a mini bongo plankton net for her sample.
Jessica Lueders- Dumont, graduate student at Princeton cleaning a mini bongo plankton net for her sample. Photo by: DJ Kast

 What research are you doing?

Her two projects are, respectively,

A) Nitrogen cycling in the North Atlantic (specifically focused on the Gulf of Maine and on Georges Bank but interested in gradients along the entire eastern seaboard)

B) Changes in trophic level of Atlantic cod in the Gulf of Maine and on Georges Bank over the history of fishing in the region. The surprising way in which these two seemingly disparate projects are related is that part A effectively sets the baseline for understanding part B!

She is co-advised by Danny Sigman and Bess Ward. Danny’s research group focuses on investigating climate change through deep time, primarily by assessing changes in the global nitrogen cycle which are inextricably tied to the strength of the biological pump (i.e. biological-mediated carbon export and storage in the ocean). Bess’s lab focuses on the functional diversity of marine phytoplankton and bacteria and the contributions of these groups to various nitrogen cycling processes in the modern ocean, specifically as pertains to oxygen minimum zones (OMZs). She is also advised by a Olaf Jensen, a fisheries scientist at Rutgers University.

In both of these biogeochemistry labs,  nitrogen isotopes (referred to as d15N, the ratio of the heavy 15N nuclide to the lighter 14N nuclide in a sample compared to that of a known standard) are used to track nitrogen cycling processes. The d15N of a water mass is a result of the relative proportions of different nitrogen cycling processes — nitrogen fixation, nitrogen assimilation, the rate of supply, the extent of nutrient utilization, etc. These can either be constrained directly via 15N tracer studies or can be inferred from “natural abundance” nitrogen isotopic composition, the latter of which will be used as a tool for this project.

Nitrogen Cycle in the Ocean. Photo credit to: https://wordsinmocean.files.wordpress.com/2012/02/n-cycle.png
Nitrogen Cycle in the Ocean. Photo credit to: https://wordsinmocean.files.wordpress.com/2012/02/n-cycle.png

On this cruise she has 3 sample types — phytoplankton, zooplankton, and seawater nitrate — and two overarching questions that these samples will address: How variable is “baseline d15N” along the entire eastern seaboard, and does this isotopic signal propagate to higher trophic levels? Each sample type gives us a different “timescale” of N cycling on the U.S. continental shelf. She will be filtering phytoplankton from various depths onto filters, she will be collecting seawater for subsequent analysis in the lab, and she will be collecting zooplankton samples — all of which will be analyzed for nitrogen isotopic composition (d15N).

Biogeochemistry background: 

Biogeochemists look at everything on an integrated scale. We like to look at the box model, which looks at the surface ocean and the deep ocean and the things that exchange between the two.

The surface layer of the ocean: euphotic zone (approximately 0-150 m-but this range depends on depth and location and is essentially the sunlit layer); nutrients are scarce here.

When the top zone animals die they sink below the euphotic zone and into the aphotic zone (150 m-4000m), and the bacteria break down the organic matter into inorganic matter (nitrate (NO3), phosphate (PO4) and silicate (Si(OH)3.). In terms of climate, an important nutrient that gets cycled is carbon dioxide.We look at the nitrate, phosphate, and silicate as limiting factors for biological activity for carbon dioxide, we are essentially calculating these three nutrients to see how much carbon dioxide is being removed from the atmosphere and “pumped” into the deep sea.  This is called the biological pump. Additionally, the particulate matter that falls to the deep sea is called Marine Snow, which is tiny organic matter from the euphotic zone that fuels the deep sea environments; it is orders of magnitude less at the bottom compared to the top.

Cycling
Visual Representation of the aphotic and euphotic zones and the nutrients that cycle through them. Photo by: Patricia Sharpley

 

Did you know that the “Deep sea is really acidic, holds a lot of CO2 and is the biggest reservoir of C02 in the world?” – From Jessica Lueders- Demont, graduate student at Princeton.

One of the most important limiting factors for phytoplankton is nitrogen, which is not readily available in many parts of the global ocean. “A limiting nutrient is a chemical necessary for plant growth, but available in quantities smaller than needed for algae and other primary producers to increase their abundance. Organisms can grow and reproduce only when they have sufficient nutrients. For algae, the carbon source is CO2and this, at least in the surface water, has a constant value and is not limiting their growth. The limiting nutrients are minerals (such as Fe+2), nitrogen, and phosphorus compounds” (Patricia Sharpley 2010).

Conversely, phosphorus is the limiting factor on land. The most common nitrogen is molecular nitrogen or N2, which has a strong bond to break and biologically it is very expensive to fix from the atmosphere. 

Biological, chemical, and physical oceanography all work together in this biogeochemistry world and are needed to have a productive ocean. For example, we need the physical oceanography to upwell them to the surface so that the life in the euphotic zone can use them.

Activities on the ship that I am assisting Jessica with:

  • Zooplankton collected using mini bongos with a 165 micron mesh and then further filtered at meshes: 1000, 500, and ends with 250 microns, this takes out all of the big plankton that she is not studying and leaves only her own in her size range which is 165-200 microns.
  • She is collecting zooplankton water samples because it puts the phytoplankton that she is focusing on into perspective.

The last of the mesh buckets that's filtering for phytoplankton. Photo by: DJ Kast
The last of the mesh buckets that’s filtering for phytoplankton. Photo by: DJ Kast

    • Aspirator pump sucks out all of the water so that the zooplankton are left on a glass fiber filter (GFFs) on the filtration rack.

 

  • Aspirator pump that is on the side sucks out all of the air so that the plankton get stuck on the filters at the bottom of the cups seen here. Photo by: DJ Kast
    Aspirator pump that is on the side sucks out all of the air so that the plankton get stuck on the filters at the bottom of the cups seen here. Photo by: DJ Kast
  • Bottom of the cup after all the water has been sucked through. Photo by: DJ Kast
    Bottom of the cup after all the water has been sucked through. Photo by: DJ Kast
  • Jessica removing the filter with sterilized tweezers to place into a labeled petridish. Photo by: DJ Kast
    Jessica removing the filter with sterilized tweezers to place into a labeled petri dish. Photo by: DJ Kast

    Labeled petri dish with GFF of phytoplankton on it. Photo by: DJ Kast
    Labeled petri dish with GFF of phytoplankton on it. Photo by: DJ Kast

Video of this happening:

Phytoplankton filtering:

Jessica collecting her water sample from the Niskin bottle in the Rosette. Photo by DJ Kast
Jessica collecting her water sample from the Niskin bottle in the Rosette. Photo by DJ Kast

Up close shot of the spigot that releases water from Niskin bottle in the Rosette. Photo by DJ Kast
Up close shot of the spigot that releases water from Niskin bottle in the Rosette. Photo by DJ Kast

DJ Kast helping Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.
DJ Kast helping Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.

DJ and Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.
DJ and Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.

Chief Scientist Jerry Prezioso and Megan Switzer next to the CTD and Rosette
Chief Scientist Jerry Prezioso and Megan Switzer next to the CTD and Rosette Photo by: DJ Kast

 

May 21, 14:00 hours: Phytoplankton filtering with Jessica.

In addition to the small bottles Jessica needs, we filled 4 L bottles with water at the 6 different depths (100, 50, 30, 20, 10, 3 m) as well.

We then brought all the 4 L jugs into the chemistry lab to process them. The setup includes water draining through the tubing coming from the 4 L jugs into the filters with the GFFs in it. Each 4 L jug is filtered by 2 of these filter setups preferably at an equal rate. The deepest depth 100 m was finished the quickest because it had the least amount of phytoplankton that would block the GFF and then a second jug was collected to try and increase the concentration of phytoplankton on the GFF.

Phytoplankton filtration setup. Photo by DJ Kast
Phytoplankton filtration setup. Photo by DJ Kast

The filter and pump setup up close. Photo by DJ Kast
The filter and pump setup up close. Photo by DJ Kast

Up close shot of the GFF within the filtration unit.
Up close shot of the GFF within the filtration unit. Photo by DJ Kast

Jessica keeping an eye on her filtration system to make sure nothing is leaking and that there are no air bubbles restricting water flow
Jessica keeping an eye on her filtration system to make sure nothing is leaking and that there are no air bubbles restricting water flow. Photo by DJ Kast

Here I am helping Jessica setup the filtration unit.
Here I am helping Jessica setup the filtration unit.Photo by Jessica Lueders- Dumont

The GFF with the phytoplankton (green stuff) on it.
The GFF with the phytoplankton (green stuff) on it. Photo by: DJ Kast

There are 2 filters for each depth, and since she has 12 filtration bottles total, then she would be collecting data from 6 depths. She collects 2 filters so that she has replicates for each depth.

Here they are all laid out to show the differences in phytoplankton concentration.

The 6 depths worth of GFFs. See how the 30 m is the darkest. Thats evidence for the chlorophyll max. Photo by: DJ Kast
The 6 depths worth of GFFs. See how the 30 m is the darkest. Thats evidence for the chlorophyll max. Photo by: DJ Kast

She will fold the GFF in half in aluminum foil and store it at -80C until back in the lab at Princeton. There, the GFF’s are combusted in an elemental analyzer and the resulting gases run through a mass spectrometer looking for concentrations of N2 and CO2. The 30 m GFF was the most concentrated and that was because of a chlorophyll maximum at this depth.

Chlorophyll maximum layers are common features of vertically stratified water columns. There is a subsurface maximum or layer of chlorophyll concentration. These are found throughout oceans, lakes, and estuaries around the world at varying depths, thicknesses, intensities, composition, and time of year.

Chris Henricksen: Doing Science at Sea, May 12, 2014

NOAA Teacher at Sea

Christopher Henricksen

Aboard NOAA Ship Henry B. Bigelow

May 6 – May 16, 2014

Geographical area of cruise: Georges Bank
Mission: Spring Bottom Trawl & Acoustic Survey
Date: May 11, 2014
Air Temp: 11.2°C (52.16°F)
Relative Humidity: 100%
Wind Speed: 21.9mph
Barometer: 1010.5mb

Science and Technology Log

Here’s what a typical watch aboard the Henry B. Bigelow looks like.  Upon assuming the watch, which in my case means beginning work at midnight, the science team gets a rundown of what happened during the previous watch.  When the ship nears its next station (where it will drop the net and begin trawling), the area is surveyed to ensure that it is clear of lobster traps and large rocks before readying the nets for trawling.  Think of the trawl nets in terms of really large butterfly nets, except these nets also contain a set of sensors that tell the science team and the Officer of the Deck (the officer in charge of driving the ship) information about how deep the net is, how fast it’s traveling, etc..  The ship’s deckhands lower the nets from the aft (rear) deck of the ship into the water and then closely monitor them until reaching a specified depth.  With the trawl nets in place, the ship steams at 3 knots for about twenty minutes, pulling the nets along and catching fish and other marine life.  Once the trawl is complete, the net is hauled aboard and it’s time for the scientists to get involved.

picture of trawl net
Hauling the trawl net aboard the Henry B. bigelow

checker
Chris Henricksen

Using a crane, the net is swung over a large stainless steel hopper called the checker.  A scientist working the checker, then pushes the captured organisms onto a conveyor belt, which moves them inside the ship to the wet lab.  In the wet lab, scientists and volunteers (like me) stand along a long conveyor, sorting the catch by species and, sometimes, by sex or size, into a set of buckets.  After the catch is sorted, the buckets are consolidated and placed on another conveyor belt, which moves the buckets to the Watch Chief’s station.  The Watch Chief scans a barcode on the side of each bucket, and uses a computer to assign a species to that barcode.  The barcoded buckets are each filled with a different organism then moved to any one of three cutter stations for processing. The Cutter scans the barcode of an available bucket, which tells the computer at his or her station some basic information about the organism, such as its scientific and common names, and how much the bucket weighs.  The computer also tells the Cutter what sorts of protocols need to occur on that organisms (weighing, measuring, checking stomach contents, determining sex).  As the Cutter processes the organism, the Recorder, standing at a computer screen next to the Cutter,  assists the Cutter by inputting measurement and other data into the computer system.  Often, extra instructions pop up on the screen, instructing the Cutter that a scientist has requested that we collect specimens from an organism.  Otoliths (ear bones from fish) are collected frequently, but sometimes a request is made to freeze or preserve an organism.  Some organisms even go in a live holding tank so the scientist can have a living specimen when the ship returns to port.  This entire process can take anywhere from one hour to several, depending on the amount fish and the types of processing required.

pic of sorting line
Scientists sorting organisms for survey

Personal Log

Well, yesterday (Saturday) was a rough one for yours truly.  We ran into some higher seas, and the ship’s rocking and rolling made me sick as a dog.  So much for that Navy experience helping me in this regard…  Oh, well, that’s part of life at sea.  Everyone was very kind about it. one of my watchmates even fetched some crackers for me, which helped.  Feeling much better today. Here are a few pictures representing life aboard the Henry B. Bigelow (at least as I live it):

pic of galley
The Galley

pic of menu
Dinner menu – good food!

pic of stateroom
My stateroom. I sleep in the bunk with the open curtains

pic of head
The Head (bathroom) in my stateroom

Sue Cullumber: Reflections – From the Atlantic to Arizona, June 26, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/26/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

1stgroup
Our first group for the EcoMon Survey. Kat, Kevin, Holly, Chris, Tom, Sue, Chris, and Cristina.

Personal Log: Well I’m back in my home state of Arizona.  It is really hot, the forecast is for it to be above 110º, and I miss the cool breezes of the Atlantic Ocean.  I am happy to be back in Arizona, but I will miss all the people, the marine creatures and the beauty of the Atlantic Ocean.  I will remember  this experience for the rest of my life and look forward to sharing this exciting adventure with my students, friends and family.

2ndgroup2
Our 2nd group for the EcoMon Survey. Tom, Kris, Cristina, David, Sue, Chris, Kevin and Sarah.

On the last two days onboard we finished up our EcoMon Survey and had time to add 23 more Bongo Stations.  These were completed in two areas with the first just east of Maryland and the second off the coast of North Carolina. As we headed east of North Carolina we went into the Gulf Stream and the water temperature started to increase. At these stations our samples contained more larval fish than previously. We even brought up some deep-sea fish in two of these samples. One was a species of Gonostoma and the second a Hatchet fish. Both were fairly small and black with iridescent colors and had large mouths with many teeth.

deepseafish6_22
A fish, from the species Gonostoma, that was brought up in our Bongo net.

deepseahatchet6_22
A Hatchet fish in our Bongo net sample.

Our drifter buoy, WMO # 44932,  has been showing some movement since being deployed (to track movement, put GTS buoy for data set and WMO # for platform ID).  Currently it is at latitude/ longitude:  38.73ºN, 73.61ºW.  It does appear to be moving inland, but hopefully it will catch the current and start moving further into the Atlantic.  We will be tracking it at Howard Gray over the next year.

margaretcrablegs
Margaret Coyle, our chief steward, serving Alaskan crab legs.

Last day on the Gordon Gunter, Margaret, the chief steward, prepared a special meal for all of us.  The spread included: Alaskan crab legs, roast duck with plum sauce, NY loin strip Oscar, grilled salmon, asparagus, red potatoes, Italian rolls, cream of potato and bacon soup (which I had at lunch, delicious) and cranberry cheesecake.  I choose the crab, duck, asparagus, potatoes, and cheesecake – heavenly!!!  I probably shouldn’t have had the cheesecake as well,  but it was just delicious!  Margaret always had so many great choices it was really hard to make up your mind.

dolphinbottlenose
Bottlenose Dolphin at the bow of the Gordon Gunter.

Our last night on the Gordon Gunter was amazing. We had another unbelievable sunset with fantastic colors.  A friend of mine from Arizona said, “It makes our Arizona sunsets look very bland and I think they are some of the best I’ve seen.”  Then a group of Bottlenose dolphins visited the bow of the ship, so it was truly a remarkable night I will always remember.

sunsetfinal
Our final sunset on the Gordon Gunter.

sueongunter6_24
Enjoying the cool breezes of the Atlantic Ocean.

Question of the day? :  Why do you think the deep-sea fish have such large mouths?

Sue Cullumber: Drifting Away, June 21, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/21/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:  Time:  21.00 (9 pm)
Latitude/longitude:  3734.171ºN, 7507.538ºW
Temperature: 20.1ºC
Barrometer: 1023.73 mb
Speed: 9.6 knots

IMG_0878
Getting ready to launch the buoy – photo by Chris Taylor.

launchingdrifter
Launching the buoy from the ship’s stern – photo by Chris Taylor.

Science and Technology Log: 

This week we launched a Global Drifter Buoy (GDB) from the stern of the Gordon Gunter.  So what is a GDB? Basically it is a satellite tracked surface drifter buoy.  The drifter consists of a surface buoy, about the size of a beach ball, a drogue, which acts like a sea anchor and is attached underwater to the buoy  by a 15 meter long tether.

Drifter tracking: The drifter has a transmitter that sends data to passing satellites which provides the latitude/longitude of the drifter’s location. The location is determined from 16-20 satellite fixes per day.  The surface buoy contains 4 to 5  battery packs that each have 7-9 alkaline D-cell batteries, a transmitter, a thermistor to measure sea surface temperature, and some even have other instruments  to measure barometric pressure, wind speed and direction, salinity, and/or ocean color. It also has a submergence sensor to verify the drogue’s presence. Since the drogue is centered 15 meters underwater it  is able to measure mixed layer currents in the upper ocean. The drifter has a battery life of about 400 days before ending transmission.

buoy
Stickers from students at Howard Gray School.

decoratingdrifter
Attaching the stickers to the buoy – photo by Kris Winiarski.

Students at the Howard Gray School in Scottsdale, Arizona designed stickers that were used to decorate the buoy. The stickers have messages about the school, Arizona and NOAA so that if the buoy is ever retrieved this will provide information on who launched it.  In the upcoming year students at Howard Gray will be tracking the buoy from the satellite-based system  Argos that is used to collect and process the drifter data. You can follow our drifter here, by putting in the data set for the GTS buoy with a Platform ID of 44932 and select June 19, 2013 as the initial date of the deployment.

Why are drifter buoys deployed?

In 1982 the World Climate Research Program (WCRP) determined that worldwide drifter buoys (“drifters”) would be extremely important for oceanographic and climate research. Since then drifters have been placed throughout the world’s oceans to obtain information on ocean dynamics, climate variations and meteorological conditions.

IMG_0886
The Howard Gray School drifter on its ocean voyage.

NOAA’s Global Drifter Program (GDP) is the main part of the Global Surface Drifting Buoy Array, NOAA’s branch of the Global Ocean Observing System (GOOS).  It has two main objectives:

1. Maintain a 5×5 worldwide degree array (every 5 degrees of the latitude/longitude of world’s oceans) of the 1250 satellite-tracked surface drifting buoys to maintain an accurate and globally set of on-site observations that include:  mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity.

2. Provide a data processing system of this data for scientific use.

bongossunset
Bongo nets going out for the plankton samples.

meshsamples
Plankton from the different mesh sizes. The left is from the smaller mesh and contains much more sample. Photo by Paula Rychtar.

EcoMon survey: We are continuing to take plankton samples and this week we started taking two different Bongo samples at the same station. Bongo mesh size (size of the holes in the net) was changed several years ago to a smaller mesh size of .33 mm. However, they need comparison samples for the previous nets that were used and had a mesh size of about .5 mm.  They had switched to the smaller net size because they felt that they were losing a large part of the plankton sample (basically plankton were able to escape through the larger holes). We are actually able to see this visually in the amount of samples that we obtain from the different sized mesh.

dolphinflying
Common Dolphins were frequent visitors to the Gordon Gunter.

Personal Log:

It’s hard to believe that my Teacher at Sea days are coming to a close. I have learned so much about life at sea, the ocean ecosystem, the importance of plankton, data collection, and the science behind it all.  I will miss the people, the ocean and beautiful sunsets and the ship, but I’m ready to get back to Arizona to share my adventure with my students, friends and family. I want to thank all the people that helped me during this trip including: the scientists and NOAA personnel, the NOAA Corps and ship personnel, the bird observers and all others on the trip.

Did you know? Drifters have even been placed in many remote locations that are infrequently visited or difficult to get to through air deployment.  They are invaluable tools in tracking and predicting the intensity of hurricanes, as well.

Question of the day?  What information would you like to see recorded by a Global Drifter Buoy and why?

shipsunset-2
Another beautiful sunset at sea.

Sue Cullumber: Testing the Water and More, June 19, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/19/2013
Geographical area of cruise: The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude: 3853.256 N, 7356.669W
Temperature: 18.6ºC
Barometer: 1014.67 mb
Speed: 9.7 knots

CTDscreen
CTD reading on the computer. Blue is density, red is salinity, green is temperature and black indicates the depth.

Science and Technology Log:

Even before the plankton samples are brought onboard, scientists start recording many types of data when the equipment is launched. The bongos are fitted with an electronic CTD (conductivity, temperature and density) and as they are lowered into the ocean the temperature, density and salinity (salt content) are recorded on a computer. This helps scientists with habitat modeling and determining the causes for changes in the zooplankton communities. Each bongo net also has a flow-through meter which records how much water is moving through the net during the launch and can is used to estimate the number of plankton found in one cubic meter of water.

ZIplankton
Zooplankton (Z) and Icthyoplankton (I) samples.

The plankton collected from the two bongo nets are separated into two main samples that will be tested for zooplankton and icthyoplankton (fish larvae and eggs). These get stored in a glass jars with either ethanol or formalin to preserve them. The formalin samples are sent to a lab in Poland for counting and identification. Formalin is good for preserving the shape of the organism, makes for easy identification, and is not flammable, so it can be sent abroad.  However, formalin destroys the genetics (DNA) of the organisms, which is why ethanol is used with some of the samples and these are tested at the NOAA lab in Narragansett, Rhode Island.

sueplankton
Holding one of our zooplankton samples – photo by Paula Rychtar.

When the samples are returned from Poland, the icthyoplankton samples are used by scientists to determine changes in the abundance of the different fish species. Whereas, the zooplankton samples are often used in studies on climate change. Scientists have found from current and historic research (over a span of about 40 years) that there are changes in the distribution of different species and increases in temperature of the ocean water.

At the Rosette stations we take nutrient samples from the different water depths. They are testing for nitrates, phosphates and silicates. Nutrient samples are an important indicator of zooplankton productivity. These nutrients get used up quickly near the surface by phytoplankton during the process of photosynthesis (remember phytoplankton are at the base of the food chain and are producers). As the nutrients pass through the food chain (zooplankton eating phytoplankton and then on up the chain) they are returned to the deeper areas by the oxidation of the sinking organic matter. Therefore, as you go deeper into the ocean these nutrients tend to build up.  The Rosettes also have a CTD attached to record conductivity, temperature and density at the different depths.

Chris-DICtests
Scientist, Chris Taylor, completing the dissolved inorganic carbon test.

CO2test
The dissolved inorganic carbon test uses chemicals to stop any further biological processes and suspend the CO2 in “time”.

Another test that is conducted on the Rosettes is for the amount of dissolved inorganic carbon. This test is an indicator of the amount of carbon dioxide that the ocean uptakes from outside sources (such as cars, factories or other man-made sources). Scientists want to know how atmospheric carbon is affecting ocean chemistry  and marine ecosystems and changing the PH (acids and bases) of the ocean water. One thing they are interested in is how this may be affecting the formation of calcium in marine organisms such as clams, oysters, and coral.

New word: oxidation – the chemical combination of a substance with oxygen.

canal
Cape Cod canal.

Personal Log:

This week we headed back south and went through the Cape Cod canal outside of Plymouth, Massachusetts. I had to get up a little earlier to see it, but it was well worth it.  The area is beautiful and there were many small boats and people enjoying the great weather.

smallboat
Small boat bringing in a new group to the Gordon Gunter.

We also did a small boat transfer to bring five new people onboard, while three others left at the same time. It was hard to say goodbye, but it will be nice to get to know all the new faces.

dolphinsthree
Common Dolphins swimming next to the Gordon Gunter.

So now that we are heading south the weather is warming up. I have been told that we may start seeing Loggerhead turtles as the waters warm up – that would be so cool.  We had a visit by another group of Common Dolphins the other day. They were swimming along the side of the ship and then went up to the bow. They are just so fun to watch and photograph.

We have been seeing a lot of balloons (mylar and rubber) on the ocean surface. These are released into the air by people, often on cruise ships, and then land on the surface. Sea turtles, dolphins, whales and sea birds often mistake these for jelly fish and eat them.  They can choke on the balloons or get tangled in the string, frequently leading to death. Today, we actually saw more balloons than sea birds!!! A good rule is to never release balloons into the air no matter where you live!

balloon
A mylar balloon seen in the water by our ship.

Did you know?  A humpback whale will eat about 5000 pounds of krill in a day. While a blue whale eats about 8000 pounds of krill daily.

Question of the day?  If 1000 krill = 2 pounds, then together how many krill does a humpback and blue whale consume on a daily basis.

Blue Whale, Balaenoptera Musculus
Blue Whale, Balaenoptera Musculus

Sue Cullumber: Navigating for Plankton – It’s a Team Effort! June 15, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date:  6/15/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude:  4234.645N, 6946.914W
Temperature: 15.4ºC, 60ºF
Barometer: 1011.48 mb
Speed: 9.4 knots

Science and Technology Log:

Plankton is everywhere throughout the ocean, so how are the stations chosen and mapped?

IMG_9715
Looking over the map of our strata – photo by Cristina Bascuñán

Scientists first decide on a specific region or strata that they want to sample.  Then within this strata a specific number of stations is determined for sampling.  NOAA has developed a computer program that then randomly selects stations in the strata.  After these stations are generated, scientists play “connect the dots” to find the best route to get to all the stations. Once the route is generated adjustments are made based on time, weather and the team’s needs. These are plotted on a map and sent to the ship to see if further adjustments will need to be made.

IMG_9716
Map of our area of strata. We are currently following the red line. Many of the original stations to the east were dropped from the survey.

When the ship receives the map from the science party, they plot all the stations and make a track line to determine the shortest navigable route that they can take. Frequently the map that is originally provided has to be adjusted due to weather, navigation issues (if there is a shoal, or low area, the route may have to be changed), or ship problems. Once they come up with a plan, this has to be re-evaluated on a daily basis. For example during our survey we left four days later than planned, so many of the stations had to be taken out. Furthermore a large storm was coming in, so the route was changed again to avoid this weather. The Operation’s Officer onboard (Marc Weekley on the Gordon Gunter) speaks with the science party on a daily basis to keep the plan up to date and maintain a safe route throughout the survey.

IMG_9343
The Gyro Compass on the Gordon Gunter.

IMG_9642
The Sperry Marine – shows the location of vessels near the Gordon Gunter.

IMG_9700
Commanding Officer, Jeff Taylor, at the bridge with Ops Officer, Marc Weekley at the watch.

Ship Technology: The Gordon Gunter and all other NOAA vessels use many types of equipment to navigate the ship.  They have an electronic Gyro Compass which is constantly spinning to point to True North (not magnetic north).  This is accurate to a 10th of a degree and allows for other navigation systems on the ship to know with great accuracy what direction the ship is pointing. It also is used to steer the ship in auto pilot. When needed they can switch to manual control and hand steer the ship. They also have a magnetic compass onboard, if all electronics were to go out on the ship.  Also on the bridge are two radars, which provides position of all boats in the area and is used for collision avoidance. Underway, the Captain requires the ship to stay at least 1 nautical mile from other vessels unless he gives commands otherwise.

Once a station is reached the ship has to position itself so it will not go over the wire that is attached to the survey equipment.  Taking into consideration all of  the elements, which includes the wind speed, current weather conditions and the speed of the current, they usually try to position the boat so that the wind is on its port side.  In this way the wind is on the same side as the gear and it will not hit the propellors or the hull. The ship’s sonars determine the depth of the ocean floor and the scientists use this information to lower their equipment to a distance just above this depth.

IMG_9738
Cathleen Turner and Kevin Ryan take water samples from the Rosette.

Vocabulary:

Bow – front of the ship

Stern – back of the ship

Port – left of bow

Starboard – right of bow

Personal Log: 

Brrr… it’s cold!  To avoid the big storm we headed north to the Bay of Fundy that is located between Maine and Nova Scotia.  Seas were fairly calm, but was it cold at 9º C (48ºF), but with the wind chill it was probably closer to 5.5ºC (42ºF)!  We are now heading south so it is starting to warm up, but luckily it won’t be as hot as Arizona!

Loggerheadshark - tom
Loggerhead turtle being tracked by a Blue Shark – photo by Tom Johnson

readyfortakeoff
Shearwater trying to take off.

 

 

 

 

 

 

 

Trying to take photos of animals in the ocean is very difficult.  You have to be in the right place, at the right time, and be ready. Today we saw several sightings of whales, but they were in the distance and only lasted a second.  During this trip, there was also a sighting of a shark attacking a Loggerhead turtle, but by the time I got to the bridge we had passed it by.  Lately we have seen a great variety of sea birds including:  shearwaters, puffins, sea gulls, and about twenty fiver other types. Even though it can be a little frustrating at times, it is still very calming to look out over the ocean and the sunsets are always amazing!

shipinpinkandbluew
Sailing into a beautiful sunset

I can’t believe that there is only one week left for the survey.  Time has gone so fast and I have learned so much.  Tomorrow we are doing a boat exchange and some people are leaving while others will come onboard.  I will miss those people that are leaving the ship, but look forward to meeting new people that will join our team.

Did you know?  The ratio of different salts (ions) in the ocean water are the about same in all of the world’s oceans.

puffin
One of the pufffins we saw up by Maine.

Sue Cullumber: Plankton, Food for the Sea! June 13, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/13/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:  Time:  8:25 am
Latitude/ Longitude:  4200.0122N, 6758.0338W
Temperature:  12.4ºC
Barometer:  1007.26mb
Speed:  9.1 knots

Science and Technology Log:

Why study plankton?  Plankton are at the bottom of the food chain. Remember they are free floating organisms that drift with the currents. That means that they provide food for many other animals and those animals are then eaten by larger animals and so on.  Therefore, plankton are important in the fact that if something happens to them, then the whole food chain is affected.

IMG_8991
Scientist, Chris Taylor, and Fisherman, Cliff Ferguson, bring the Bongo net back onto the ship.

So researchers are interested in learning all about the different types of plankton, their distribution and abundance in the ocean.  They want to answer questions such as: Have these factors changed over time?  Are we finding different kinds of plankton in different locations?  Has the amount of plankton changed?  How do the changes in the abundance and species of plankton affect higher trophic (feeding) levels?

Types of Plankton:

phaeocystis-phytoplankton
Phytoplankton on the surface of the water.

Phytoplankton – The plants of the sea. They carry out photosynthesis, so they are found in the water column where light is able to reach. This can vary depending on how clear the water is.  If water is very clear, they can be found at deeper levels because the light can penetrate farther.  These are the primary producers of the ocean, providing food for the first order consumers – mainly some types of zooplankton.

Amphipods, the two larger organims, and Copepods, the pink organisms– some of the many types of zooplankton we are finding.

Zooplankton – Animal-like plankton.  These vary immensely by size, type, and location. They are classified by their taxonomy, size, and how long they stay planktonic (some only are planktonic in a larval stage where others are for their entire life) .  These plankton are consumers with some eating the phytoplankton and others eating other zooplankton. These are extremely important as larger consumers eat them and then even larger organisms eat these.

fishlarvae
Fish larvae in among some copepods.

Icthyoplankton – Fish larvae or eggs. These float and drift in the water and, therefore, are considered planktonic.  Since these are only planktonic for part of their life, they are called meroplankton.  Organisms that are planktonic their entire life are called holoplankton.

Vocabulary:

Plankton – free floating organisms that drift with the current.

Trophic level – position an organism occupies in the food chain.

Taxonomy – how scientists classify organisms.

Holoplankton – organisms that are planktonic their entire lives.

Meroplankton – organisms that are planktonic for only part of their lives.

I interviewed our lead scientist onboard the Gordon Gunter who studies plankton:

chrismelrose
Lead Scientist – Chris Melrose

Name: Chris Melrose

What is your Position? Research Oceanographer

What do you do?  Principal investigator on  the Northeast Fisheries’ Ship of Opportunity project.  We collect data from merchant vessels that are crossing areas that we are interested in. I also work on the Ecosystem Monitoring Surveys where my main area of interest is primary production and phytoplankton. They are the base of the food web and tell you a lot about the functioning of a marine ecosystem.  Much of my work was in coastal regions where there were concerns about eutrophication, the enhanced primary production due to inputs of nutrients from pollution.

Why is your work so important?  We are studying the planet we all live on and we are in a period of environmental change. Long term monitoring programs, like this one, allow us to compare data from the present with the past to see how things have changed and also helps us to make predictions about what will happen in the future.

Why did you decide to become a marine scientist and work with NOAA and ocean science?  I grew up on the island of Martha’s Vineyard and always had an interest in the ocean. It was a hobby, but now it’s a career.

What do you enjoy most? I like science and being able to be out in the field – it is more of an adventure than just being in a lab.

What part of your job is most unexpected? When you are out in the ocean, there are always surprises – nature, weather or difficulties with ships, so you always have to be ready to adapt.

How long have you worked for NOAA and as a marine scientist?  From 1998 to 2004 I was with NOAA as a graduate student, from 2004 to 2010 as a contract employee and in 2011 I became a full-time employee.

What is your favorite type of plankton?  Diatoms because they have so many different shapes and geometric designs.

What is your favorite marine animal? Octopus as they are clever and it is amazing how they can change their color and shape.

If a student is interested in pursuing a career in marine science, what would you suggest to them?  Science and math are very important and you would need to attend graduate school.

What type of education do you need? At least a master’s degree to become a research scientist.

suewithbongos
Spraying down the Bongo nets – photo by Chris Melrose.

Personal Log:  

I am now getting use to my shift, noon to midnight.  At each station we put out the Bongo nets or Rosettes (more often the Bongos) and then we have to wash them down and strain out the plankton in a sieve to be saved later for the research. It gets a little harder and colder towards the end of the shift, but it has been very interesting seeing all the variety of plankton we are finding and how it changes from station to station.

stormwave2
Waves were a little higher during a very foggy day on the Gordon Gunter.

Yesterday was very foggy and a little more rocky.  It was very hard to see anything, but still beautiful to look at the ocean around us.  Today it is clearer, but still somewhat rocky.  Sightings have been few, but we were able to catch some whales in the distance by seeing them “blow” – spirt out water through their blow holes.  A Storm is on the forecast and we have had to change our route. We will not be going as far east as planned and will head north to avoid the main barrage of the storm.

The ocean is such an amazing place, with all its life and vastness. It makes you realize just how small you are and how big the world really is!

oceansunsetshipgood
Sunset off the stern of the Gordon Gunter.

zooplank
Euphausid- commonly known as krill

Did you know? Many types of whales feed exclusively on euphausid (or krill), a shrimp like zooplankton.

Question of the Day: What is your favorite type of plankton?

Sue Cullumber: Hooray, We Are Finally on Our Way! June 10, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/10/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Time:  21:30 (9:30 pm)
Longitude/latitude: 40.50289N, 68.76736W
Temperature  14.1ºC
Barrometer 1017.35 mb
Knots  10.2

sueleavingport
Leaving Newport – photo by Chris Melrose.

Science and Technology Log:

After several ship issues, we were able to finally head out from Newport, RI on June 9th after 4 extra days in dock.  We have started the survey and are using two main types of equipment that we will deploy at the various stations: CTD/Bongo Nets and CTD Rosette Stations.  We were originally scheduled to visit about 160 stations, but due to the unforeseen ship issues, these may have to be scaled back.  Some of the stations will just be the Bongo and others only the Rosette, but some will include both sets of equipment.

Bongos
Bongo and baby bongos being deployed during the survey.

A bongo net is a two net system that basically, looks like a bongo drum.  It is used to bring up various types of plankton while a CTD is mounted above it on the tow wire to test for temperature, conductivity and depth during the tow. The two nets may have different sizes of mesh so that it will only  filter the various types of plankton based on the size of the holes.  The small mesh is able to capture the smaller phytoplankton, but the larger zooplankton (animals) can dart out of the way and avoid being captured. The larger mesh is able to catch the zooplankton but allows the phytoplankton to go through the openings. There are regular bongo nets and also baby bongo nets that may be launched at the same time to catch different types of plankton.

rosetteinwater
Rosette CTD returning to the surface.

The Rosette CTD equipment is a series of 10 cylinders that can capture water from different depths to test for nutrient levels and dissolved inorganic carbon, which provides a measure of acidity in the ocean. These are fired remotely via an electronic trigger that is programed by a computer program where each cylinder can be fired seperately to get 10 samples from different depths.  It also has several sensors on it to measure oxygen, light and chlorophyll levels, as well as temperature and salinity (salt) from the surface to the bottom of the water column.

plankton
Copepods and Krill from one of the bongo net catches.

Our first station was about 3 1/2 hours east of Newport, RI and it was a Bongo Station.  I am on the noon to midnight shift each day.  So on our first day, during my watch, we made four Bongo stops and two CTD Rosettes. Today we completed more of the Bongos on my watch.  We are bringing up a variety of zooplankton like copepods, ctenophores, krill, and some fish larvae.  We have also seen quite a bit of phytoplankton on the surface of the water.

sueinsurvivalw
Wearing the survival suit – photo by Cathleen Turner.

Personal Log:

Being on a ship, I have to get used to the swaying and moving about.  It is constantly rocking, so it can be a little challenging to walk around.  I have been told that I will get used to this and it is actually great when you want to go to sleep!  Luckily I have not had any sea sickness yet and I hope that continues!  We completed several safety drills that included a fire drill and abandon ship drill where we had to put on our survival suits – now I look like a New England Lobster!

dolphinsfav
Common dolphins swimming off the ship’s bow.

blueshark
Blue shark swimming beside the Gordon Gunter.

Today was an amazing day – was able to see Right Whales, Blue Sharks and Common Dolphins – with the dolphins surfing off the ship’s bow!  The Northern Right Whale is one of the most endangered species on the planet with only 300 left in the wild.  One of the reasons there are so few left is that swim on the surface and were excessively hunted and there feeding areas were within the Boston shipping lanes, so they were frequently hit by ships. Recently these shipping lanes have been moved to help protect these animals.  So I feel very privileged to have been able to see one!

Did you know? Plankton are the basis for the ocean food web.  They are plentiful, small, and free floating (they do not swim). The word plankton comes from the Greek word “planktos” which means drifting. “Plankton” from the TV show SpongeBob is actually a Copepod – a type of zooplankton.

Copepod
Copepod

Question of the day:  Why do you think it is important that the scientists study plankton?

Sue Cullumber: Flexibility – Teacher at Dock, June 9, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/9/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Time – 8:15 am
Latitude and Longitude -41º32N, 71º19W
Temperature – 18º C, 65ºF
Barometer – 1019.5 mb

IMG_8281
The Gordon Gunter at the Newport Naval Station.

Science and Technology Log: 

Since we have been delayed in sailing, I have had the opportunity to interview several of the crew sailing with the Gordon Gunter to learn more about working at sea and in the marine sciences. Sailing one of the NOAA vessels for scientific research requires personnel from many different disciplines including the: scientists, NOAA Corps officers, engineers, ship stewards, fishermen, deck hands, computer and electronics personnel, bird and mammal observers,  and others.  I will continue to interview personnel and add them to my future blogs.

Interviews:

Lab Technician, Cristina Bascuñán
Lab Technician, Cristina Bascuñán

1. Name: Cristina Bascuñán

What is your Position?  Lab Technician

What do you do?  I’m in charge of the Rosette CTD (Conductivity, Temperature and Depth) equipment and Sea-Bird equipment. I schedule them for the different surveys and send them out for maintenance.

Why did you decide to work with NOAA and ocean science?  As a sophomore in college I started volunteering and loved it, so I volunteered for several more surveys and then went out to sea on a NOAA cruise and loved that.  I was doing 2 trips a summer.  Around that time I got hold of an oceanography branch chief of NOAA who was in need of a lab technician and the rest is history.

How long have you worked for NOAA?  I have worked for NOAA for 16 years. I volunteered for 3 years initially and was 19 on my first trip.

What do you enjoy most?  Meeting all the different people on the various cruises

What would you like to change?  During long trips I miss the comforts of home.

If not working for NOAA, what would you do?  I would be an architect.

What outside hobbies do you have?  When out at sea, I like to knit.  At home, I’m involved in many water activities like:  kayaking, fishing and going out on our skiff (small sailboat).

Where are you from? I have lived on the Cape for 16 years.

What is your favorite marine animal?  The Lumpfish – they look like they are made out of rubber.

What is the most unusual thing you have seen or found at sea?  While out doing a MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System and is a net system for plankton in the ocean), we brought up a bunch of bones and some carrots.  Our group could not figure out where this could have come from or what animal the bones were from.  We found out later, that the Steward (meal preparation person) had tossed the slop basket from dinner into the sea and that’s what we brought up!

If a student is interested in pursuing a career in marine science, what would you suggest to them?  Get experience and go out to sea on a research vessel to see if it is something you would like to do for a career.

Marc
Operations Officer, Marc Weekley

2. Name: Marc Weekely

What is your Position? Operations Officer onboard the Gordon Gunter

What do you do? I am the liaison between the operational side of the ship and the science party, making sure that what the scientists want to accomplish gets done.

Why did you decide to go into the NOAA Corps and ocean science? I have a B.S. in environmental science. In 2004, 2005 I found out about the NOAA Corps and it was a good way to mix the operational side with the science I already had.  All NOAA Corps officers have to do watches and get the ship to where the scientists need to go, which includes ship driving and navigation, which I also liked.

How long have you worked for NOAA?  I was commissioned in 2006.

What do you enjoy most?  The variety of operations, science, and projects that are available and learning about the different scientific research. The routine is always new and fresh and you can transfer to new ones frequently. For example, in the NOAA Corps you spend 2 years in the field on a ship and 2-3 years on a land assignment. I was in Antarctic in 2009 doing atmospheric research on air quality monitoring.

What would you like to change? Some of the assignments are only once in a lifetime and cannot return to them like going back to the South Pole.

What part of your job was the most unexpected?  When I first entered everything took me by surprise because I was not aware of the scope of the Corps. The opportunities to pursue what I was training for came much sooner than I realized. I was on the bridge controlling and driving a ship much sooner than I expected.

How are people chosen for NOAA ships? For many of the officers you fill out a “wish list” of where you want to go and then assigned according to needs and timing.

If not working in the Corps, what would you do? A job on or in the water.

If a student is interested in pursuing a career with NOAA or in marine science, what would you suggest to them? The Corps is looking for individuals with science, engineering and math backgrounds.  

What outside hobbies do you have?  Scuba diving and anything outdoors. I tried rock climbing in Boulder before going to the South Pole.

Where are you from? Currently I live in Moss-point, Mississippi, but I’m originally from Texas where my parents still live.

What is your favorite marine animal? Sharks because so little has changed in them over time. Even though they are a very frightening animal, I love to be in the water with them.

What is the most unusual thing you have seen or found at sea?  Watching a 20 foot humpback whale full breech (entire body) out of the water is one of the most unusual and amazing things I have seen.

margaret3
Head Steward, Margaret Coyle

3. Chief Steward:  Margaret Coyle

What are some of the skills and experiences a person needs to become a ship’s steward? A person needs good cooking skills, organization,  to be personable, and dedicated. This is a career, I’m working 24 hours a day, 7 days a week, 365 days a year.  “I live to cook and cook to live”.

What do you like most about your job? The cooking and sailing.

What  would you like to change? I hate the paperwork – “If I only had to just cook and order groceries, I would be the happiest person on the planet.”

How long have you been working for NOAA? I have been sailing since I was 20 and cooking for 25 years. I started in the coastguard as an engineer and then went back to school to be a cook. I have been with NOAA for 8 years, 2 months and 7 days.

What do you like most about working on the ocean?  The solitude and the lifestyle of just being at sea and having my own space and my galley setup.  Having a set schedule is something I like and also the rocking of the ship and the weather.

What part of your job did you least expect to do? When I came here I knew exactly what to expect.  Over the years the record keeping requirements have increased, which I did not expect.

How far in advance plan your meals? I have 8 years of menus and keep them all in my computer. I plan my menus by the people we have onboard and how many are going to be at a certain meal.  I have to plan and order 7 days in advance and I have to always order dairy and produce when we pull into a new port.

What training or experience would you suggest for high school students if they want to pursue a career as a Steward or other ocean careers?  You can go the military route and go through their school for cooking. Take Home Economics in HS and work in a restaurant – that will determine if you like it or hate it.

What advice would you give young people to eat more nutritiously? Eat dinner at a table with your family and have a conversation. Don’t sit in front of the TV or play on a computer. Don’t eat out of a bag instead choose something healthy like an apple.

If you weren’t a ship’s steward, what other career would you like to have?  This is my dream job! But if I didn’t cook, I would be a seamstress.

*What’s your favorite meal to prepare? Whatever someone wants to eat, is something I love to prepare.

*Do you ever run out of food? I once ran out of orange juice one year. We were in Mexico and I ordered 100 lbs. of oranges and squeezed 15 lbs each morning for fresh juice.

Do you have an outside hobby?  I sew clothes – My husband and I go to Renaissance fairs and I make the costumes for that. I love old movies as well and gardening.

Where are you from? Hurley, Mississippi and I’m married and have 2 children.

What is your favorite marine animal? The edible kind, salmon!

Here is one of her favorite recipes:

Sweet Potato Cheesecake 

2 cups Mashed sweet potato

1 cup sugar

1 cup packed brown sugar

4 eggs

2 lb cream cheese

1 tsp cinnamon

1/2 tsp nutmeg

1/2 tsp ground ginger

1/4 tsp salt

1/4 cup graham cracker crumbs

1/4 cup melted butter

Beat cream cheese and sugar together till light. Add eggs one at a time.  Add sweet potatoes, spices and mix together.  Butter a spring-form pan and dust with graham crackers.  Pour mixture into pan. Bake at 325º till filling is set.  Chill and serve with whipping cream.

I can’t wait to try this when we head out to sea!

newport-sue
Downtown Newport, RI
Photo by Kevin Ryan

okeanos
The NOAA Vessel – Okeanos Explorer

Personal Log:

One thing that I have learned in life is that many things are not under your control and you just have to make the best of each situation and be flexible.  So even though it has taken several more days to leave port than had been planned, I have had the opportunity to explore the base, visit another NOAA vessel, the Okeanos Explorer, interview several of the staff, and work on my blogs and photography. I have really enjoyed talking with the others onboard and visiting the areas around the base and in Newport, RI.

stormw
Stormy day on the Naval Base in Newport, RI

Also by postponing the sailing day, it looks like we missed the bad weather from hurricane Andrea. Friday it was raining constantly in port, so it most likely would have done the same at sea!

NOAAcorps
NOAA Corps’ Flag.

Did you know?  The NOAA Corps is one of the seven uniformed services of the United States.  Officers work on one of NOAA’s 19 ships or 12 aircraft in support of the atmospheric and oceanic scientific research that  is being carried out on these vessels.

Question of the Day?

What job would you like to have on a NOAA vessel and why?

Sue Cullumber: A Slight Delay and Eagerly Awaiting Departure, June, 5, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/5/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Time: 1800 (6 pm)
Latitude/ Longitude: 41 degrees 32 N, 71 degrees 19 W
Temperature:  19.5 C or 67 F.

Science and Technology Log:

sueonNOAA
Walkway to the Gordon Gunter. Photo by Kevin Ryan.

map
Map of our Ecosystem Monitoring Survey.

I am currently onboard the Gordon Gunter, however we have been delayed a day due to an issue with the Automatic Steering Gear.  A part was to come in today, but the wrong part was shipped (twice) so we have to remain in port for another day.  We are currently at the Naval Station in Newport, Rhode Island and as soon as the part arrives, we will head up to the Gulf of Maine to start our Ecosystem Monitoring Survey. During the survey we will deploy our equipment and gather data at about 120 fixed stations and 25 random ones from the Gulf of Maine down to Norfolk, Virginia. At each station a Bongo Net (phytoplankton)  and/or CTD Rosette  (salinity, temperature, and density) equipment will be deployed which I will discuss in my upcoming blogs.

saratogatoGgunther
The de-commisioned Aircraft Carrier, Saratoga, at the Newport Naval Base. You can see the Gordon Gunter on the far right.

IMG_8038
The diesel engines on the Gordon Gunter.

The Gordon Gunter: The NOAA ship Gordon Gunter was originally built in 1989 as the U.S. Naval Ship Relentless.  When first built it was designed to be used for ocean surveillance mainly hunting submarines. In 1993 it was transferred to NOAA and became the NOAA ship Gordon Gunter in 1998.  Because it was built for hunting submarines, it is a very quiet ship.  It runs off of four diesel generators that  power all the ship’s systems, which includes the ship’s two electrical propulsion motors and bow thruster.

The Gordon Gunter is 224 feet long with five levels above the water line. It can go at a top speed of 10 knots (about 11.5 miles per hour).  This does not sound very fast, but it is a good speed for completing scientific surveys (and hopefully avoiding getting seasick). Actually most of the trawling nets (like for phytoplankton) are dispatched at 3 knots (about 3.45 miles per hour).  The ship also has V-Sat (very small aperture transmission) satellite to provide connection to the internet and phone communications.

IMG_8235
Gordon Gunter Mess Hall

IMG_8243
The “Wet Lab”

The ship seems to have all the comforts of home!  There is the bridge (ship navigation), observation deck, state rooms (sleeping quarters – with a total of 35 bunks), a gym, movie room, TV room, mess hall, store, laundry area, dry lab,and wet lab.  The “dry lab” is essentially the computer lab and this is where data from the survey will be entered into the computer. The “wet lab” is the location of where the ocean samples will be processed.

IMG_8233
Operations Officer, Mark Weekley, gives us a tour and discusses safety drills.

Today we took a tour of the ship and learned about some of the important safety drills that are required onboard. The three main drills are: Fire and Collision, Man Overboard and Abandon Ship.  Each one has it’s own set of alarms that we need to be aware of.  The day we depart (hopefully tomorrow) we will be doing one or more of these drills to make sure we are ready!

Besides the scientists onboard, there is a NOAA crew that pilots and runs the ship. The Gordon Gunter is involved in many scientific voyages along the Atlantic Coast from as far north as Nova Scotia to down south along the Gulf of Mexico and the Caribbean.  It’s home port is the Pascagoula Laboratory in Pascagoula, Mississippi.  Each of these expeditions has a different scientific crew, but the ship personnel usually remains the same.  This crew is essential to the smooth running of the ship and includes: Commanding Officer, Executive Officer, Operations Officer, Navigation Officer, Safety Officer, Junior Officer, Engineering personnel, Deck personnel, Stewards (meal preparation), and Electronics personnel.

The Bridge - ship operations and navigation.
The Bridge – ship operations and navigation.

 Personal Log:

IMG_8023
My stateroom on the Gordon Gunter.

I am getting to learn my way around the ship and am all moved into my stateroom. I was really surprised at how large it is!  I have a roommate – Kat, a graduate student, for the first leg of the trip and then Sarah, an intern, for our second leg.  We will make a stop in Woods Hole, Massachusetts on June 16th to drop a few people off and welcome aboard some new ones.  So far I have met several marine and bird scientists, a college volunteer, graduate student, and college intern. The science and NOAA crew are all very friendly and welcoming, but it is hard to sit here in port and am really looking forward to heading out to sea and learning all the science that I can share with my students.

sunsetNOAA
Sunset outside the Gordon Gunter – waiting to leave port.

Did you know?  NOAA has its beginnings in as far back as 1807, when the Survey of the Coast was started as the nation’s first scientific agency.

Sue Cullumber: Can’t Wait to Head Out As a NOAA Teacher at Sea! May 21, 2013

NOAA Teacher at Sea
Sue Cullumber
(Soon to be) Onboard NOAA Ship Gordon Gunter
June 5– 24, 2013

Mission: Ecosystem Monitoring Survey
Date: 5/21/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

hikein
My students on a field-trip to the desert.

endofday
Howard Gray School in Scottsdale, Arizona.

Personal Log:

Hi my name is Sue Cullumber and I am a science teacher at the Howard Gray School in Scottsdale, Arizona. Our school provides 1:1 instruction to students with special needs in grades 5-12 and I have been teaching there for over 22 years!  In less than two weeks I will be heading out to the Atlantic coast as a NOAA Teacher at Sea.  I am so excited to have this opportunity to work with the scientists aboard the NOAA ship Gordon Gunter.

I applied to the NOAA Teacher at Sea program for the following reasons:

First, I feel that directly experiencing “Science” is the best way for students to learn and make them excited about learning. To be able to work directly with NOAA scientists and bring this experience back to my classroom gives my students such an amazing opportunity to actually see how science is used in the “real world”.

GALAPAGOS, ECUADOR
Visit to Española Island – photo by Pete Oxford

IMG_5384
Students holding “Piggy” and our other baby Sulcata tortoises.

Secondly, I love to learn myself, experience new things and bring these experiences back to my students. Over the past several years I have had the opportunity to participate in several teacher fellowships.  I went to the Galapagos Islands with the Toyota International Teacher Program and worked with teachers from the Galapagos and U.S. on global environmental education. From this experience we built an outdoor habitat at Howard Gray that now houses four tortoises.  Students have learned about their own fragile desert environment, animal behavior and scientific observations through access to our habitat and had the opportunity to share this with a school in the Galapagos. I worked with Earthwatch scientists on climate change in Nova Scotia and my students Skyped directly with the scientists to learn about the field research as it was happening. Last summer I went to Japan for the Japan-US Teacher Exchange Program for Education for Sustainable Development. My students participated in a peace project by folding 1000 origami cranes that we sent to Hiroshima High School to be placed in the Hiroshima Peace Park by their students. We also  held a Peace and Friendship Festival for the community at Howard Gray.

cranesgroup-copy
Completion of the 1000 cranes before sending them to Hiroshima.

IMG_6468
Japanese teachers learn about our King Snake, Elvis, from the students.

This year we had a group of Japanese teachers visit our school from this program and students taught them about many of the sustainable activities that we are working on at school.  Each has brought new ideas and amazing activities for my students to experience in the classroom and about the world.

edgeofcanyon
Dusk at the south rim of the Grand Canyon.

Lastly, Arizona is a very special place with a wide variety of geographical environments from the Sonoran Desert (home of the Saguaro) to a Ponderosa Pine Forest in Flagstaff and of course the Grand Canyon!  However, we do not have an ocean and many of my students have never been to an ocean, so I can’t wait to share this amazing, vast and extremely important part of our planet with them.

So now I have the chance of a lifetime to sail aboard the NOAA ship Gordon Gunter on an Ecosystem Monitoring Survey. We will be heading out from Newport, RI on June 5th and head up the east coast to the Gulf of Maine and then head back down to Norfolk, Virginia. Scientists have been visiting this same region since 1977 from as far south as Cape Hatteras, NC to the an area up north in the Bay of Fundy (Gulf of Maine between the Canadian provinces of New Brunswick and Nova Scotia).  They complete six surveys a year  to see if the distributions and abundance of organisms have changed over time. I feel very honored to be part of this research in 2013!

Gordon Gunter
NOAA Ship Gordon Gunter (photo credit NOAA)

One of the activities I will be part of is launching a drifter buoy. So students are busy decorating stickers that I will be able to put on the buoy when I head out to sea.  We will be able to track ocean currents, temperature and GPS location at Howard Gray over the next year from this buoy.  Students will be studying the water currents and weather patterns and I plan to hold a contest at school to see who can determine where the buoy will be the following month from this information. While out at sea my students will be tracking the location of the Gordon Gunter through theNOAA Ship Tracker and placing my current location on a map that one of my students completed for my trip.

IMG_9292
Spending time with my husband, Mike, and son, Kyle.

Outside of school, I love to spend most of my free time outdoors – usually hiking or exploring our beautiful state and always with my camera!  Photography is what I often call “my full-time hobby”.  Most of my photos are of our desert environment, so I look forward to all amazing things I will see in the ocean and be able to share with my husband and son, students and friends!  One of my passions is to use my photography to provide an understanding about the natural world, so I am really looking forward to sharing this fantastic adventure with everyone through my blog and photos!

wellearnedrest3
Enjoying the view during one of my hikes in the Sonoran Desert.

Angela Greene: “I’ll have 3000 Big Macs, please.” May 7, 2013

NOAA Teacher at Sea
Angela Greene
Aboard NOAA Ship Gordon Gunter
April 29-May 11, 2013

Mission: Northern Right Whale Survey
Geographical Area of Cruise: Atlantic Ocean out of Woods Hole, MA
Date: May 7, 2013

Weather Data from the Bridge: Air Temperature – 12.20°C or 54°F, Sea Temperature 10.16°C or 50°F, Wind Speed- 9.24 kts, Relative Humidity 94%, Barometric Pressure- 1021.05 mb.

Science and Technology Log: Whale work can be intense and exciting, or slow and frustrating. A good day at work is when the weather cooperates the same time the whales cooperate. So far no one is playing nice. Fog has been the enemy for the last two days, making flying-bridge operations nearly impossible. Unless a whale swims up to our ship and jumps in for lunch, we aren’t going to be able to see it. Our watch efforts get moved to the bridge where the ship is controlled, and while it’s a good time chatting with the NOAA Corps officers, I’d rather be sighting whales.

Fog
The fog comes
on little cat feet.
It sits looking over harbor and city
on silent haunches
and then moves on.
Carl Sandburg

For me however, this ship is like a small university on the sea with free tuition.  Everyone here knows much more than I do about science, so days like these are spent asking questions.  I wanted to focus this blog post on a question that came from my Tecumseh Middle School eighth grade students.  They have been following my blog and following the NOAA Ship Gordon Gunter using the NOAA Ship Tracker.  The ship tracker can be used to locate any ship in the NOAA fleet on its current cruise or in the last twelve months.  Current weather data from the ship can also be displayed.

Ship Tracker
The current cruise of the NOAA Ship Gordon Gunter. Screen shot courtesy of NOAA Ship Tracker

My students noticed that our ship was staying near the continental shelf, or Georges Bank, and wanted to know if it would be a better idea to look for whales in deeper ocean.  I turned to Woods Hole Oceanographic Institute scientist onboard, Dr. Mark Baumgartner (yet another superhero), for answers.  He basically told me, the whales go where the food is most abundant.

Georges Bank
Georges Bank is a shallow off shore plateau. During the ice age it was above water. Image credit- NOAA

North Atlantic Right Whales eat a zooplankton named Calanus finmarchicus or just Calanus.  This tiny crustacean is packed with lots of calories in an internal structure called a lipid sac.  In order to grow and develop a hearty lipid sac, the Calanus require lots of phytoplankton.  In order to be a yummy and nutritious treat for the Calanus, the phytoplankton need nutrients in the form of nitrogen and phosphorous, water, and sunlight.  Nutrients and water are abundant for the phytoplankton, but in order to get the needed sunlight for photosynthesis, the phytoplankton must be as close to sunlight as possible.

Calanus
Northern Right Whale food- Calanus finmarchicus The lipid sac is clearly visible. Photo credit- C.B. Miller/K. Tande NOAA

Simply put the food chain links together like this:  sunlight (source of energy), phytoplankton (producer), Calanus (primary consumer), and right whale (secondary consumer).  The topography of the ocean near Georges Bank and the weather over the North Atlantic provide two things for this simple food chain: upwelling and wind.

Upwelling is a phenomenon that occurs in ocean waters when wind and a continental structure circulate water, allowing the cold nutrient rich water on the bottom to replace water on the top.  The phytoplankton at the bottom essentially get a free ride to the top of the ocean where they are able perform photosynthesis.  The Calanus can feed on the nutrient rich phytoplankton, and the whales can feed on the Calanus.  This cycling allows the whales to feed close to the surface, where they need to be in order to breathe.  If a whale has to dive deep for food, energy is wasted on the dive.  It is more efficient to be able to get a good meal as close to the surface as possible.

big mac
Right Whales need the caloric equivalent of 3000 Big Macs per day. I’m lovin it! Image credit- MacDonalds

According to Dr. Baumgartner, a Northern Right Whale needs to eat 1-2 billion Calanus per day.  This amount of zooplankton has the same weight as a wet Volkswagen beetle, and is the caloric equivalent of eating 3000 Big Macs per day.  So there you have it, TMS 8th graders.  The whales go where the food is…

Dr. Mark
Me with Dr. Mark Baumgartner
Photo Credit-Eric Matzen

Personal Log:  Still holding out for “The Big Day”, the day we can take the small boats out again.  If it doesn’t happen, I will be happy for the experience I had on the Gordon Gunter.  Sure would be awesome, though…

Alexandra Keenan: Right Whales Everywhere! June 25, 2012

NOAA Teacher at Sea
Alexandra Keenan
Onboard NOAA Ship Henry B. Bigelow
June 18 – 29, 2012

Mission: Cetacean Biology
Geographical area of the cruise: Gulf of Maine
Date: June 25, 2012

Science and Technology Log:

Greetings from Canadian waters!

Bigelow flying Canadian flag
Ships must fly the flag of the nation whose territorial water they are sailing in.

Thanks to a tip from an aerial survey, we are on Georges Basin– the northern edge of Georges Bank. Incredibly, we saw around 30 right whales yesterday! The science crew quickly got to work photo-identifying every right whale we could safely approach.

Photo-identification is the process of distinguishing individuals of a species from one another using markings and other cues in photographs of an individual. It is possible to identify individual right whales by markings called callosities on their heads, scars on their bodies, and notches in their flukes.

Photographing right whales
I use a telephoto lens to photograph right whale callosities to use in identifying individuals.

taking good notes
Research analyst Genevieve Davis takes good notes on each whale that is photographed, including frame numbers and identifying characteristics. These are essential when going through the photographs later.

the chief
Chief Scientist Allison Henry knows right whales. I was amazed by her ability to recognize individuals by name or number.

Callosities are patches of rough skin on right whales’ heads that appear white because of small organisms called cyamids that inhabit these areas (a sort of “whale lice”). Like human fingerprints, each right whale has a unique callosity pattern. In order to photo-ID a whale, photographs of the animal’s head and body are taken with a telephoto lens when the animal surfaces. These photographs can later be compared to a catalog of right whale individuals to determine who has been spotted (some whales have names, some have numbers).

Scientists use unique markings on the head called callosities to identify individual whales. (graphic/photo: New England Aquarium)

The team also has “cheat sheets,” or laminated cards containing information on certain whales that are of interest or need to be biopsied. These references can help scientists quickly identify whales in the field that need to be studied further.

cheat sheets
These sheets contain photographs and drawings of individual whales’ markings and callosities.

As one of the most endangered whale species, there are only about 450 individual right whales left. We were privileged to see a little less than 10% of the entire right whale population in one day. This is amazing, but also quite disturbing.  Even though right whaling has been illegal since 1937 , right whales still face entanglement from commercial fishing gear and getting hit by vessels. They are particularly vulnerable because they seasonally migrate through world shipping lanes, are relatively slow swimmers, and closely approach vessels.

One right whale we encountered, named Ruffian, had huge scars all over his back. I asked Allison the Chief Scientist what happened to him.

Below are two videos: the first a shot of the numerous spouts (note the characteristic v-pattern of the spouts) that gives an idea of how surrounded we were by right whales, the other is a short video of a right whale surfacing near our bow.

Janet Nelson: On Georges Bank, June 22, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Friday, June 22, 2012 

Weather Data from the Bridge:
Longitude: 068 24.69 West
Latitude: 41.40.50 North
Wind speed: 7.9 kt
Air temp: 18.5 C
Depth: 194.7 feet (32.2 fathoms)

Science and Technology Log:

Our route in George’s Bank
Our route in George’s Bank

Yesterday was a 12 hour shift of towing the HabCam. The strangely unique thing about that was the terrain. We are on the western edge of Georges Bank and the sand waves on the ocean floor are incredible! There are waves as high as 10 meters that come upon you in a blink of an eye. By observing the side scan sonar it looks very similar to being in a desert, or on the surface of Mars. We refer to driving the HabCam through these areas as piloting the “White knuckle express”.

side scan sonar/sand waves
side scan sonar/sand waves

To get through these areas Scott was able to use geographic images collected by the United States Geological Survey and created an overlay of the pictures onto our tow path, alerting us to any possible hazards in navigation. This data allowed us to anticipate any potential dangers before they arose.

Irritated sea scallop
Irritated sea scallop

We continue to see skates, various fishes, lobsters and sand dollars, and in places, huge amounts of scallops. The images will be reviewed back at the lab in Woods Hole, MA. I have been able to see some of them and the clarity is amazing.

Today, we are continuing to tow the HabCam. When finished, we will have taken images from hundreds of nautical miles with over 4 million images taken on Leg II! We will put in the scallop dredge toward the end of my shift. We will then conduct back to back dredge tows on the way back to Woods Hole totaling over 100 nautical miles for this portion of the trip.

Me, heading in to get my foul weather gear on
Me, heading in to get my foul weather gear on

Personal Log:

Yesterday was a beautiful day at sea. It was, however, strange. The sea was really calm and the sun was shining in a big beautiful sky. The strange thing was that about 300 yards out was fog. There were many commercial fishing vessels all around us. It felt like being in an episode of “The Twilight Zone” or some creepy Steven King novel. I am thankful, however, for smooth sailing.

Commercial fishing vessel
Commercial fishing vessel

 

a day at sea
A day at sea

The crew continues to be awesome. We had flank steak and baked potatoes for supper last night. Lee, our chef, is amazing. Everything she makes is from scratch and there is always plenty. The only reason someone would go hungry on this ship is if it was by choice. Lee takes very good care of us! I have had ample opportunity to get to know others who share my shift. Mike, Jessica and I are science volunteers. Jon and Nicole are the NOAA staff along with Scott an associate scientist at WHOI( Woods Hole Oceanographic Institute) on the science team. We get along “swimmingly” and have fun banter to break up any monotony.

I am sleeping very well at night. I think it’s the rocking of the ship that lulls me to sleep. I think I will miss that when I get home. Funny, how at the beginning of this journey I was cursing the very waves that now rock me to sleep. The way the body adjusts is amazing.

I will be home in four days. This week has swiftly gone by. Although I miss home, I feel I will miss people from this ship and the experience of being at sea (minus the sickness!) My mind is already putting together science lessons for my biology classes this fall. I do, however, have three full days left on this ship and I plan to make the most of it. Keep checking the blog to find out what happens next on the great adventure in the North Atlantic Ocean!

Sunset, 6/21/12
Sunset, 6/21/12

Janet Nelson: Sand Dollars and Sea Stars! June 20, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Wednesday, June 20, 2012 

Weather Data from the Bridge:
Latitude: 41.03.21 North
Longitude: 071 32.79 West
Air temp: 21 C
Wind Speed: 15.6 kt
Depth: 135.2 feet

Science and Technology Log:

I came on shift yesterday at noon with three back to back dredge tows (we have done 30 dredges thus far on Leg II). We are off the coast of Long Island. Most of the dredges around here have been filled with sand dollars and sea stars. In total, we have processed and counted on this leg of the survey 5, 366 scallops, 453 skates, and 58 Goosefish, a very interesting fish that  buries itself in the sand and uses a filamentous lure to attract prey and engulf them. In addition, we have counted 132, 056 sea stars (wow!) and 590 crabs. The HabCam had some glitches yesterday but we began running the vehicle on our shift at approximately 1245 hrs. It made a run for approximately three hours and 57 minutes, with approximately 22.387 nautical miles of pictures before we dredged again.

While looking at the images of the HabCam, it astounds me at seeing prior dredge track marks from commercial scallopers and clamers. By looking at the side scan sonar, some of the dredges are very deep and very invasive. It reminds me of strip mining and clear cutting in terrestrial ecosystems. It is also evident, by observing the images, that little is left in those areas but shell hash. With that said, there are still some interesting species that get photographed, such as jelly fish and sea stars in patterns you would think they orchestrated.

We are working our way toward Georges Bank and will be there, from what I’m told, sometime late this afternoon or evening. All equipment is running well and what time we lost with the late departure has mostly been made up. It’s amazing what technology can do!

Personal Log:

As of yesterday, I have been away from home with little to no contact for six days, so when I was told yesterday morning prior to coming on shift that we had cell phone signal, I immediately went up on deck and called my husband! Although I only got an answering machine, it was good, and familiar, to hear his voice.

We then had a fire drill at noon and after that, set to work. It was nice to be outside working for the next 4 hours. I think I finally have my sea legs. However, the seas have also been cooperating with only 1-3 foot swells, at best. When they are higher, I sometimes feel like the Scarecrow in “The Wizard of Oz”. It’s a good thing I can laugh at myself when I look completely ridiculous while tripping through a door or, with no warning whatsoever, bump into a wall!  From what I understand, this ship has a flatter bottom than most so every wave and swell catches it and tosses it in whatever direction that wave is going, despite having just gone in the opposite direction! I am hoping the sea remains calm when we get to Georges Bank.

I am learning a great deal about the critters that live in the ocean around here. It is so strange to have at times hundreds upon hundreds of sand dollars being pulled up in the dredge at one location and then to have mostly sea stars pulled up at another location. My favorite, however, are the hermit crabs! They are so cool! They will begin to crawl out of their shells, see you coming to pick them up and immediately crawl way back inside and stare at you. I actually think I saw one blink at me. Not really, but my imagination does run away at times.

Those are also the times someone, usually me or the watch chief (chief scientist is guilty of this too!), bursts into song or starts quoting a movie line, and then half the crew is joining in. I have gotten more proficient at using the technology equipment on board that does the recording of the measurements of the specimens, and also at cutting/shucking the scallops. Never thought I would know how to do that! I have a feeling there are a few things I never thought I would do before this cruise is over. I have five more days at sea. Anything is possible!

Side note: Today is beautiful for being at sea! Clear sky, moderate winds, and sea legs that are working!!

Cheers!

This slideshow requires JavaScript.

Ellen O’Donnell: Whales, Whales and More Whales May 15, 2012

NOAA Teacher at Sea
Ellen O’Donnell
Onboard NOAA Ship Delaware II
May 14 – May 25, 2012

Mission: Northern Right Whale Survey
Geographical are of the cruise: Atlantic Ocean out of Woods Hole. MA
Date: May 15, 2012

Weather Data from the Bridge:

Winds out of the south about 10-15 knots. Partly cloudy with mid-level clouds.

Science and Technology Log

We left Woods Hole, MA, yesterday afternoon around 2:00PM. All night we traveled until we reached Georges Bank this morning. George’s Bank is a rich feeding area that many cetaceans utilize especially those that eat small crustaceans called copepods. On May 12th a previous right whale survey located a group of 15 right whales. We headed out to that point. We started our watch sessions at 7AM and rotated through three stations.

Me on the “Big Eye”

One person used a mounted binocular which has 25X125 magnification. It is called “Big Eye.” Big Eye is used to scan the horizon from the bow to the port side. It is also used to help identify a whale when it is seen by someone else. The second person has binoculars and looks on the starboard side and the third person records information when any whale is seen and watches for the whales closest to the ship.

I learned a lot today about identifying whales. First off, if helps if you know what species you might be dealing with. In this location, the main species one might see are right whales, fin whales, sei whales and humpback whales.

So, here is the scoop on whale identification. Typically the first thing you see that indicates a whale is present is the spout. Whales are mammals and have lungs. Therefore, they need to inhale and exhale air. Whales have evolved to have their nostrils on their back, called “blowholes.” Baleen whales have two blowholes. The spout that you see is exhaled moist air.

Right Whale Spout (photo Beth Josephson 5/15/2012)

Anyway, back to identifying whales. Whales have somewhat different spray patterns giving an indication of the type of whale. Right whales and humpbacks have v-shaped blows, if you see them head on, or they look like puffy clouds from the side. Sei whales and fin whales have tall columnar spouts.

The second indication is to look for a dorsal fin, a fin on the whale’s backside. Right whales don’t have dorsal fins, but the other three whales do. You can also tell the difference between a sei and a fin whale by how close the spout and the dorsal fin appear. If you see the fin about the same time as the spout, you have a sei whale and if you don’t see the dorsal fin for a while you have a fin whale. (slow to the finish – fin whale, seys I’m here – sei whale. Method of memorizing – compliments of me!)

A third thing to look for is the fluke. Some whales, such as the right and humpback whales, raise their flukes when they dive down into the water. The humpbacks fluke is very broad and more horizontal, whereas the right whales fluke is more upright. In addition, the right whale fluke is more smooth on the inner portion of the fluke and the humpbacks is jagged.  Humpbacks also have white patterns on the back of their fluke, which is used to identify them whereas, right whales are just dark. So when you are looking for right whales it is exciting when you see a more rigid, dark colored fluke go down.

Right whale fluke before diving (photo Jennifer Gatzke 5/15/2012)

Right whale fluke (Jennifer Gatzke 5/15/2012)

Now there is one more thing to look for in a right whale. Right whales often skim along the surface. They open their mouths and let the water run through hoping to catch small crustaceans with their baleen. This gives them a characteristic sloping shape where their head is up higher in the water.

Right Whale Head (photo Allison Henry)

They also have callosities which are used to identify individuals. Callosities are rough patches of skin and each right whale has a different pattern of this skin.

At the location of the previous 15 whales we found 5 right whales. A small boat was lowered into the water in order to get closer to the whales. While whales are identified up in the flying tower of the Delaware II, the mission of this research cruise, however, is not just to identify whales. It is important to individually identify each right whale. Therefore, when right whales are seen, the biologists need to determine if it is one that has already been identified. To this purpose they take pictures of the whales head, remember that’s where the callosities are located. If it turns out to be a whale that scientists haven’t identified, or a new calf, a biopsy is taken of the whale (more to come on this). The biologists took pictures of the right whales, but it was very difficult to get close, as they were feeding below the surface and staying down for long periods of time. Right whales may remain below the surface for up to twenty minutes.

The gray boat heading out to get closer to right whales

After the time it took chasing the 5 whales, we made our way to a previous sighting of nine right whales. We saw 6 whales on the way and tagged the locations, but did not lower the boat. Our time was cut short because the weather is supposed to turn for the worse this evening and we need to get back near land. Therefore, we are heading back to the cape tonight, near Provincetown, as the weather forecast calls for rain, high winds and rough seas. We may be staying closer to land the next day or so.

5/15/2012 species identification: right, fin, sei and humpback whales, basking shark

Personal Log

I arrived in Woods Hole, MA, Sunday evening and made my way to the Delaware II. When I came on board I was told that this may be the Delaware’s last NOAA research trip. It was first deployed in 1968 by the Bureau of Commercial Fisheries. The Bureau was reorganized when NOAA was formed in 1972.  The Delaware II is the smallest ship in the NOAA fleet. Doesn’t seem to small to me. In June, the Delaware II will be taken down to the Marine Operations Center – Atlantic in Norfolk for layup. Hopefully it will end up with some other organization, such as a university, and sail the seas again.

I know many of you are probably curious as to where I am staying on board the ship. Check this out!

Me with my emergency suit on!

Safety is very important aboard a ship. When the Delaware took off from port we had two important drills to go through. The first was in case of a fire and the second was in case we would need to abandon ship. We all bring survival suits to the back of the ship and need to try them on to make sure we can get them on ourselves. This could be the difference between life and death.

I also have had to learn a new language while aboard the Delaware. Some words I knew and some I didn’t. Lucky for me my Dad drilled me on many nautical words back in the time when we had a small family sailboat. I can remember sitting around the kitchen table being asked to give the definitions. So lets see how you do. How many do you know? Write me back and let me know how many of the words you knew. Be honest! Also let me know if you have any other questions.

Cheers!

Mrs. OD

Nautical words:

Fore

Head

Aft

 Galley

Starboard

Stateroom

Port

Chart

Muster

Bow

Stern

Can you think of others?

Jessie Soder: Geology on Georges, August 17, 2011

NOAA Teacher at Sea
Jessie Soder
Aboard NOAA Ship Delaware II
August 8 – 19, 2011 

Mission: Atlantic Surfclam and Ocean Quahog Survey
Geographical Area of Cruise:  Northern Atlantic
Date: Wednesday, August 17, 2011

Weather Data
Time: 12:00
Location:  41°19.095 N, 71°03.261
Air Temp:  22°C (°F)
Water Temp:  21°C (°F)
Wind Direction: South
Wind Speed: 7 knots
Sea Wave height:  0
Sea Swell:  0

Science and Technology Log

Gulf of Maine: Including Georges Bank

So far, we have spent this entire trip on Georges Bank.  This famous geographical location off the east coast of the United States is something that I had only heard about before this trip.  After several tows over the past week I have been able to see a variety of materials brought up from the ocean floor of Georges Bank.  I have seen loads of clams, empty shells, sand, mud and clay, and smooth polished rocks.  We have even pulled up a few boulders that must have weighed a couple of hundred pounds.  It was the smooth polished rocks that caught my attention. How would a rock from the bottom of the ocean become smooth and rounded?  It probably meant that Georges Bank must not have always been the bottom of the ocean.

During the Wisconsin Glaciation the ice reached its maximum around 18,000 years ago.  The Laurentide ice sheet paused in the area of Georges Bank and Cape Cod and left behind a recessional moraine that created these landforms.  This ice also had several meltwater streams flowing from it and these streams were responsible for the polishing the rocks and cutting some of the canyons found on the seafloor today.  The Northeast Channel off the northeast side of Georges Bank was the principle water gap for most of the meltwater.

Smooth Polished Rocks From the Ocean Floor

Georges Bank is a huge oval-shaped shoal bigger than Massachusetts that starts about 62 miles offshore.  It is part of the continental shelf and its shallowest areas are approximately 13 feet deep and its deepest areas 200 feet.  In fact, thousands of years ago Georges Bank used to be above water and an extension of Cape Cod.  About 14,000 years ago the sea rose enough to isolate this area and it was home to many prehistoric animals such as mastodons and giant sloths.  Today, traces of these animals are sometimes found in fishing nets!  These animals died out about 11,500 years ago when the sea level rose further and submerged the area.

Georges Bank is a very productive fishing area in the North Atlantic.  (The Grand Banks is more productive, but not as geographically accessible as Georges Banks.)  Why is Georges Bank a prime feeding and breeding area for cod, haddock, herring, flounder, lobsters, and clams?  It has to do with ocean currents.  Cold, nutrient rich water from the Labrador Current sweeps over the bank and mixes with warmer water from the Gulf Stream on the eastern edges of Georges Bank.  The mingling of these two currents, plus sunlight, creates an ideal environment for phytoplankton, which is food for the zooplankton.  In fact, the phytoplankton grow three times faster here than on any other continental shelf.  All of this plankton feeds the ecosystem of fish, birds, marine mammals, and shellfish that flourish on Georges Banks.

Personal Log

Yesterday we left Georges Bank for stations off the coast of Rhode Island.  After dark, I stepped out on the back deck and Jimmy pointed out the lights of Nantucket and Martha’s Vineyard.  We were in sight of land for the first time in a week.  It wasn’t long before people had their cell phones out and were making calls.

A few times during this trip I have thought about sailors in the past and how they would leave for months, and even years, at a time and not have contact with their families and loved ones until they returned.  I have had email contact this entire time, yet I am really excited to go home to see those that I miss.  I can hardly imagine what it would be like to be gone for a year with no contact at all.

Throughout this trip I have been getting to know others on this cruise.  I have learned that several of them have families and young children at home.  Many of them are at sea for many weeks, or months, a year.  After being on this cruise, I have gained a lot of respect for people who choose to work on the ocean for a living.  It takes a certain type of person who can work hard, maintain a positive attitude, and live away from their home and loved ones for extended periods of time.  It has been an honor to work with these people.

Anne Artz: August 2, 2011

NOAA Teacher at Sea
Anne Artz
Aboard NOAA Ship Delaware II
July 25 — August 5, 2011

Mission: Clam and Quahog Survey
Geographical Area: North Atlantic
Date: July 30, 2011

Weather Data from the Bridge
Location:  Georges Bank off the New England coast
Latitude: 42.634N
Longitude: 68 00.801 W
Conditions: Cloudy today, somewhat cooler but with sun most of the day

Science and Technology Log

This being the beginning of a new month we all did our safety drills on August 1 – that means everyone, including all the crew.  First we did the fire drill then the “Abandon ship” drill where we had to put on our “gumby” suits in one minute.  I did much better this time!  We’ve moved away from the New York-New Jersey coast and are now on the Southern Georges Bank.  We ran into a problem this morning when the cable that runs the pump for the dredge got tangled around the dredge during one of the drops.

A damaged power cable on the dredge

It necessitated cutting the cable that was twisted around the dredge then reconnecting it.  The cable itself is a series of copper wires twisted into 6 coils, surrounded by a neoprene “skin”, then surrounded by a Kevlar sleeve, and finally a synthetic woven casing.  It will take somewhere of 6-8 hours to repair the cable during which time we cannot do any dredging.  I’m going to use the down time to introduce you to some of the crew here on the Delaware II.

LCDR Richard Hester and ENS Carl Noblitt

There are three groups of workers: the NOAA Commissioned Corps which run the ship, the crew members who perform day-to-day work on board, and the science crew who are responsible for performing the scientific experiments for each expedition.  The NOAA Commissioned Corps on the Delaware II consists of the Commanding Officer (CO), LCDR Richard Hester, Executive Officer (XO), LCDR Sean Cimilluca, LT Fiona Matheson in charge of operations, ENS Shannon Hefferan, the Navigations Officer, and ENS Carl Noblitt, Junior Officer.

LCDR Sean Cimilluca

I interviewed Ensign Hefferan and asked her how she got into the NOAA  Commissioned Corps and what her job was like.  I’ll be posting that interview once we are back in Woods Hole since internet connections are not that good out at sea.

Personal Log

I would be remiss if I didn’t give credit to our outstanding cooks on the Delaware II.  Both of the men who work in the galley do an amazing job.  Other than the first day I haven’t made it for breakfast but lunch and dinner have been wonderful.

Top chefs Jonathan Rockwell and James White on the Delaware II

We’ve had everything from BBQ chicken, lasagna, a full turkey dinner, scallops, shrimp, and lots of different kinds of fish.  Besides all that, they cook vegetables that even my husband might eat and he won’t eat anything but a baked potato!  They feed all 30 of us every day and it’s a good thing we work so hard otherwise I’d definitely have to be dieting when I get home!

Kathleen Brown: Sea Science, June 11, 2011

NOAA Teacher at Sea
Kathleen Brown
Aboard R/V Hugh R. Sharp
June 7 – 18, 2011

Mission: Sea Scallop Survey
Geographical area of cruise: North Atlantic
Date: June 11, 2011

June 11, 2011

Weather Data from the Bridge
Time: 12:50 PM
Winds 12.9 KTs
Air Temperature: 11.94 C
Latitude 41 05.84N
Longitude 067 25.88 W

Science and Technology Log

Lowering the CTD
Lowering the CTD

Every third station along the journey, the crew takes a CTD reading. CTD stands for conductivity, temperature, and depth. Using a submersible set of probes, the characteristics of the ocean water are measured at set intervals, from the surface to the sea bottom, and then again from the sea bottom to the surface. Wynn, the marine technician, takes the time to explain to me that on this cruise the equipment is set to measure temperature, salinity, oxygen and phosphorescence. The probe is extremely heavy and must be lowered with a winch. The capability of the equipment is quite sophisticated and can take a water sample at any depth. A canister can be programmed to shut quickly, capturing approximately ten liters of water. The timing of the data collection process depends upon the depth of the water, but today it takes about five minutes. The data is collected for the NOAA team back on land.

Our journey will circle the outer edges of George’s Bank. We are on the eastern leg of the trip, somewhere between 80 and 100 miles from land. As far as the eye can see, it is ocean. Once in a while, we can see a fishing vessel off in the distance and we have seen dolphins and sunfish swimming near the ship. This afternoon I heard Mary, the First Mate, announce over the radio that she spotted a whale. I ran up to the bridge to see if I could get a look, but I was too late!

I have been eager to learn the stories of the scientists and crew, and to find out what has drawn them to the work at sea. The backgrounds of the people on the ship are varied, and they are both men and women of all ages. One person reports, “ I knew that I wanted to be a marine biologist since fifth grade.” Another says, “I grew up around boats.” Yet another speaks about wanting a hands-on career that could last a lifetime. There are several students on this leg of the cruise. I have learned there are many paths to the career at sea: experience in the military, technical school, college and university, and hands on experience over the years It seems that if you are attracted to the sea, you have a place on a scientific research vessel.

Personal Log
Toward the end of the day, the boat starts to roll a bit more than it has. We have been informed that the wave heights tomorrow may increase to 5 to 8 feet. Taking a shower while the boat rocks from side to side is challenging. I grip my flip flops to the floor of the shower and hang on!

Question of the Day
What do you think the level of salt in the water can tell scientists?

Marilyn Frydrych, September 23, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 23, 2008

Weather Data from the Bridge 
42.42 degrees N, 67.39 degrees W
Cloudy with wind out of the N at 32 knots
Dry Bulb Temperature: 15.5 degrees Celsius
Wet Bulb Temperature:  11.6 degrees Celsius
Waves: 6 feet
Visibility:  10 miles

Science and Technology Log 

Yesterday we were fairly busy doing CTD casts and trawls. Today we woke to find the night crew just starting to record the lengths and weights of their large catch. We grabbed some cereal and took over from them at 5:45 a.m. They had collected and sorted all the fish. Jacquie and I took about two hours measuring, weighing, and examining the innards of the half basket of herring they left us. Our chief scientist, Dr. Mike Jech, summarized his findings so far in a short report to everyone including those back at Woods Hole: “Trawl catches in the deeper water near Georges Bank have been nearly 100% herring with some silver hake.  Trawl catches in shallow water (<75 m) have occasionally caught herring, but mostly small silver hake, redfish, butterfish, and red hake.

A night haul of herring.  Notice the brilliant blue stripe on the top of the herring. The camera’s flash is spotlighted in the reflective tape on the life vests.
A night haul of herring. Notice the brilliant blue stripe on the top of the herring. The camera’s flash is spotlighted in the reflective tape on the life vests.

Small being less than 5-6 cm in length.  We caught one haddock this entire trip.  Trawl catches north of Georges Bank have been a mix of redfish and silver hake, with a few herring mixed in.” This afternoon the Officer of the Deck, LT(jg) Mark Frydrych, gave me a run down of many of the instruments on the bridge.  I spotted a white blob on the northeastern horizon and pointed it out. He showed me where it was on the SIMRAD FS900, a specialized radar.  The SIMRAD FS900is often able to identify a ship and its name.  This time it couldn’t.  Looking through binoculars we could see it was a large container vessel.  Then we looked at a different radar and saw both the ship’s absolute trajectory and its trajectory relative to the Delaware 2.  It was on a path parallel to the Delaware2 so Mark didn’t worry about it intersecting our path.  We also noticed another ship off to the west and north of us on the radar, but we couldn’t yet see it on the horizon. It too was projected on a path parallel to us.

Then Mark pointed out an area on the SIMRAD FS900 outlined in red. It’s an area where ships can voluntarily slow to 10 knots in an effort to avoid collisions with whales. It seems that sleeping right whales don’t respond to approaching noises made by ships.  There are only about 350 to 500 of them left and they are often killed by passing ships. The Delaware 2 was steaming at about 7 knots because in the 6 ft waves it couldn’t go any faster. However the container ship was steaming at 15.5 knots.  Few ships slow down in the red zone.

Mark showed me how to fill out the weather report for that hour.   I typed in all my info into a program on a monitor which assembled all my weather data into the format the weather service uses. I first recorded our position from an instrument displaying the latitude and longitude right there above the plotting table.  I read the pressure, the wet bulb temperature and the dry bulb temperature from an instrument which had a readout in a room off to the starboard of the bridge.  The ship has two anemometers so I averaged these to get the wind speed and direction.  We looked at the waves and tried to imagine standing in the trough of one and looking up.  I figured the wave would be over my head and so estimated about 6 feet.  We also looked at the white foam from a breaking wave and counted the seconds from when it appeared until it rode the next wave. The period of the wave we watched was four seconds.  Next we looked out the window to search out any clouds. It was clear in front of us but quite cloudy all behind us.  I estimated the height of the clouds. I typed all this information into the appropriate boxes on the monitor.  It was all so much easier than my college days when we had to gather the information manually then switch it by hand into the code appropriate for the weather service.  The OOD sent this information to NOAA Weather Service on the hour, every hour operations permitting.

Personal Log 

Though my son was instrumental in persuading me to apply for the Teacher-at-Sea position I haven’t seen much of him thus far.  He’s standing the 1 to 4 shift both afternoon and night.  When I’m free he seems to be sleeping.  We don’t even eat meals together.  That’s why I made a special trip to the bridge today to meet up with him during his watch.

Rebecca Bell, August 19, 2008

NOAA Teacher at Sea
Rebecca Bell
Onboard NOAA Ship Delaware II 
August 14-28, 2008

Mission: Ecosystems Monitoring Survey
Geographical Area: North Atlantic
Date: August 19, 2008

Weather Data from the Bridge 
Latitude: 4000.7 N Longitude: 6931.5
Sea Surface Temperature: 21.2 C
Depth: 114m

The Delaware’slatest cruise track has taken it from Woods Hole, MA, south past the Outerbanks of North Carolina, and then north again toward Georges Bank
The Delaware’s latest cruise track has taken it from Woods Hole, MA, south past the Outerbanks of North Carolina, and then north again toward Georges Bank

Science and Technology Log 

We are heading east out to sea, right now at 4005 N latitude, 6942 W longitude. (Pull out those atlases). We will begin a turn north towards Georges Bank. Georges Bank is a large elevated area of the sea floor which separates the Gulf of Maine from the Atlantic Ocean and is situated between Cape Cod, Massachusetts and Cape Sable Island, Nova Scotia. Georges Bank is (was) one of the most productive North Atlantic fisheries (Grand Banks being the most productive). “Legend has it that the first European sailors found cod so abundant that they could be scooped out of the water in baskets. Until the last decades of this century these banks were one of the world’s richest fishing grounds… (Source: AMNH web site below).

This map shows the location of Georges Bank and the underwater topography.
This map shows the location of Georges Bank and the underwater topography.

Northeastern fishery landings are valued at approximately $800 million dockside, of which a large proportion is produced on Georges Bank. Recently, scientists of the U.S. Geological Survey (USGS) and NOAA’s National Marine Fisheries Service (NMFS) have undertaken an effort to document direct interactions between physical environmental factors and the abundance and distribution of fishery species. (Source: USGS below). This means that the water chemistry, temperature and other factors affect how many fish there are, how many kinds of fish there are, and where they are. The article from USGS explains that the sea floor sediments that form Georges Bank came from the time when glaciers scoured the area. Since that time, sea level has risen, covering the glacial sediments, and tides and currents are eroding the bottom. When this erosion happens, small sediment particles are winnowed out by tides and currents leaving larger gravel-sized sediments on the floor. This kind of surface is good for scallop larvae and other small animals so they can settle on the bottom and not get buried by sand. Thus, the type of sediment on the ocean floor helps determine what kinds of animals can live there.

This map shows the continental U.S. Exclusive Economic Zones (EEZs).
This map shows the continental U.S. Exclusive Economic Zones (EEZs).

Interestingly enough, politics and international relations have affected our trip to Georges Bank. We have been waiting for clearance through the U.S. State Department working with the Canadian government, to get permission to go into Canadian waters. As Wikipedia explains below, part of Georges Bank is “owned” by the U.S. and part is “owned” by Canada. Our route is to take us through the eastern part of Georges Bank, the part owned by Canada. Unfortunately, due to the speed of processing the request, we just this morning found out we got clearance to go there. If the request had been denied, we would have had to sail around the Exclusive Economic Zone (EEZ) to avoid Canadian waters. Fortunately, we are now good to go.

From Wikipedia: 

“During the 1960s and 1970s, oil exploration companies determined that the seafloor beneath Georges Bank possesses untold petroleum reserves. However, both Canada and the United States agreed to a moratorium on exploration and production activities in lieu of conservation of its waters for the fisheries.

The decision by Canada and the United States to declare an Exclusive Economic Zone (EEZ) of 200 nautical miles (370 km) in the late 1970s led to overlapping EEZ claims on Georges Bank and resulted in quickly deteriorating relations between fishermen from both countries who claimed the fishery resources for each respective nation. In recognition of the controversy, both nations agreed in 1979 to refer the question of maritime boundary delimitation to the International Court of Justice at The Hague in The Netherlands. Following five years of hearings and consultation, the IJC delivered its decision in 1984, which split the maritime boundary in the Gulf of Maine between both nations out to the 200 NM limit, giving the bulk of Georges Bank to the United States. Canada’s portion of the Gulf of Maine now includes the easternmost portion of Georges Bank.”

American Museum of Natural History http://www.amnh.org/sciencebulletins/biobulletin/biobulletin/story1208.html (easy to medium to read)

USGS http://pubs.usgs.gov/fs/georges-bank/ (more difficult to read) The map above is also from the USGS website.

Personal Log 

It’s been a very quiet day today. We had several station samples this morning. At the first one, around 6:30 a.m. one of the crew members spotted two whales. They were too far away to see what kind they were. I, unfortunately, was inside the ship at that time and missed it. However, we are heading north so maybe we will have a chance to see some.

Lisbeth Uribe, August 5, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: August 5, 2008

Chief Scientist Vic Nordahl, Chief Boatswain Jon Forgione and Chief Engineer Patrick Murphy discussing the best way to reattach the pump power cable to the dredge.
Chief Scientist Vic Nordahl, Chief Boatswain Jon Forgione and Chief Engineer Patrick Murphy discussing the best way to reattach the pump power cable to the dredge.

Ship Log 

In the last 48 hours the engineers, crew and scientists have had to re-attach the power cable to the dredge (see photograph), fix the cracked face plate of the pump, replace the blade and blade assembly, change the pipe nozzles that direct the flow of water into the cage, and work on the dredge survey sensor package (SSP). Dredging is hard on the equipment, so some mechanical problems are to be expected. The main concern is for lost time and running out of critical spare parts.  So far we have had great success with making the repairs quickly and safely.

Science and Technology Log 

Collecting Tow Event and Sensor Information for the Clam Survey 
Over the weekend I was moved up to the bridge during the towing of the dredge. I was responsible for logging the events of each tow and recording information about the ship and weather in a computerized system called SCS (Scientific Computer System). I listened carefully to the radio as the lab, bridge (captain) and crane operator worked together to maneuver the dredge off the deck and into the water, turn on the pumps, tow the dredge on the seafloor bottom, haul the dredge up, turn off the pump and bring the clam-filled dredge back on deck. It is important that each step of the tow is carefully timed and recorded in order to check that the tows are as identical as possible.  The recording of the events is then matched to the sensor data that is collected during dredge deployment. As soon as the dredge is on deck I come downstairs to help clean out the cage and sort and shuck the clams.   

Lisbeth is working on the bridge logging the events of each tow into the computer system.
Lisbeth is working on the bridge logging the events of each tow into the computer system.

My next job assignment was to initialize and attach to both the inside and outside of the dredge the two mini-logger sensors before each tow. Once the dredge was back on deck I removed both mini-loggers and downloaded the sensor data into the computers. Both sensors collect pressure and temperature readings every 10 seconds during each tow. Other sensors are held in the Survey Sensor Package (SSP), a unit that communicates with onboard computers wirelessly.  Housed on the dredge, the SSP collects information about the dredge tilt, roll, both manifold and ambient pressure & temperature and power voltage every second. The manifold holds the six-inch pipe nozzles that direct the jets of water into the dredge.  Ideally the same pump pressure is provided at all depths of dredge operation. In addition to the clam survey, NOAA scientists are collecting other specimens and data during this cruise.

Two small black tubes (~3 inches long), called miniloggers, are attached to the dredge. The miniloggers measure the manifold (inside) and ambient (outside) pressure and temperature during the tow.
Two small black tubes (~3 inches long), called miniloggers, are attached to the dredge. The miniloggers measure the manifold (inside) and ambient (outside) pressure and temperature during the tow.

NOAA Plankton Diversity Study 
FDA and University of Maryland Student Intern Ben Broder-Oldasch is collecting plankton from daily tows.  The plankton tows take place at noon, when single-celled plants called phytoplankton are higher in the water column. Plankton rise and fall according to the light. Plankton is collected in a long funnel-shaped net towed slowly by the ship for 5 minutes at a depth of 20 meters. Information is collected from a flow meter suspended within the center of the top of the net to get a sense of how much water flowed through the net during the tow. Plankton is caught in the net and then falls into the collecting jar at the bottom of the net.  In the most recent tow, the bottle was filled with a large mass of clear jellied organisms called salps. Ben then filters the sample to sort the plankton by size. The samples will be brought back to the lab for study under the microscope to get a sense of plankton species diversity on the Georges Bank.

An easy way to collect plankton at home or school is to make a net out of one leg of a pair of nylons. Attach the larger end of the leg to a circular loop made from a metal clothes hanger.  Cut a small hole at the toe of the nylon and attach a plastic jar to the nylon by wrapping a rubber band tightly around the nylon and neck of the jar.  Drag the net through water and then view your sample under a microscope as soon as possible.

Biological Toxin Studies 

NOAA Scientist Amy Nau hauls the plankton net out of the water using the A-frame. (Upper insert: flow meter; lower insert: plankton in the collection bottle after the tow).
NOAA Scientist Amy Nau hauls the plankton net out of the water using the A-frame. (Upper insert: flow meter; lower insert: plankton in the collection bottle after the tow).

Scientists from NOAA and the Food & Drug Administration (FDA) are working together to monitor clams for biological toxins. Clams and other bi-valves such as oysters and mussels, feed on phytoplankton. Some species of phytoplankton make biological toxins that, when ingested, are stored in the clam’s neck, gills, digestive systems, muscles and gonadal tissues.  If non-aquatic animals consume the contaminated clams, the stored toxin can be very harmful, even fatal.  The toxin affects the gastrointestinal and neurological systems. The rate at which the toxins leave the clams, also known as depuration rate, varies depending on the toxin type, level of contamination, time of year, species, and age of the bivalve. Unfortunately, freezing or cooking shellfish has no effect on the toxicity of the clam. The scientists on the Delaware II are collecting and testing specimens for the two biological toxins that cause Amnesia Shellfish Poisoning (ASP) and Paralytic Shellfish Poisoning (PSP).

NOAA Amnesia Shellfish Poisoning (ASP) Study 
A group of naturally occurring diatoms, called Pseudo-nitzschia, manufacture a biological toxin called Domoic Acid (DA) that causes Amnesia Shellfish Poisoning (ASP) in humans.  Diatoms, among the most common organisms found in the ocean, are single-celled plankton that usually float and drift near the ocean surface. NOAA scientist Amy Nau collects samples of ocean water from the surface each day at noon. By taking water samples and counting the numbers of plankton cells, in particular the Pseudo-nitzschia diatoms, scientists can better determine if a “bloom” (period of rapid growth of algae) is in progress. She filters the sample to separate the cells, places the filter paper in a test tube with water, adds a fixative to the tube and sets it aside for further study in her lab in Beaufort, NC. 

Scientist Amy Nau filters seawater for ASP causing dinoflagellates.
Scientist Amy Nau filters seawater for ASP causing dinoflagellates.

FDA Paralytic Shellfish Poisoning (PSP) Study 
Scientists aboard the Delaware II are also collecting meat samples from clams for an FDA study on the toxin that causes paralytic shellfish poisoning. When clams ingest the naturally occurring dinoflagellate called Alexandrium catenella, they accumulate the toxin in their internal organs. When ingested by humans, the toxin blocks sodium channels and causes paralysis. In the lab, testing for the toxin causing PSP is a lengthy process that involves injecting a mouse with extracts from shellfish tissue.  If the mouse dies, scientists know the toxin is present. The FDA is testing the accuracy of a new quick test for the toxin called the Jellet Test Kit. After measuring and weighing a dozen clams from each station on the Georges Bank, Ben and Amy remove and freeze the meat (internal organs and flesh) from the clams to save for further testing by scientists back on land. At the same time, they also puree a portion of the sample and test it using the Jellet strips for a quicker positive or negative PSP result.

Personal Log 

Pilot whales sighted off the bow!
Pilot whales sighted off the bow!

The problems that we have experienced with regard to the dredge over the past few days are an important reminder of the need for the scientists and crew to not only be well prepared but also flexible when engaged in fieldwork. All manner of events, including poor weather and mechanical difficulties, can and do delay the gathering of data. The Chief Scientist, Vic Nordahl, is constantly checking for inconsistencies or unusual patterns, particularly from the dredge sensor readings, that might need to be addressed in order to ensure that the survey data is consistent and accurate. The time required to repair the dredge meant I was able to do a load of laundry. Dredging is very dirty work! Good thing I am using old shirts and shorts. I also caught up on a few emails using the onboard computers. Though the Internet service can be slow at times it is such a luxury to be able to stay in touch with friends and family on land. I still have two very special experiences that I wish to share before ending my log.

Late in the evening a couple of days ago, as we steamed toward our next tow station, I was invited to peer over the bow. The turbulence in the water was causing a dinoflagellate called Noctiluca to sparkle and glow with a greenish-blue light in the ocean spray.  The ability of Noctiluca and a few other species of plankton and some deep-sea fish to emit light is called bioluminesense. A few days later we had the great fortune to see five pilot whales about 100 meters away, gliding together, their black dorsal fins slicing through the water, occasional plumes of air bursting upward through their blowholes (nostrils located on the tops of their heads).

Answers to the previous log’s questions: 

1. What is the depth and name of the deepest part of the ocean? The Mariana Trench in the Pacific Ocean is 10,852 meters deep, (deeper than Mount Everest is tall – 8,850 meters).  Speaking of tall mountains, the tallest mountain in the world is not Mount Everest, but the volcano Mauna Kea (Hawaii).  It reaches 4,200 meters above sea level, but its base on the sea floor is 5,800 meters below sea level.  Its total height (above base) is therefore 10, 000 meters!

2.What is the longest-lived animal on record? In 2007, an ocean quahog was dredged off the Icelandic coast.  By drilling through and counting the growth rings on its shell, scientists determined it was between 405 and 410 years old. Unfortunately it did not survive the examination, so we do not know how much longer it would have lived if left undisturbed. This ancient clam was slightly less than 6 inches in width.

Lisbeth Uribe, July 31, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: July 31, 2008

“Bob” the Man Overboard Victim
“Bob” the Man Overboard Victim

Ship Log 

Man Overboard Drill 

Just as the day watch started our shift we heard three short blasts of the ship’s horn, signaling a “Man Overboard” drill.  While the crew was on deck (both on the bow (front of the ship) and stern (back), the Chief Boatswains Jon Forgione and Leno Luis put on life vests and safety helmets and were lowered into the water in a rigid haul inflatable boat (RHIB).  When those on board the ship sighted the dummy victim, we raised our arms and pointed in its direction. The rescuers then headed in the direction the crew were pointing.  At the same time, the Operations Officer and Medical Person in Charge (MPIC) Claire Surrey readied her gear to perform life saving measures once the victim was safely brought on the deck.  Rescue protocols are taken very seriously as they are designed to keep all members of the crew safe.  Once the MPIC determined the dummy victim was breathing on their own and required no further medical assistance, the drill was over and the crew returned to their stations or berths (sleeping rooms).

Scuba Divers to the Rescue! 

Not long after the man overboard drill, the dredge rolled when it was being hauled from the sea floor, wrapping the hawser (floating tow line) underneath the cage.  To make matters worse, as the dredge was being lifted up the ramp on deck, the hawser became caught in the ship’s rudder.  Our three NOAA Working Divers, Executive Officer (XO) Monty Spencer, Chief Steward (chef), MPIC Jonathan Rockwell and MPIC Claire Surrey suited up in scuba suits for a dive to untangle the rudder. NOAA Working Divers must complete a 3-week training course. They are skilled at ship husbandry, such as working on the rudder, propellers, zincs (metal zinc objects that are placed on the hull of a ship to attract corrosion), and the bow thruster (a tunnel through the ship with a propeller to help direct the bow when docking).  

Chief Steward Jonathan Rockwell preparing to dive below the ship to untangle the hawser line from the rudder.
Chief Steward Jonathan Rockwell preparing to dive below the ship to untangle the hawser line from the rudder.

The diver breathes air through a mouthpiece, called a regulator, from a scuba tank of compressed air that is strapped to the diver’s back. The regulator, connected by a hose to the tank, adjusts the air in the tank to the correct pressure that a diver can safely breathe at any given depth. Originally called the “aqua-lung”, “scuba” stands for self-contained underwater breathing apparatus. Scuba gear has helped scientists explore the ocean, however, the equipment does have limitations.  The deepest dive that can be made by a NOAA scuba diver is about 40 meters, but the average depth of the ocean is about 3,800 meters.  The increased water pressure of the dive limits the depth of the descent of a scuba diver.

As Monty and Jonathan plunged into the ocean, the rigid haul inflatable boat (RHIB) was deployed with General Vessel Assistant (GVA) Adam Fishbein and Chief Boatswains, Jon Forgione at the tiller arm, to assist in diver rescue operations if needed. On standby in full scuba gear was MPIC Claire Surrey in case the divers ran into any trouble. In no time at all the divers freed the tangled hawser from the rudder and were back on board. At each step of the job, great care was taken to check all gear and ensure the safety of the crew.

Question: What is the depth and name of the deepest part of the ocean?

Mature Atlantic Surf Clam and Ocean Quahog
Mature Atlantic Surf Clam and Ocean Quahog

Science and Technology Log 

As I mentioned in my first log, we are targeting two species of clams during our survey, the Atlantic Surf clams (Spissula solidissima) and Ocean Quahogs (Arctica islandica). They are very easy to tell apart, as the surf clam is much larger (about 18 cm in width) and lighter in color. “Quahog” (pronounced “koh-hawg”) originated from the Narrangansett tribe that lived in Rhode Island and portions of Connecticut and Massachusetts. Atlantic surf clams are a productive species, in that they are faster growing, with a lifespan of about 15 years, with variable recruitment (reproductive cycles). They are much smaller and typically found in more shallow waters (<50 meters) from Cape Hatteras to Newfoundland than the ocean quahog. The Quahog lives in depths of 50-100 meters in US waters (from Cape Hatteras up to the north Atlantic (Iceland), and also in the Mediterranean). Quahogs grow slowly, and typically live for more than 100 years, with infrequent and regional recruitment.

There is a great variety of material, both organic and inorganic that is collected by the dredge providing a snapshot of the habitat below.  At times it is sandy, sometimes the sediment is the consistency of thick clay, in which case we must re-submerge the dredge for a few minutes to clean the cage. At other times large rocks and boulders are captured.

Live clams, shells and other material collected in the dredge.  All the material is sorted, weighed and measured as part of the survey.
Live clams, shells and other material collected in the dredge. All the material is sorted, weighed and measured as part of the survey.

Atlantic Surf Clams and Ocean Quahogs live in a part of the ocean called the subtidal zone. Their habitat is the sandy, muddy area that is affected by underwater turbulence but beyond heavy wave impact. In addition to clams, our dredge is capturing a variety of organisms perfectly adapted to this environment, such as sponges, marine snails and sea stars that are able to cling to hard materials to protect them from being swept away by ocean currents and waves. Marine snails and hermit crabs are also able to cling to surfaces.  Like the clam, many organisms have flattened bodies, thereby reducing their exposure to the pull of waves and currents.  We find flat fish, such as flounder and skate, which avoid turbulence and their enemies by burying themselves in the sand.  Flounder prey on sand dollars, another flat organism living in the subtidal zone.  In many hauls of the dredge, the cage is filled with sand dollars. We have collected lots of other interesting animals, such as hermit crabs, worms, sea jellies, sea mice and, less often, crabs and sea urchins. The Sea Mouse is plump, about 10 cm in length, segmented and covered in a large number of grey brown bristles that give it a furry appearance.

Question: What is the longest-lived animal on record?

Personal Log 

The main difficulty I have with writing this log is choosing what to cover. Each day is filled with new and interesting experiences. I am learning so much, not only about the science behind the clam survey, but also about the ship itself and the skills necessary to operate the ship and conduct a marine survey.  Everyone has been extremely generous with sharing his or her knowledge and experience with me.   While cleaning the inside of the dredge last night one of the wires made a small tear in the seat of my waterproof overalls. Now I know to pack a bike inner tube repair kit if I am lucky enough to be invited to join another survey cruise! One of those small rubber patches would have been the perfect for the job. I was able to find a sewing kit and in short order sewed the tear and sealed it with a layer of duct tape. Now I am ready to get back to work!

Lisbeth Uribe, July 30, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: July 30, 2008

NOAA Teacher at Sea, Lisbeth Uribe, in her survival suit next to the dredge
NOAA Teacher at Sea, Lisbeth Uribe, in her survival suit next to the dredge

Science and Technology Log 

Prior to our departure on the survey, all the volunteers attended presentations by NOAA scientists about the work we would be doing. The purpose of the clam survey is to provide consistent, unbiased estimates of the relative abundance for many shellfish in the North East region. The target species for our survey are the Atlantic Surf clams (Spissula solidissima) and Ocean Quahogs (Arctica islandica). We also went to a NOAA storeroom and were outfitted with our foul weather gear (heavy waterproof boots, fluorescent yellow rain pants and rain jacket). While on board we received several briefings about safety and the expectations for behavior during the cruise.  During an emergency drill we each tried on our survival suit. I keep the suit in a bag at the foot of my bed, ready for any emergency!

We set sail at 2:00 pm on Monday, the 28th of July, and headed south towards our first tow location in the Southern New England region. The first 10 survey points or stations of our cruise are repeats of points surveyed in the last trip. This means we will be heading south toward the Long Island region before sailing for the Georges Bank region. We are conducting repeat surveys because after the last survey, the dredge’s electrical cable was replaced with a longer cable (formerly 750 feet, now 1,100 feet long). The added length in the cable results in a voltage drop that is expected to be enough to cause the dredge pump to loose pressure slightly. The pump, attached to the dredge itself, is designed to churn up sediment and shellfish as the dredge is towed along the sea floor. By rechecking the survey data collected in the last trip, the scientists will be able to calibrate the data obtained using the new cable. The scientists and crew are very concerned about accuracy of data collection during all parts of the Clam Survey.  

Problems with the Dredge 

For the first repeat survey station, our CO (Commanding Officer), Captain Wagner, warned the crew that the bottom might be rocky.  Once the dredge hit the bottom and began to be towed, we heard some loud noises indicating that there were indeed rocks on the bottom.  We pulled the dredge out of the water after the standard 5-minute tow time.  Rocks had twisted, bent and even severed various pipes and rods that make up the cage of the dredge. The row of outlet pipes (called nipples) that direct powerful jets of water towards the opening of the cage had been severed at the points in which they screw into the main pump pipe.

Though the damage was a setback in terms of lost time, it was amazing to see the engineers swing into action and make the necessary repairs over the next six hours. Out of the hold came an assortment of tools, such as metal cutters, jacks, soldering equipment, wrenches, pliers, and mesh wiring.  I was put to work extracting the broken ends of pipes and handing tools to the engineers as they either replaced or repaired broken parts.  By the end of my work shift (midnight) the dredge was fully repaired and ready for work again.

Tuesday, July 29, 2008 

I am wearing my bib and overalls, boots, and a hardhat while working inside the dredge to free the clams caught in the corners and cracks of the dredge.
I am wearing my bib and overalls, boots, and a hardhat while working inside the dredge to free the clams caught in the corners and cracks of the dredge.

I am fortunate to be working with a great team on the day shift crew (noon to midnight).  My Watch Chief, Shad Mahlum, and the Chief Scientist, Vic Nordahl, are excellent teachers, patient with my mistakes and quick to offer words of encouragement. There are several work assignments during each station.  I help by turning on and off the power for the pump on the dredge, clearing out the shellfish that get caught in the cage, and weighing and measuring the clams we catch. My favorite job is cleaning out the inside of the dredge. After the dredge has been hauled up the ramp onto the deck, the back door is released and the clams and broken shells tumble onto the sorting table. My job is to climb up inside the cage of the dredge and toss down the shells and organisms that get caught along the edges. I like the challenge of climbing around up high in a small space. We have been lucky to have very calm seas over the past couple of days.  This job will get quite a bit more challenging when the deck starts to move around more.

The dredged material is sorted into different wire baskets, also known as bushels, each contain either clams, other sea life or trash to be thrown back out to sea once we have moved past the survey site. The clams are weighed and measured.  At some stations we also collect meat specimens for further analysis.  All the information goes into the computer, including data collected by the sensors on the dredge.

Personal Log 

As part of the day shift crew, I work from noon until midnight.  It may sound tough working a 12-hour shift, but in reality the time passes very quickly as we are always busy either preparing for a station, processing the clams, or cleaning up after a dredge.  We are not permitted to return to our room until the end of our shift as our roommates are on the opposite shift and are sleeping.

When sailing out in the open water it easy to lose one’s sense of direction.  On the second day of the survey I knew that we were headed south for the repeat dredges, but it was not until one of the crew members showed me the site “Ship Tracker for NOAA” that I realized we were collecting samples just off the coast of Long Island all afternoon—not far from my home town, New York City! We are so busy moving from station to station that I often lose track of where I am.

I am grateful for the clear weather we have had so far on the cruise.  Learning to work with the dredge and scientific equipment would have been much more difficult if the seas were not so calm. Each day brings something new and interesting to learn and experience.

Well, my shift is almost over.  Time to think about eating a late night snack and then getting some rest, – lulled by the gentle rocking of the waves.

Question for the Day 

What is the origin of the word “Quahog”? What is the difference between Atlantic Surf clams and Ocean Quahogs? What is a sea mouse?

Adrienne Heim, September 2, 2007

NOAA Teacher at Sea
Adrienne Heim
Onboard NOAA Ship Albatross IV
August 7 – September 2, 2007

Colorful sea stars!
Colorful sea stars!

Mission: Sea Scallop Survey
Geographic Region: Northeast U.S.
Date: September 2, 2007

Science and Technology Log: Ocean Diversity

Contrary to my initial thoughts, there is an eclectic amount of diversity AND color among the species that dwells within the Georges Bank/Nantucket Shoals. I have been very surprised at the amount of species we collect during our tows. I also am very surprised by the variations of color among the starfish. I just typically associated marine color to warm saltwater dwelling creatures where you would find coral reefs and such, but there is a beautiful array of colors up here. Among the typical sort of sea life you would expect to see here, like dolphins, whales, cod, crabs, sea scallops, clams, tuna etc. there exists a greater level of diversity here. Just to give you an idea, here is a list of some of the marine life we have encountered at our stations:

Monkfish brought up in the survey
Monkfish brought up in the survey

Winter Skate
Little Skate
Silver Hake
Red Hake
Fourspot Flounder
Yellowtail Flounder
Windowpane Flounder
Gulfstream Flounder
Longhorn Sculpin
Ocean Pout
Cancer Crab
Sea Scallop
Atlantic Hagfish
Fourbeard Rockling
American Plaice
Moustache Sculpin

Alligator fish
Alligator fish

Northern Sandlance
Spoonarm Octopus
Goosefish
Loligo Squid
Sea Raven
Asterias Boreal
Fluke
Northern Searobin
Rock Gunnel
American Lobster
Leptasterias Tenera
Alligator Fish
Butterfish
Seacucumber
and many more…

Sea cucumber
Sea cucumber

Spoonarm octopus
Spoonarm octopus

Karen Meyers & Alexa Carey, August 24, 2006

NOAA Teacher at Sea
Karen Meyers & Alexa Carey
Onboard NOAA Ship Albatross IV
August 15 – September 1, 2006

Mission: Ecosystem Monitoring
Geographical Area: Northeast U.S.
Date: August 24, 2006

Weather Data from Bridge 
Visibility: 12 nautical miles
Wind direction 90o
Wind speed:  12-13 kts
Sea wave height 2’
Swell wave height 3-4’
Seawater temperature 20.4C
Sea Level Pressure: 1018 mb
Cloud cover: 4/8

Science and Technology Log 

We’re finally on the famous George’s Bank. It’s been a busy day – we had 7 stations on our watch, including 2 EPA stations.  It’s a lovely day, a little chilly, with a brisk wind.

I asked Jerry earlier in the cruise why George’s Bank has historically been such a productive area for fisheries. He explained that, first of all, it’s shallow so fish can spawn there and sunlight can penetrate the water column, providing energy for phytoplankton.  Steve said he’s seen a picture from the 1900’s of guys playing baseball on the shoals in the middle of the Bank.  Secondly, there’s a gyre-like water movement, probably resulting from the Labrador Current meeting the Gulf Stream, so it’s rich in nutrients and the fish that hatch there tend to be kept there by the current.  I’ve also heard about the “Hague Line” that was established by the International Court in the Hague to divide George’s Bank between Canada and the U.S.  Steve talked about how fisherman fish right along it. It’s great to get the perspectives of someone like Jerry whose views are those of a scientist well versed in fish and fisheries and Steve who has a wealth of knowledge from fishing this area.

I had a nice visit on the bridge this morning with Acting CO Kurt Zegowitz and Ensign Chad Meckley. Chad told me that the ALBATROSS IV doesn’t have a rudder – it’s steered by something called a Kort Nozzle which is essentially a large metal open-ended cylinder around the propeller.  When it is turned, it directs the outwash which makes the ship turn. Jerry suggested that it may be better for fishing boats because the nets sometimes get caught on a rudder.  However, this ship is not as maneuverable as it would be with a rudder.

I also got some more information on life in the NOAA Corps.  It seems like a pretty attractive job for a young person. Kurt spent his first sea duty in Hawaii and had a wonderful experience. Chad is thinking about what kind of billet he hopes to be assigned to for his shore duty, which will come after the ALBATROSS IV is decommissioned.  Kurt showed me a list of NOAA Corps billets – both at sea and on land and a list of the individuals in the Corps and where they are currently stationed.  I was pleased to see how many women are in the Corps.

Personal Log – Alexa Carey

I’ve become good friends with my new watch-mates; we have a lot of fun together.  From after-shift meetings at 3 a.m. to ‘Cake Breaks,’ Alicea, Wes, Tracy and I have really come together as a team.  I’ve never been too fond of group projects, most of the time because it leads to one person doing all of the work.  However, our shift has selected specific job roles that we trade off to ease the constant work load and maximize efficiency.

I’ve been talking to a wide variety of people through email, from my science teacher to friends from ISEF to family abroad.  I’m hoping to have a new puppy waiting at home when I get there. We used to have a Keeshond (Dutch Barge dog) named Dutch.  I’m hoping for a Tervuren or Husky, but it’s ultimately up to my parents because he/she will stay with them when I head over to school.  I encourage anyone I know who has a dog to watch the Dog Whisperer w/ Cesar Milan (Animal planet).

I’ve only been up since 11 a.m. (we go to bed after 3 a.m.) so not much has occurred today. Both shifts will be getting hit with stations rapidly today.  We might have close to 8 stations in just a single shift.  Still no whale sightings, but we’re not giving up hope. Last night, a sea of fish rode next to us on the boat. These fish (juveniles about 8 inches long), would jump about 3 feet out and across the water.  It was pretty neat. I’m going to get lunch and start piling on my gear.

Personal Log – Karen Meyers 

I can’t believe how comfortable I feel aboard ship now.  At first I was at loose ends about how to fill the free time, especially since it comes in chunks of unpredictable length.  But now, between writing logs, writing emails, working on the photo contest, making up a Power Point on my experience as a NOAA Teacher at Sea, talking to people on board, and trying to spend some time on the bridge or the hurricane deck watching for whales, the day just zips by.

Linda Depro, August 9, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 9, 2006

Science and Technology Log 

The dredge caught a monster lobster today.  The scientists seemed to think it was more than twenty years old. When held up it was the size of an adult’s length from shoulders to knees, and two hands were needed to hold it!  A spiny dogfish (looks like a shark) was also caught. I held it to have my picture taken and I plan to hang it on my classroom door! Otherwise the catches were the usual—some with lots of rocks, some with sand, others with many star fish or skates.  All these fantastic sea creatures that I have only seen in books have become part of my life here on board the ALBATROSS IV.  The star fish and hermit crabs are my favorites, skates are cool to look at and pick up by the tail and put in the bucket, goosefish (known as monk fish in the grocery store) have a face that “only a mother could love”, and the scallops, even though I’ve seen thousands of them are each a little different.

Personal Log 

Sunset was beautiful again tonight and the moon is spectacular.  With my binoculars the craters were very clear. A lone seagull followed us for a while; his white body against the black sky would have inspired me to write a poem if I were a poet.  Hard to believe the adventure is coming to an end, and what an adventure it was.  The crew has been super, very kind, and willing to talk and answer questions.  The scientists have an important job collecting and recording data; they are an interesting group to work with.  Thanks to all for making my time on the ALBATROSS IV the adventure of a lifetime.

Patti Conner, August 8, 2006

NOAA Teacher at Sea
Patti Connor
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Northwest Atlantic
Date: August 8, 2006

Data: (collected very early morning, 3AM) 
Air temperature = 18 C0 (65 F0 )
Water temperature = 18.9 C0 (68 F0)
Weather = rain
Depth of trawl = 98 meters (remember, a meter and a yard are pretty close)
Water salinity = 31.28 ppm
Wind speed = 18 knots

Two-shelled mollusks and a one-shelled mollusk
Two-shelled mollusks and a one-shelled mollusk

Science and Technology Log 

We have been very busy collecting samples of scallops and fish.  We are weighing and measuring the scallops.  Some of the dredge amounts are huge so we collect all the scallops and take a sub-sample and weigh and measure those.  Another sample of scallops is cleaned, measured and frozen to determine the age of the scallops which is done at a lab on shore. We collect cancer crabs and starfish and count them as they eat scallops and we want to see the amount of predation. We are covering all 24 hours so there is a day watch from noon to midnight, and there is a night watch (mine) from midnight to noon.  When you eat a scallop, you are eating the abductor muscle.  This muscle can be quite large in a Sea Scallop which allows it to “swim” across the ocean floor and not creep along like a clam does.

Personal Log 

Two days ago the weather was warm and sunny.  I was lucky enough to see whales. I have never seen a whale out of captivity before and it was beautiful to see.  This morning there were very heavy rains and lightning. It didn’t take long for that weather front to move on. I am tired as my body is still adjusting to the work schedule. The work is also very physical as much of what we are sampling ends up back in the ocean.  We are collecting, shoveling, measuring and cleaning all the time. A few more day and we’ll be back to port at Woods Hole.  I will be returning to finish teaching summer school on Monday.  I can’t wait to be in the classroom and see my students again.

Answer to last log: The picture was the internal structures of a scallop, a two-shelled mollusk. The black dots were eyes. I read that the eyes are fairly complex structures with retinas, lenses, and a large nerve fiber.

Linda Depro, August 7, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 7, 2006

Science and Technology Log 

It’s a small world here on the ALBATROSS IV.  Chad Meckley is a 1996 Wilson High School graduate. Wilson is in Berks County and I live in Lancaster County, less than forty minutes away.  If you want to talk to Chad, look on the bridge.

Chad earned a geography/environmental science degree from Shippensburg University and moved to Colorado to be near the mountains.  After working several years in sales, Chad happened to be talking to a friend who knew about the NOAA Corps.  He applied, was accepted, and began training in February 2006.

We are on Leg 2 of the Sea Scallop Cruise and it is Chad’s third cruise with NOAA.  He enjoys being on the ocean and plans to continue his NOAA career.  Chad has two goals: to become Officer of the Deck (so he can command the ship) and to experience his first winter at sea.

It is evident that Chad enjoys what he’s doing; you can see it in his smile.  Best Wishes, Chad!

Last watch was not quite as busy as the night before.  We had two stations that were mostly Brittle Stars, very interesting little starfish.  They are a tannish color about the diameter of a coffee mug, with long thin arms that visibly move. When they were shoveled into laundry size baskets each time we had two baskets full, and that’s a lot of Brittle Stars!

Personal Log 

Yesterday, Sunday, was an absolutely, drop dead gorgeous day on the ocean.  The sun was out and the water was calm.  Whales were sighted, but in the distance.  I did see them surfacing and took pictures. Imagine a 4×6 all bluish-green and a fourth-inch dot of black. Sunset was working on spectacular, but just as the sun reached the water it went behind a layer of clouds. We are almost at full moon and the night time was just as beautiful in its own way.

Linda Depro, August 5, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 5, 2006

Science and Technology Log 

Yesterday was quite a day—many stations, lots of scallops, and BIG rocks.  I am amazed that the trawl net liner was not damaged.  Last night, though, a rock the size of a small car was hauled onto deck—that one did tear the liner.  It’s interesting to watch the winch drop it in the ocean.

My new special position (I’m still sorting, shoveling, and measuring) is taking the inclinometer, or bottom contact sensor, reading.  To you landlubbers, it’s a device attached to the trawl that gathers data and tells the scientists whether the net was parallel to the bottom of the ocean. So when the net comes up with very little the information from the inclinometer is helpful.

Here’s what I do. I have an optic shuttle (about the size of a hot dog) that I secure in the inclinometer located on the trawl.  Each part has sensors and when put together properly the inclinometer sends the data to the optic shuttle (like a zip) and when all information is received and a little green light flashed I take in into a computer and transfer the data onto the hard drive. It’s an important piece to the mission.

What I have been doing here is an example of how important hands-on learning really is for understanding and transfer. I could have read all about this experience (like you are with this journal), but until I held the fish, scrubbed the scallops, cut into a Monk fish to discover the ovaries, etc., I had no real understanding.  Amazing!

Personal Log 

The weather remains beautiful, the people are great, and the food is delicious.

Linda Depro, August 4, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 4, 2006

Science and Technology Log 

If you are observant you will notice that I’m on my second Friday in a row.  Time is a hard thing to keep track of here on the ocean.  Last watch, Thursday I think, we entered Canadian waters. I was looking for a sign the said “Welcome to Canada”, but I must have missed it.

I am a scallop scrubber!  With each haul five scallops are chosen at random to gather in-depth data on (all other scallops are weighed and measured only).  The shells are scrubbed clean so the scientists on shore can determine the age.  Scallop shells are a little like a tree trunk. Age is determined by growth rings.  The larger scallops can be five years and older. The scallop is measured for length and weighed individually then opened. The sex is entered into the computer next.  Male scallops have a white gonad and females have a pink gonad.  The gonad is weighed, and then the muscle (what we would call the “scallop”) is cut out and weighed.  The shell is dried and numbered to match the data, bagged, and frozen.  Some scallops are very clean, but others can have barnacles, “weeds”, sponges, and/or slime (don’t know the scientific term!) growing on their shells. As a shell scrubber you get to know these things and the best way to remove them!!  Finally the whole station is hosed down for the next haul.

Personal Log 

The noise of the engines and the rocking of the ship are becoming second nature.  The weather has been kind and swells small.  I am really, really hoping that is stays this way.  Laundry is my goal for the morning.  The washer and drier are behind a metal door called a hatch. There are six dogs (big metal latches) that must be closed when the ship is at sea. I have opened and closed those six dogs so many times I’ve given them names: King, Lassie, Rin Tin Tin, Lady, Spot, and ToTo!  So many things to learn.

Patti Conner, August 4, 2006

NOAA Teacher at Sea
Patti Connor
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Northwest Atlantic
Date: August 4, 2006

Data: (collected mid-morning) 
Air temperature = 17 C(62.6 F0 )
Water temperature = 19.2 C0 (66 F0)
Weather = hazy
Depth of trawl = 85 meters (remember, a meter and a yard are pretty close)
Water salinity = 31.06 ppm
Wind speed = 10.56 knots

I am working in the Biology Lab which is located on the back deck of the ALBATROSS IV
I am working in the Biology Lab which is located on the back deck of the ALBATROSS IV

Science and Technology Log 

The 12 hour shift is going very well. It is a little cooler out here than I expected, but the water temperature does affect the air. It is quite foggy today as we continue to travel northeast around Georges Bank. We have been in a little deeper water today, and have collected fewer scallops but we continue to bring in fish and many broken mollusk shells. Surprisingly, we brought up more algae than before even though the water is deeper. The main fish we are collecting are: Flounder, Hake, Skates, Sculpin, and Goosefish (also know as Monk Fish). I will be sending some pictures of the fish as well as some more invertebrate pictures.

Personal Log 

I miss being at home and respect those who are at sea working. It is demanding work, but when the sun rises over the water it is an impressive site and makes everything seem worthwhile. I wouldn’t care to be out here in the winter, but the boat and crew are except for a few weeks of the year. Next time we have a snow day, I’ll be thinking of my friends out here on the boat in howling winds. Today we had a little time between dredging so I was able to come up with several new labs for next year. My students will have a few new labs for our Under The Sea Unit. We will have some fish, and reptile (Sea Turtle) identifications to make using taxonomic keys. I am also working on a Squid dissection lab in addition to the Starfish dissection lab. Of course there will be a lab on Scallops (no, we are not going to eat them!).

Invertebrate identification from previous log = Echinoderms (Sunstars), and Vertebrate identification = Me! 

What invertebrate is this?  Look at the number of shells.  What are the small black spots?

connor_log3a

Linda Depro, August 3, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 3, 2006

Science and Technology Log 

Life happens here aboard ALBATROSS IV in twelve-hour intervals. My watch is from twelve noon until twelve midnight and the other watch is from twelve midnight until twelve noon.  I feel fortunate to have the “day watch” because at midnight I fall into bed dead tired and let the ocean rock me to sleep.  After breakfast I have time to write in my journal, read, do laundry, or sit and talk to the many interesting people who are aboard.  Lunch at 11:15 and then it’s off to work at 11:50.  If the stations are close together that means there is not much steam time and hauls can come in in 45 minutes or less.  So far that has been enough time to log all the data from the previous haul, freeze any biological samples to be worked up at the on shore lab, and clean up.  If steam time is longer I can read a book, get a snack (there is always fresh fruit out – I am a happy camper!), or eat dinner.

Personal Log 

Yesterday morning I was showering before breakfast.  As I was soaping I looked out the port hole that is in the shower. It was one of those “wow” moments.  Where else can a person take a shower with white caps splashing against the window?  I recounted my experience with the watch chief. She said, “Wait until the porthole is underwater.”  I certainly will be holding on the grab bars!

I’ve talked to the head cook and his assistant several times, both very kind men who obviously enjoy their jobs. Their food is excellent.  Each meal includes two entrees and many sides.  One lunch entree was unbelievable – blackened scallops prepared by using the scallops that had been part of the biological sampling in the wet lab.  Talk about fresh – and were they delicious!!

Patti Conner, August 2, 2006

NOAA Teacher at Sea
Patti Connor
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Northwest Atlantic
Date: August 2, 2006

Data: (collected mid-morning) 
Air temperature = 17 C0 (62.6 F0 )
Water temperature = 15.5 C0 (60 F0)
Weather = sunny, windy
Depth of trawl = 45.4 meters (remember, a meter and a yard are pretty close)
Water salinity = 31.54 ppm
Wind speed = 13.52 knots

NOAA Teacher at Sea, Patti Connor, helps to sort sea scallops aboard NOAA ship ALBATROSS IV.
NOAA Teacher at Sea, Patti Connor, helps to sort sea scallops aboard NOAA ship ALBATROSS IV.

Science and Technology Log 

Today we are sailing northeast of our sailing position yesterday. We are going to circle Georges Bank counterclockwise. Our dredges today were interesting. We continue to bring scallops in, but my watch team tells me there are more plentiful spots to come.  At one site, we found so many sand dollars that I couldn’t believe my eyes.  This particular species of sand dollar produces a very brilliant green colored pigment which stains everything (starfish, algae, fish and me!).  I am learning to identify the many species of starfish that we bring in.  One of my jobs is to count them at various sites by randomly selecting from the dredge material.  At one site, I was counting hundreds of them.  It’s amazing how well they can hide and are camouflaged in the algae.  Many of the scallops have thick red layers of red algae on them (remember that red algae can grow at deeper depths because the red pigment can trap the minimal amount of sunlight needed for photosynthesis), and they also can be found carrying Porifera (sponges) on them which also helps them to be camouflaged.

Personal Log 

I do love it out here. My inner ear and brain has adjusted to the perpetual motion of the boat. I have not had a problem with seasickness yet.  It has helped that the weather has been nice. I am also doing well with the midnight to noon work schedule.  It is a little funny to see the fog roll across the deck of the boat in the darkness of the night.  Sunrise is my favorite time as the light changes how everything looks, especially the dredge samples, and it is nice to see the waves and the great expanse of the water.

Yesterdays invertebrate sample: Starfish (phylum = Echinodermata).

Today’s invertebrate sample: starfish!
Today’s invertebrate sample: starfish!

Linda Depro, August 1, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 1, 2006

Science and Technology Log 

To quote that famous seaman, Popeye, “A sailor’s life for me!!”  I’m thinking about joining him and changing careers – this experience is fantastic.

The ALBATROSS IV is conducting the second leg of the Atlantic scallop survey, and we are in Georges Bank off the coast of New England.  In specific stations (areas of the ocean) the scientists are keeping data;  the number of scallops, their size, and weight, the number and kind of fish, the volume of the entire catch, and at specific stations the number of crabs, or the number of starfish.

The vessel steams to each station where the dredge is lowered and then AIV trawls for fifteen minutes.  The haul is brought in and emptied onto the aft deck where the scientists, volunteers, and me (teacher at sea) sort through and put the scallops and fish into different baskets. With that completed we go back and shovel all unneeded shells, sand, etc. into baskets that are recorded (for volume) and returned to the sea.  The scallops and fish are taken into the wet lab where they are counted, weighed, and measured.  Five random scallops are chosen to be individually surveyed.  The shells are scrubbed clean (one of my jobs) so their age can be determined later; each is measured, weighed, and opened. The sex of the scallop is recorded, the gonad weighed, and the abductor muscle weighed.  Finally the shell is numbered to correspond to the data (in a computer) for each.  The shells are bagged, marked, and frozen for later study.

Personal Log 

All my expectations about this adventure pale to the experience that it has been so far.  When Patti Connor (the other Teacher at Sea) and I saw the ALBATROSS IV for the first time we were awe-struck.  My excitement at that moment wiped away any worries or fears about the adventure. Tony, the first bo’sun, was on deck and welcomed us aboard.  He was the first, and with each new crewmember, from the steward to the engineer to the captain we met I felt more and more “at home.”

The staterooms hold three scientists; my bed is on the bottom of the bunk bed.  We have two portholes for light, a sink, two closets, and some storage drawers.  The head and shower are shared with the next stateroom.  The room is pretty much for sleeping and showering because I cannot go in while one roommate on the opposite watch is sleeping.  It is amazing how the roll of the boat puts me to sleep, and so far I have been sleeping quite well.

Sorting through the piles that are brought up from the bottom of the sea is very exciting.  Even those who have been doing this for a while are enthusiastic about the catch.  I am picking up REAL LIVE hermit crabs, flounder, scallops, crabs, starfish, sand dollars, and more!

Patti Conner, July 31, 2006

NOAA Teacher at Sea
Patti Connor
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Northwest Atlantic
Date: July 31, 2006

Weather Data
Air temperature = 17 C0
Water temperature = 18.3 C0
Weather = Fog, haze
Depth of trawl = 60.9 meters
Water salinity = 31.03 ppm
Wind speed = 13 knots

The ALBATROSS lV moored at port, Woods Hole, MA
The ALBATROSS lV moored at port, Woods Hole, MA

Science and Technology Log 

I woke up at 11:00 PM (23:00) Monday and started to get ready for my first 12-hour watch.  The ship changed to two 12-hour watches this year instead of the 6 hours on, 6 hours off, 6 hours on, 6 hours off watches.  I would think that the 12 hour watches are less disruptive to our biological clocks, and would make it much easier to get into a working, eating and sleeping pattern.  The scientists and crewmembers on my watch seem quite happy with this schedule.  We are sailing around Georges Bank, and doing 15-minute dredging samples at computer predetermined sites.  Some of the sites are close together and others are spaced farther apart.  When the dredging gear is brought aboard, there is a scramble to sort through the material.  We are separating fish and scallops and counting them, and then the other invertebrate animals are returned to the sea. The scallops are taken to the wet, biology lab and weighed and measured using computerized equipment and a program which tallies the data for scientists to interpret here and on shore. Since the scallop industry is such a large economic industry, these studies help to ensure the survival of the business and ecosystem.

Personal Log 

What an amazing journey this has been. I will never forget seeing my first sampling of marine organisms dredged up from the bottom of the sea.  Sorting through the algae, fish and invertebrates is just an exciting experience. It is fabulous to see fish that I have never seen before, and see their mouth shape and structure which allows them to eat and survive. The invertebrates such as mollusks, sponges and echinoderms are fabulous and abundant. To reinforce our invertebrate phyla, I will be posting an animal picture of the day and asking you to identify the phylum.  I will post the answer the next day. Do you remember these guys (or gals)?

What phyla do these animals belong to?