Kelly Dilliard: Right Whale Genetics, May 24, 2015

NOAA Teacher at Sea
Kelly Dilliard
Onboard NOAA Ship Gordon Gunter

May 15 – June 5, 2015

Mission: Right Whale Survey
Geographical area of cruise: Northeast Atlantic Ocean
Date: May 24, 2015

Weather Data from the Bridge:
Air Pressure:  1025.57 mb
Air Temperature: 16.7 degrees C
Relative Humidity: 55%
Wind Speed:  23 knots
Wind Direction:  244 degrees

Science and Technology Log:

In the last blog post, I wrote about how right whales are photo-identified.  Today we will look into what researchers do with this information and other information that are gathered on right whales including lineages of specific individuals.  It really is amazing how much information has been gathered about the right whale population off the New England coast.  They have been collecting data on these whales for the past 25 years.  It goes to show that persistence pays off.

Right whales are also identified by genetics and can be used to develop right whale family trees.  Scientists use a dart shot from a crossbow to collect a small sample of skin, flesh, and blubber.  These are then sent to the Natural Resources DNA Profiling and Forensic Centre in Canada for DNA extraction.  The data is then stored in the North Atlantic Right Whale DNA Bank at Trent University and made available as an online database.  The database contains information on over 500 individuals and provides a means of studying the right whale population, keeping track of deceased individuals and paternity.  DNA provides the only means of determining a calf’s father.  The DNA database currently contains 105 paternity results (this link takes you to the list of father-mother-calf connections).

On our cruise we have been able to photo-identify a few right whales so far.  You can learn more about each of these whales by looking them up in the North Atlantic Right Whale Catalog, including callosity patterns, images and sightings. Two of the whales were with calves, Wolf and 1950, and two were not, Couplet and 3890.   As you can see, some whales have been named and some have not.  Wolf was born in 1987 to mom, Moon, and father, 1516.  She had a previous calf, Caterpillar, with Thorny in 2005.  1950 had a previous calf, Haley, in 1997 with Legs.  Couplet is an interesting one and warrants further examination.  3890 is not yet in the paternity database.  Females tend to breed every 3-4 years and they first give birth at age nine or ten.

Image of Wolf taken by a NOAA aerial survey in 2010. Photo from the North Atlantic Right Whale Catalog.

Couplet was born in 1991 to Sonnet (mother) and Dingle (father).  Couplet has two other siblings, 3123 born in 2001 and 3423 born in 2004.   Couplet had a calf herself in 2003 with Velcro and another calf in 2001.  Couplet’s mom, Sonnet, was born in 1981 to Kleenex (mother) and 1050 (father).  Her grandmother, Kleenex, has had seven calves, with Sonnet being the second oldest.  Kleenex has been well studied and is thought to be the most productive female.  From Kleenex’s and Couplet’s family tree you can see that right whales interbreed.  Kleenex and Dingle had a calf, Echo, in 1996, an “aunt” of Couplet’s.  Couplet is a calf of Dingle as well.  You can read more about Kleenex in her biography.

Right whale 1950 spotted on Wednesday, May 20th with a calf.  Identified by Corey Accardo.
Right whale 1950 spotted on Wednesday, May 20th with a calf (the calf is not in this photo). Identified by Corey Accardo.  Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD.

North Atlantic right whales travel up and down the eastern seaboard ranging from Florida to Canada.  Florida and the southeastern United States is the calving grounds for right whales.  The calving season is from December to March.  During this time there is no feeding going on.  This may be due to the lack of available food.  The right whales then migrate north for the summer and fall months to Cape Cod Bay (1 on the map), the Great South Channel (where we are currently, 2 on the map), the Bay of Fundy (3 on the map), and Roseway Basin/Browns Bank (4 on the map).  They move between the different areas for feeding and nursing, with the population distribution based almost solely on food availability.  Some individuals have been known to winter in Jordan Basin and Cashes Ledge in the central Gulf of Maine.  Jordan Basin, in particular, is a suspected breeding ground for the North Atlantic right whale.

Maps of the southeastern and northeastern seaboards with North Atlantic Right Whale habitats denoted.

Personal Log:

It has been a few days since I was able to write a blog partly due to weather and partly due to science activity.  On Friday the two small boats on the ship were deployed to tag and photo-identify a right whale that was spotted around 10 am from the fly bridge.  The boats are deployed via a crane that picks up the RHIBs (Rigid Hull Inflatable Boat) and puts it off the port side of the boat.  The scientists then crawl down a Jacobs ladder (rope ladder with steps) to get into the small boat.  While several of the scientists were out in the boat chasing the right whale, the rest of us were up on the fly bridge following the whale and directing the small boats to its location.  This was especially challenging because the right whale would only surface for a very short time period and then dive down for up to 20 minutes.  Through all of this there were hundreds of seals swimming off the bow, humpback whales feeding, and tons of birds.  Pete, the chief scientist, also saw yellow fin tuna within the “sea” of seals.   I was able to capture lots of images with my telephoto lens and with my GoPro.  I will post a few below.

Small boats looking for the elusive right whale.
Small boats looking for the elusive right whale.   Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD.
The small boat from WHOI trying to tag our elusive right whale (tale).
The small boat from WHOI trying to tag our elusive right whale (tale).  Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD.

On Saturday, we were in high seas due to sustained winds over 25 knots.  The choppy sea made it very difficult to spot whales due to all of the white water.  I especially was not on the Big Eyes do to the choppy seas.  Mark Baumgartner from WHOI (Woods Hole Oceanographic Institute) and his team were deploying the CTD at specific points along our track line.  The plan is to continue CTD work on Monday and Tuesday.  I also plan to write my next blog post about the CTD.  We are expected to have high seas and wind again.

Humpback whale feeding.  You can see the white baleen in her mouth.  This photo was taken with a telephoto lens and then cropped.
Humpback whale feeding. This photo was taken with a telephoto lens and then cropped.  Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD.
Humpback whale feeding. You can see the white baleen in her mouth. This photo was taken with a telephoto lens and then cropped.
Humpback whale feeding. You can see the white baleen in her mouth. This photo was taken with a telephoto lens and then cropped.  Images collected under MMPA research permit #71355.  Photo credit NOAA/NEFSC/KAD.
Humpback whale splash after breaching. I missed seeing (and photographing) the breach, but caught the large splash next to the ship.  Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD.
"Sea" of seals off the starboard side.  Photo taken Friday the 21st.
“Sea of seals” off the starboard side. Photo taken Friday the 21st.  Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD.
Seal off the port side of the ship.  Probably was once part of the above "sea of seals".
Seal off the port side of the ship. Probably was once part of the above “sea of seals”.  Images collected under MMPA research permit #17355.  Photo credit NOAA/NEFSC/KAD


Chris Imhof, November 8, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 8, 2009

Science Log

Yesterday, at the Deep Sea Corals Briefing we took a trip to the North Carolina Museum of Natural Sciences “Wet Lab.” This off-site lab -Prairie Ridge-was once a 38-acre cattle pasture – and is now being used by the museum to restore the original Piedmont ecosystem and for outdoor education. The “wet lab” is located on site and is where many of the samples collected by scientists studying the deep coral reef ecosytem – go to be “processed” and “curate” the research.

The lab contains microscopes, hand lenses, lots of jars, species identification field guides. Specimens – usually fish come to the lab where they are identified and classified- placed in jars of 70% ethanol for long-term storage. Some specimens however are stored in 95% ethanol for potential DNA research.

Why are keeping specimens important? – Specimens classified here are entered on a global data base so scientists have access to them from anywhere-global diversity. Scientists study the specimens to compare with other species, morphology (the branch of biology dealing with the form and structure of organisms), compare age and growth, and understand over time where animals lived and are living geographically.The oldest specimens of fish were collected in the 1840’s – this gives scientists a chance to tell how species have changed over the past 150 years. Scientists also use specimens to develop “dichotomous keys”-a key for the identifying organisms based on a series of choices between characteristics.

The lab itself was pretty cool – The collection here contains over 800,000 specimens – one of the top 5 in the US – like a warehouse though it felt like Raiders of the Lost Anchovy – and strangely like the beginning of every zombie movie. Like expeditions to the Amazon – nearly every trip to the deep water coral habitat scientists have discovered a new species – hopefully this voyage will add another piece to the global bio-diversity puzzle. 🙂

Mary Anne Pella-Donnelly, September 19, 2008

NOAA Teacher at Sea
Mary Anne Pella-Donnelly
Onboard NOAA Ship David Jordan Starr
September 8-22, 2008

Mission: Leatherback Use of Temperate Habitats (LUTH) Survey
Geographical Area: Pacific Ocean –San Francisco to San Diego
Date: September 19, 2008

Weather Data from the Bridge 
Latitude: 3624.8888 N Longitude: 12243.8013 W
Wind Direction: 261 (compass reading) SW
Wind Speed: 8.0 knots
Surface Temperature: 16.385

Figure indicating migration of different genetic stocks of Pacific leatherback turtles.
Figure indicating migration of different genetic stocks of Pacific leatherback turtles.

Science and Technology Log 

Turtle Genetics 
Peter Dutton is the turtle specialist on board, having studied sea turtles for 30 years.  His research has taken him all over the tropical Pacific to collect samples, study behaviors and learn more about Dermochelys coriacea, the leatherback turtle. Mitochondrial DNA (is clonal=only one copy) is only inherited maternally (from the mother), so represents mother’s genetic information (DNA), while nuclear DNA has two copies, one inherited from the mother and the other from the father .By looking at the genetic fingerprint encoded in nuclear DNA it is possible to compare hatchling “DNA fingerprints”, with their mother’s and figure out what the father’s genetic contribution was. This paternity (father’s identifying DNA) analysis has produced some intriguing results.

Peter Dutton looking for turtles with the ‘big eyes’.
Peter Dutton looking for turtles with the ‘big eyes’.

An analysis of chick embryos or hatchling DNA indicates all eggs were fertilized throughout the season from the same dad. It is thought that the female must store sperm in her reproductive system. Successively, throughout the nesting season, a female will lay several clutches, one clutch at a time.  Females come in to the beach for a brief period (leatherbacks – approx 1.5 hrs) every 9-10 days to lay eggs for the 3 or 4 month nesting season (they lay up to 12). Sometimes it is the same beach; sometimes it is a beach nearby. Research done on other sea turtles is showing some species have actually produced offspring with other species of sea turtle. One example is of a hawksbill turtle with a loggerhead turtle in Brazil. In this case, the phenotype appeared to indicate one species, while the DNA analysis indicates the animal was a hybrid, with a copy of DNA from each of the two different species. At some point geneticists may need to re-define what constitutes a “species”.

The last few eggs most of the leatherback turtles lay are infertile, yolkless eggs.  No one is certain about the function of these eggs, although several theories have been suggested. Many unknowns exist about these turtles. Scientists have not yet found a means to determine the age of individual sea turtles, so no one knows how long-lived they are. The early genetic research on leatherbacks showed some information that surprised the scientists.  It had been thought that all leatherbacks foraging off the northwestern coast of USA originated in the eastern tropical Pacific, from nesting beaches in Mexico.  Careful DNA analysis, however, found that animals at California foraging grounds are part of the western Pacific genetic stock recently identified by Dutton and colleagues. Both Peter and Scott have emphasized that there is still much to learn, and they have just begun, however, much has also been learned during the past six years, including the origin of leatherbacks that utilize California waters.

Personal Log 

Yesterday the sun came out and it was a glorious evening.  A group of us watched the sunset from the flying bridge, and then later watched the moon rise.  It was spectacular, and with the ‘big eyes’, it was possible to see many of the moon’s craters.  The stars were also magnificent!  Today has been cloudy with a layer of fog eventually drenching the boat.  This weather has made yesterdays blue skies all the sweeter.

Words of the Day 

Mitochondrial DNA: DNA found within the mitochondria – originates from the mother; Clonal: identical to the original; Clutch: a single batch of eggs, laid together; Hybrid: one gene from one species and the second gene from a second species; Species: an organism that can mate with another of its own kind and produce fertile offspring.

Animals Seen Today 

Common dolphin Delphinus delphis, Fin whale Balaenoptera physalus, Black-footed Albatross Phoebastria nigripes, Moon jellies Aurelia labiata, Sea nettle jellies Chrysaora fuscescens, and Common dolphins Delphinus delphis.

Questions of the Day 

  1. Geneticists are beginning to obtain new tools to figure out how similar animals are related to each other. What are some questions you have related to leatherback turtle genetics?
  2. Scott’s turtle map shows that leatherbacks nesting in the Western Pacific migrate across the Pacific to the coast of North America, while leatherbacks that nest in Costa Rica only migrate to waters off the South American coast.  Why might some populations stay in the same region, while others cross the Pacific Ocean?
Sunset over the port side
Sunset over the port side