Kathy Schroeder: Maintenance During Tropical Storm Imelda, September 18, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/18/19

Weather Data from the Bridge

Latitude: 29.3088855
Longitude: -94.7948546
Temperature: 78°F
Wind Speeds: SSW 17 mph

NOAA Ship Oregon II
NOAA Ship Oregon II September 16, 2019


Science and Technology Log

While we are waiting to get started with our research survey that collects fisheries-independent data about sharks, I’ll tell you a little about how other NOAA scientists collect information directly from the commercial shark fisheries in the Gulf of Mexico.

Southeast Shark Bottom Longline Observer Program

Southeast Program

The Shark Bottom Longline Observer Program works to gather reliable data on catch, bycatch, and discards in the Shark Bottom Longline Fishery, as well as document interactions with protected species. Administered by the Southeast Fishery Science Center’s Panama City Laboratory, the data collected by observers helps inform management decisions.  NOAA hires one to six observer personnel under contractual agreements to be placed on commercial fishing vessels targeting shark species. Program coordinators maintain data storage and retrieval, quality control, observer support services (training, observer gear, documents, debriefing, data entry), and administrative support. 

Fishery

This shark bottom longline fishery targets large coastal sharks (e.g., blacktip shark) and small coastal sharks (e.g., Atlantic sharpnose). Groupers, snappers, and tilefish are also taken. The shark bottom longline fishery is active on the southeast coast of the United States and throughout the  Gulf of Mexico. Vessels in this fishery average 50 feet long, with longline gear consisting of 5 to 15 miles of mainline and 500 to 1500 hooks being set. Each trip has a catch limit ranging from 3 to 45 large coastal sharks, depending on the time of year and the region (Gulf of Mexico or south Atlantic). Shark directed trips can range from 3-5 days at sea.

In 2007, NOAA Fisheries created a shark research fishery to continue collection of life history data and catch data from sandbar sharks for future stock assessment. This was created as sandbar sharks are protected due to lower population numbers that allowed for some very limited commercial take of the animals and allows for collection of scientific data on life history etc. A limited number of commercial shark vessels are selected annually and may land sandbar sharks, which are otherwise prohibited. Observer coverage is mandatory within this research fishery (compared to coverage level of 4 percent to 6 percent for the regular shark bottom longline fishery). 

https://www.fisheries.noaa.gov/southeast/fisheries-observers/southeast-shark-bottom-longline-observer-program


Personal Log

Well, I guess you were hoping to hear from me sooner than this.  I arrived in Galveston, TX on September 15th.  I boarded NOAA Ship Oregon II and got settled in my room.  The 170 foot ship was tugged into port early due to a broken part.  Today is Wednesday September 18th , and we are still waiting to leave.  Fingers crossed it will be tomorrow morning.  During this time I was able to meet with the crew members and scientists and familiarize myself with the ship.  I was able to walk around Galveston and learn about its history.  We were able to go out to dinner where I have had amazing oysters and a new dish “Snapper Wings” at Katie’s Seafood Restaurant.   It was delicious and so tender. I would definitely recommend it!      

During our time in port we were also hit with Tropical Storm Imelda. We have had lots of rain and flooding in the area. 

snapper wings
Snapper Wings at Katie’s Seafood Restaurant, Galveston, TX
oysters
Fresh Oysters at the Fisherman’s Wharf, Galveston, TX

Shout Out:  Today’s shout out goes to my nephews Eastwood and Austin and my sister Karen and her husband Casey in Dallas, TX.  I also want to say Hi to all of my marine students at PRHS.  Hope I didn’t leave you all too much work to do 🙂 Keep up with your blog ws!

Brandy Hill: How to Mow the Lawn and Needle Gunnin’, July 3, 2018

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA Ship Thomas Jefferson

June 25, 2018 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 3, 2018

 

Weather Data from the Bridge

Latitude: 29° 17.5’ N

Longitude: 094° 27.7’ W

Visibility: 10+ NM

Sky Condition: 3/8

Wind: 10 kts

Temperature:

Sea Water: 29.5° C

Air: 31.1° C

 

Science and Technology Log

Radar
The ship is equipped with AIS or automatic identification system. AIS is the primary method of collision avoidance for water transport. It provides unique identification, position, course, and speed of ships equipped with AIS. All vessels with 300 or more gross tonnage and all passenger ships must be equipped with AIS.

In the beginning, it took me a little while to realize that we were passing by some of the same oil platforms and seeing the same ships on the radar screen (above). For example, today the Thomas Jefferson covered many nautical miles within the same 2.5 NM area. This is characteristic of a hydrographic survey. A sheet (area to be surveyed) is split into sections and a plan is devised for the ship to cover (using sonar) the area in a “mow the lawn” approach. In the photo below, you can see the blue lines clustered together. These are the main scheme lines and provide the majority of data. The lines going perpendicular in a loose “zig-zag” to the main scheme lines are called crosslines. While main scheme provides the majority of sonar data, crosslines provide validation. For every 100 nautical miles of main scheme, 4 NM of cross lines (4%) must be completed.

CoastalExplorer
You can see the main scheme and cross lines in this image using the Coastal Explorer program.

You can also see the main scheme and crossline(s) in the Hypack viewer below. Hypack is a software program controlled from the Plot (Survey) Room and is duplicated on a screen on the Bridge (steering deck). This allows Bridge watch standers to see track lines and the desired line azimuth (direction). In this case the line azimuth is around 314°. Additionally, the bottom portion showing -0.0 means that the ship is precisely on track (no cross-track errors). Typically, during a survey from the main ship, there is room for up to 10 meters of error in either direction and the sonar data coverage will still be complete. Once the course is set, the ship can be driven in autopilot and manually steered when making a turn. The high-tech equipment allows the rudder to correct and maintain the desired course and minimize cross-track error. Still, at least two people are always on the bridge: an officer who makes the steering orders and maintains watch and a helmsman who steers the ship. I was fortunate to be able to make two cross line turns after a ship steering lesson from AB (able seaman) Tom Bascom who has been on ships his whole life.

HyPack
Hypack software is one point of communication between Survey and the Bridge Watch.

Communication between Survey and the Bridge Watch is critical. Every time the ship makes a turn, the side scan towfish and MVP must be taken in. The Bridge also notifies Survey if there are any hazards or reasons to pull in survey equipment.

At night, the ship is put into “night mode” and all lights are switched to red. The windows are covered with a protective tinted sheet and all computer screens switch over. The CO leaves a journal with posted Night Orders. These include important summary points from the day and things to look out for at night It also includes a reminder to complete hourly security rounds since most shipmates are asleep. A “Rules of the Road” section is included which serves as a daily quiz for officers. My favorite part of CO’s Night Orders are the riddles, but they are quite difficult and easy to over think. So far, I have guessed one out of five correctly.

Bridge Watch Night Vision
ENS Sydney Catoire explains how important it is to preserve your night vision while maintaining watch, thus the dimming and/or use of red lighting. Her favorite watch time is from 0800-1200.

CO Night Orders from June 28, 2018
CO Night Orders from June 28, 2018

With a lot of my time spent looking at computer screens in survey, I was happy to spend an afternoon outside with the Deck Crew. Their job is highly diverse. Rob Bayliss, boatswain group leader, explained that the crew is responsible for maintaining the deck and ship. This includes an ongoing battle with rust, priming, painting, and refinishing surfaces. Rob wiped his hand along the rail and showed the massive amount of salt crystals collected throughout the day. The crew has a PR event and will give public tours the day we arrive in port, so the ship is in full preparation!

Needle Gun
I was introduced to the needle gun- a high powered tool used for pounding paint and rust off surfaces to prepare them for the wire wheel and paint primer. CO thanked me for my contribution at maintaining the preservation of the TJ.

Revarnishing Deck Work
One of the Thomas Jefferson wooden plaques sanded and receiving a fresh coat of varnish.

I also spoke with Chief Boatswain, Bernard Pooser. He (along with many crew members) have extensive experience in the navy. Pooser enjoys life on the ship but says, “It’s not for everyone; you have to make it work for you.” He claims that the trick is to find a work and recreation balance while on the ship. He gave me some examples like being sure to take breaks and have fun. Pooser even pulled out a corn hole set that we may use one of these evenings.

Chief Boatswain Bernard Pooser
Chief Boatswain Bernard Pooser

 

Peaks

+ It’s been fun being on the bridge at night because all of the ships and platforms light up.

+ I was given my own stateroom which was nicely furnished by its usual occupant. She has even installed a hammock chair!

+I hadn’t realized how responsive the ship would be when steering. At 208 feet, I thought it would be a bit more delayed. The maximum turn angle is 35 degrees and we have usually been making turns around between 5-15 degrees.

+We saw two sea turtles and dolphins while taking bottom samples! (See future post.)

 

Denise Harrington: Joining the Longline Crew, September 17, 2016

 

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Saturday, September 17, 2016

Location: 29 2.113’ N  93o 24.5’ W

Weather from the Bridge: 28.9C (dry bulb), Wind 6 knots @ 250o, overcast, 2-3′ SE swell.

Science Log

The muggy afternoon air did not dampen my excitement as we left Galveston, Texas, aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Oregon II.  I am a NOAA Teacher at Sea, participating in a  longline survey in the Gulf of Mexico, surveying sharks and bony fish.

p1080113
Fellow volunteers Leah Rucker and Evan Pettis and I bid farewell to Galveston. Evidence of human influence, such as development, oil rigs, barges, and ships, is not hard to spot. Photo: Matt Ellis, NOAA

When I tell people about the Teacher at Sea program, they assume I teach high school or college, not second grade in rural Tillamook, Oregon.  Yet spend a few moments with any seven or eight year old and you will find they demonstrate significant potential as scientists through their questions, observations, and predictions. Listen to them in action, documented by Oregon Public Broadcasting, at their annual Day at the Bay field trip.

Just as with language acquisition, exposing the young mind to the process of scientific inquiry ensures we will have a greater pool of scientists to manage our natural resources as we age.  By inviting elementary teachers to participate in the Teacher at Sea program, NOAA makes it clear that the earlier we get kids out in the field, the better.

dsc_0447
Each year, my students develop a science or engineering project based upon their interests.  Here, South Prairie Elementary students survey invertebrates along a line transect as part of a watershed program with partners at Sam Case Elementary School in Newport, Oregon.

The NOAA Teacher at Sea program will connect my students with scientists Dr. Trey Driggers, Paul Felts, Dr. Eric Hoffmayer, Adam Pollock, Kevin Rademacher, and Chrissy Stepongzi, as they catch sharks, snapper, and other fish that inhabit the Gulf of Mexico. The data they collect is part of the Red Snapper/Shark Bottom Longline Survey that began in 1995. The survey, broken into four legs or parts each year, provides life cycle and population information about many marine species over a greater geographic distance and longer period of time than any other study of its kind.

Leg IV is the last leg of the survey.  After a long season of data collection, scientists, sailors, and fishermen will be able to return to their families.

My twelve hour shift begins tomorrow, September 17, at noon, and will continue each day from noon until midnight until the most eastern station near Panama City, Florida, is surveyed.  Imagine working 12 hour shifts, daily, for two weeks straight!  The crew is working through the day and night, sleeping when they can, so shutting the heavy metal doors gently and refraining from talking in the passageways is essential.  I got lucky on the day shift:  my hours are closer to those of a teacher and the transition back to the classroom will be smoother than if I were on the night shift.

Approximately 200 stations, or geographic points, are surveyed in four legs. Assume we divide the stations equally among the legs, and the first three legs met their goal. Leg IV is twelve days in duration. How many stations do we need to survey each day (on average) to complete the data collection process?  This math problem might be a bit challenging for my second graders, but it is on my mind.

p1080124
Mulling over the enormity of our task, Skilled Fisherman Chuck Godwin and I discuss which 49 year old fisherman will end up with more wrinkles at the end of the survey. Currently, I am in the lead, but I bet he’s hiding some behind those shades. Photo: Mike Conway

I wonder what kind of sharks we will catch.  Looking back at the results of the 2015 cruise report, I learned that there was one big winner.  More than half of the sharks caught were Atlantic sharpnose (Rhizoprionodon terraenovae) sharks. Other significant populations of sharks were the blacktip (Carcharhinus limbatus) shark, the sandbar (Carcharhinus plumbeus) shark, and the blacknose (Carcharhinus acronotus) shark.

My fellow Teacher at Sea, Barney Peterson, participated in Leg II of the 2016 survey, and by reading her blog I learned that the shark they caught the most was the sandbar shark.

p1080106
In this sample data sheet from the end of Leg III, all but one of the sharks caught were the blacknose sharks.  Notice the condition of two of the fish caught: “heads only.”  Imagine what happened to them!

 

 

Personal Log

My first memory of a shark was when my brother, an avid lifetime fisherman, took several buses across the San Francisco Bay area to go fishing.  That afternoon, he came home on the bus with a huge shark he’d caught.  I was mesmerized. We were poor at the time and food was hard to come by, but mom or dad insisted sharks were not edible, and Greg was told to bury the shark in the yard.  Our dog, Pumpkin, would not comply, and dug that shark up for days after, the overpowering smell reminding us of our poor choice. I don’t have many regrets, but looking back on that day, I wish we had done something differently with the shark.

Since then, I’ve learned that shark is a popular source of protein in the diets of people around the world, and is growing in popularity in the United States.  In our survey area, Fisheries Biologist Eric Hoffmayer tells me that blacktip and sandbar sharks are the two most commercially important species. Our survey is a multispecies survey, with benefits beyond these two species and far beyond our imagination. As demand increases, so too does the need for careful management to keep fisheries sustainable. I am honored to be part of a crew working to ensure that we understand, value, and respect our one world ocean and the animals that inhabit it.

Kimberly Lewis, June 30, 2010

NOAA Teacher at Sea Kimberly Lewis
NOAA Ship: Oregon II
July 1 -July  16 2010

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, June 30, 2010

My Ship Awaits

Well I arrived in Houston safely under humid and rainy skies. The ride to Galveston was longer than I thought but Bruce, an environmental teacher from New Jersey, and I talked about where we taught, classes, and the excitement about our upcoming adventure. Normally there is one teacher per leg, but since our mission on the Oregon II went from 3 legs to 2 legs it changed things up a bit, including our new departure date.

Arriving on the ship tonight we noticed a sign on the door “Friday 7/2 shipping out 10:00 am”. The newly upgraded hurricane Alex has delayed our departure by one day, at least for now. This will give me time to explore the ship a little without waking the sleeping crew. This is a 24-hour workstation so it is very important that everyone is quiet in the halls. Speaking of quiet, I am turning in, in my next to the kitchen stateroom.