John Clark, September 27, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

Clark Log 3gMission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 27, 2013

Science and Technology  Log 

It’s going to be a busy night trawling and processing our catch.  Yippee. I like  being busy as the time passes more quickly and I learn about more fish. A large number of trawling areas are all clustered together for our shift. For the most part that means the time needed to collect data on one trawl is close to the amount of time needed for the ship to reach the next trawling area. The first trawl was a highlight for me as we collected, for the first time,  a few puffer fish and one managed to stay inflated so I had a picture taken with that one.

We found a puffer

We found a puffer

However, on this night there was more than just puffer fish to be photographed with. On this night we caught the big one that didn’t get away. One trawl brings in an amazing catch of 6 very large striped bass and among them is a new record: The largest striped bass ever hauled in by NOAA Fisheries! The crew let me hold it up. It was very heavy and  I kept hoping it would not start flopping around. I could just see myself letting go and watching it slip off the deck and back into the sea. Fortunately, our newly caught prize reacted passively to my photo op. I felt very lucky that the big fish was processed at the station I was working at. When Jakub put the big fish on the scale it was like a game show – special sounds were emitted from our speakers and out came the printed label confirming our prize  – “FREEZ – biggest fish ever “-‐-‐the largest Morone Saxatilis (striped bass) ever caught by a NOAA Fisheries research ship.  It was four feet long. I kept  waiting for the balloons to come down from the ceiling.

Catch of the day

Catch of the day

Every member of the science team sorts fish but at the  data  collection tables my role  in the  fish lab is one of “recorder”. I’m teamed  with  another scientist who serves  as  the “cutter”, in this  case Jakub. That person collects the information I enter into the computer. The amount of data collected  depends on  the quantity and  type of fish  caught in  the net. I help  record  data on length, weight, sex, sexual development, diet, and scales. Sometimes fish specimens or parts of a fish, like the backbone of a goose fish, are preserved. On other occasions, fish, often the small ones are frozen for further study. Not every scientist can make it on to the Bigelow to be directly part of the trip so species data and samples are collected in accordance with their requests.

Collecting data from a fish as large as our striped bass is not easy. It is as big as the processing sink at our data collection  station and it takes Jakub’s skill with a hacksaw-‐-‐yes I said hacksaw-‐-‐to open up the back of the head  of the striped  bass and retrieve  the  otolith, the  two small bones  found behind the head that are  studied to determine  age. When we  were  done, the fish was bagged and placed in the deep freeze for  further  study upon our return. On the good side we only froze one of the six striped bass that we caught so we got to enjoy some great seafood for dinner. The team filleted over 18 pounds of striped bass for the chef to cook up.

Too big for the basket

Too big for the basket

More Going On: 

Processing the  trawl is not the  only data  collection activity taking place on the  Bigelow.  Before most trawls begin the command comes down to “deploy the bongos”. They are actually a pair  of  closed end nets similar to nets used to catch butterflies only much longer. The name bongo comes from the deployment apparatus that holds the pair of nets. The top resembles a set of bongo drums with one net attached to each one. Their purpose, once deployed, is to collect plankton samples for further study. Many fish live off plankton until they are themselves eaten by a predator farther up the food chain so the health of plankton is critical to the success of  the ecological food chain in the oceans.

Processing

Processing

Before some other trawls, comes the command to deploy the CTD device. When submerged to a target  depth  and  running in  the water as the ship  steams forward, this long fire extinguisher sized  device measures conductivity and temperature at specified depths of the ocean. It is another tool for measuring the health of the ocean and how current water conditions can impact the health  of the marine life and also the food chain in the area.

Personal Log 

On a personal note, I filleted a fish for the first time today – a  flounder. Tanya, one  of the science crew taught me how to do it. I was so excited about the outcome that I did another one!

Processing fish

Processing fish

Clark Log 3gg

A mix of fish

A mix of fish

Paired trawl

Paired trawl

Learning to fillet

Learning to fillet

John Clark, September 25, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

The galley

The galley

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 25, 2013

Science and Technology  Log 

I was  told  that  the  first  12  hour night watch shift was the hardest for staving off sleep and those who spoke were right. Tonight’s  overnight shift seems to be flying by and I’m certainly awake. Lots of trawling and sorting this  evening with four sorts complete by 6am. One was just full of dogfish, the shark looking fish,  and  they  process  quickly  because  other  than  weight  and  length there is little request for other data. The dogfish were sorted at the bucket end of the job so determining sex had already been completed by the time the fish get to my workstation. Again I’m under the mentorship of Jakub who can process fish faster than I can print and place labels on the storage envelopes. The placement of the labels is my weakness as I have no fingernails and removing the paper backing from the sticky label is awkward and time consuming. Still tonight I’m showing speed improvement over last night. Well at least I’m getting the labels on straight most of the time.

Sorting fish

Sorting fish

In  addition  to  the  dogfish,  we  have  processed  large  quantities  of  skate  (the  one  that  looks  like a  sting  ray to me), left  eyed flounders, croakers (no relation to the frog), and sea robins of which there are two types, northern and stripe. The sea robins are  very colorful with the  array of spines just behind the  mouth. And yes it hurts when one of the spines goes through your glove. Sadly for me sorting has been less exciting tonight.  With  the big fish being grabbed off at the front of the line there has been little left for me to sort. I feel like the goal keeper in soccer  – just  don’t let them get past me. To my great surprise, so far I’ve experienced no real fear of touching the fish. The gloves are very nice to work with.

Species in specific buckets

Species in specific buckets

And let us not overlook the squid. There have been pulled in by the hundreds in the runs today. There are two types of squids, long fin (the lolligo) and short fin (the illex). What they both have in common is the ability to make an incredible mess. They are slimy on the outside and  inky on the inside. They remind me of a fishy candy bar with really big eyes. And  for all the fish  that enjoy their squid  treat the species  is,  of  course,  (wait  for  it) just  eye  candy.  The  stories  about  the  inking  are  really  true. When  upset, they give  off ink; lots of ink. And  they are very upset by the time they reach the data collection stations. If you could bottle their ink you would  never need  to  refill your pen  again. They are also  very, very  plentiful which  might explain  why there are no requests to collect additional data beyond  how long they are. I guess they are not eye candy to marine scientists. However, there vastness is also their virtue. As a food source for many larger species of marine life, an absence of large quantities of squid in our trawling nets would be a bad sign for the marine ecosystem below us.

Safety equipment

Safety equipment

When the squid are missing, our friend the Skate (which of  the four  types does not  matter)  is glad to pick up  the slack on  the “messy to work with” front. As this species makes it down the sorting and data collecting line the internal panic button goes  off and they exude this thick, slimy substance  that covers their bodies and makes them very slippery customers at  the weigh stations.  It turns out the small spines on the tails were placed there so that fisheries researchers could have a fighting chance to handle them without dropping. Still, a skate sliding onto the floor is a frequent event and provides comic relief for all working at the data collection stations.

Clark Log 2There was new species in the  nets tonight, the  Coronet fish which looks like  along  drink straw with stripes  and a string attached to the back end. It is  pencil thick and about a foot long without the string. We only caught it twice during the trip. The rest of the hauls replicate past  sorting as dogfish, robins, skates, squid, croakers, and flounder are the bulk of the catch. I’ve been told that the diversity and size of the trawl should  be more abundant as we steam along the coastline heading north  from the lower coast of  New Jersey. Our last trawl of the shift, the nets deployed collect two species new for our voyage, but ones I actually recognized despite my limited knowledge of fish – the Horseshoe Crab and a lobster! I grew up seeing those on the Jersey shore.  We only got one lobster and after measuring  it we let  go  back  to  grow  some  more.  It  only  weighed in at less than two pounds.

Personal Log 

The foul weather suit we wear to work the line does not leave the staging room where they are stored as wearing them around the ship is not  allowed. After  watching others, I have mastered the art  of  pushing the wader pants over the rubber boots and  thus leaving them set-‐up  for quick donning and  removal of  gear  throughout  the shift.

While the work is very interesting on board, the highlight of each  day is meal time. Even though I work the night  shift (which ends at  noon) I take a nap right after my shift so I can  be  up  and  alert in  time  for dinner. My favorite has been  the T-‐bone steaks with Monterey seasoning and  any of the fish cooked up from our trawling like scallops or flounder. The chef, Dennis, and his assistant, Jeremy serve up some really fine cuisine. Not fancy but very tasty. There is a new soup every day at  lunch and so far my favorite has been the cream of tomato. I went back for seconds! Of course, breakfast is the meal all of us on the night watch  look forward  to  as there is no  meal service between midnight and  7am. After 7 hours of just snacking and  coffee, we are ready for  some solid food by the time breakfast  is served.

Seas continue to be  very calm and the  weather sunny and pleasant. That’s quite a surprise for the North Atlantic in the fall. And  the sunrise today was amazing. The Executive Officer, Chad Cary, shared that the weather we are experiencing should continue for at least four more days. I am  grateful  for  the  calm weather – less  chance  to  experience  sea  sickness.  That is something I’m determined to avoid if possible.

John Clark, Hi Ho, Hi Ho It’s Off to Work We Go, September 24, 2013

NOAA Teacher at Sea
John Clark
Aboard NOAA Ship Henry B. Bigelow
September 23 – October 4, 2013

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 24, 2013

Survival suits!

Survival suits!

Science and Technology  Log 

Today is my first full 12 hour shift day. I’m on the night crew working midnight to noon. Since we left port yesterday I’ve been  trying to  adjust my internal clock for pulling daily “all night”ers.  On Monday, after we  left port, safety briefs for all hands occurred once we made it out to sea and I got to complete my initiation into the Teacher at Sea alumni program  – the donning of  the Gumby suit as I call it. It is actually a bright red wet suit that covers your entire body and makes you look like a TV Claymation figure from the old TV show. In actuality it is designed to help you survive if  you need to abandon ship. Pictures are  of course taken to preserve this rite of passage.

The Henry B. Bigelow is a specially-built NOAA vessel designed to conduct fisheries research at sea.  Its purpose is to collect data that will help scientists assess the health of the Northern Coastal Atlantic Ocean and the fish populations that inhabit it. The work is invaluable to the commercial fishing industry.

The Bigelow in port

The Bigelow in port

Yesterday, I learned how we will go about collecting fisheries data. Our Chief Scientist, Dr. Peter Chase, has selected  locations for sampling the local fish population and the ship officers have developed a sailing plan that will enable the ship to visit all those locations, weather permitting, during the course of the voyage. To me its sounds like a well-‐planned  game of connecting the dots. At each target location, a trawling net  will be deployed and dragged near the bottom of the sea for a 20 minute period at a speed of 3 knots. Hence the reason  this voyage is identified as a bottom trawl survey mission. To drag the bottom without damaging the nets is not easy and there are five spare nets on board in case something goes wrong. To minimize the chance of damaging the net during a tow, the survey technicians use the wide beam sonar equipment to survey the bottom prior to deployment. Their goal is to identify a smooth path for the net to follow. The fish collected in the net are sorted and studied, based on selected criteria, once on board. A  specially designed transport system moves the fish from the net to the sorting and data collection stations inside the wet lab. I’m very excited to see how it actually works during my upcoming shift.

The big net.

The big net.

Work is already underway when our night crew checks in. The ship runs 24/7  and the nets have been down  and trawling since 7pm. Fish sorting and data collection  are  already underway.  I don my foul  weather gear which  looks  like a set of waders used for British fly fishing.  There is also a top jacket  but the weather is pleasant  tonight and the layer is not needed. I just need to sport some gloves and get to work. I’m involved with processing  two trawls of fish right away. I’m assigned to work with an experienced member of the science team, Jakub. We will be collecting information on the species of fish caught on each trawl.  Jakub carries out the role as cutter, collecting the physical  information or fish parts needed by the scientists. My role is recorder and  I enter data about the particular fish  being evaluated  as well package up  and  store the parts of the fish  being retained  for future study.

Ship equipment

Ship equipment

Data collection on each fish harvest is a very detailed. Fish are sorted by species as they come down the moving sorting line where they arrive after coming up the conveyer belt system from the “dump”  tank, so  named  because that is where the full nets deposit their  bounty. Everybody on the line sorts fish. Big fish get  pulled off  first  by the experienced scientists at  the start  of  belt  and then volunteers such as I pull off the smaller fish. Each  fish  is placed  into  a bucket by type of fish. There are three types of buckets and each bucket has a  bar code  tag. The  big laundry  looking  baskets  hold  the  big  fish,  five  gallon  paint buckets hold  the smaller fish, and  one gallon  buckets (placed  above the sorting line) hold  the unexpected  or small species. On  each  run  there is generally one fish  that is not sorted  and  goes all the way to the end untouched and unceremoniously ends up in the catch-‐all container at the  end of the  line. The watch leader weighs the buckets and then links the bar code on the bucket to the type of fish in it. From there  the  buckets are  ready for data  collection.

Clark Log 1d

The sorting line

After sorting the fish, individual data collection begins “by the bucket” where simultaneously at three different stations the sizing, weighing, and computer requested activities  occur. By  random sample certain work  is  performed on that fish. It  gets weighed and usually opened up to retrieve something from inside the fish. Today, I’ve observed several types of  data collection. Frequently requested are removal of  the otolith, two small bones in the head that  are used to help determine the age of  the fish. For bigger fish with vertebra,  such  as  the  goose  fish,  there  are periodic  requests  to  remove a  part  of  the backbone and  ship  it off for testing. Determining sex is recorded  for many computer tagged  fish  and  several are checked stomach contents.

Of the tools used to record data from the fish, the magic magnetized measuring system is the neatest. It’s  rapid  fire  data  collecting  at  its  finest.  The  fish  goes  flat  on  the measuring  board;  head  at  the  zero point, and  then a quick touch  with  a magnetized block at the end  of the fish  records the length  and  weight. Sadly, it marks the end of tall tales about the big  one that got  away and keeps getting bigger as the story is retold. The length of  the specimen is accurately recorded for  posterity in an instant.

 

clark 1e

Personal Log

Flying into Providence  over the  end of Long Island and the  New England coast line  is breath taking. A jagged,  sandy  coast  line  dotted  with  summer  homes  just  beyond  the  sand dunes. To line  up  for  final  approach we  fly right over Newport where  the  Henry B. Bigelow is berthed at the  Navy base  there. However, I  am  not  able  to  spot  the  NOAA  fisheries  vessel that  will be my home for the next two weeks from the air.Clark Log 4b

I arrive a day prior  to sailing so I have half a day to see the sites of Newport, Rhode Island  and  I know exactly where  I’m headed – the Tennis Hall of  Fame. My father was a first class tennis player who invested  many  hours  attempting  to  teach  his  son  the  game.  Despite  the  passion in  our  home  for  the great sport we  never made  it to the  Tennis Hall of Fame in Newport. Today I fulfilled that bucket  list  goal. I still remember being  court side  as a  young boy at The  Philadelphia  Indoor Championship watching the likes of  Charlie Pasarell, Arthur  Ashe, and Pancho Gonzales playing  on the canvas tennis court that was stretched out over the basketball arena. Also  in  the museum, to  my surprise, was a picture of the grass court lawn of the  Germantown Cricket Club from its days as a USTA championship venue. I  grew up playing on  those  grass tennis courts as my father  belonged to that  club. After seeing that picture, I left the museum knowing my father  got  as much out  of  the visit  as I did.

David Riddle, July 25, 2006

NOAA Teacher at Sea
David Riddle
Onboard NOAA Ship Albatross IV
July 13 – 28, 2006

Mission: Sea scallop survey
Geographical Area: New England
Date: July 25, 2006

Science and Technology Log 

Science-wise, catches of scallops have been variable. Sometimes we’ve hauled in huge numbers; other times almost none.  We’re still sorting and counting and measuring fish from every catch, and as we move back northward, a little east of our starting point now, the fish species have begun to change.  We’ve even caught a few lobsters.

I’ve been trained to do several different jobs so far.  I’ve monitored the computer station while collecting the CTD data, determining salinity by lowering the device over the side that measures conductivity, temperature, and density within 5-10 meters of the bottom.  I’ve also helped download the data from the inclinometer, which results in a graph showing the angle of the dredge relative to the bottom during the tow.

I’ve learned the procedures for measuring and collecting additional data on little skates. They’re the fish that look like stingrays.  We measure, length, width, weight, and determine degree of sexual maturity.

Now I’m doing the starfish count, every third tow.  My job is to collect a random bucket full of the by-catch (the leftovers) after everything else countable has been removed, then sort, count, and weigh the starfish according to species.  Sometimes the whole catch is mostly starfish, so there’s plenty to keep me busy.

Sightings:  This afternoon I saw the dorsal fins of two ocean sunfish (Mola mola). I would have assumed they were sharks, since all that was visible was the fin, but the fishermen said you could tell by the shape of the fin and the way it moved through the water. The Peterson Guide to Atlantic Coast Fishes says they’re among the largest of the marine bony fishes.  (Whale sharks and basking sharks are larger, but sharks have cartilage instead of bony skeletons.) Sunfishes can be as large as 3 meters long and 3.3 meters tall, and they may weigh over two tons.

Personal Log 

Several days have passed since my last log entry.  I’ve been making some hand-written notes, but they’re mostly about our encounter with the fringes of Tropical Storm Beryl and my re-encounter with seasickness.  Everyone has been very understanding, and I’ve appreciated it. I’m feeling back to normal now.

David Riddle, July 17, 2006

NOAA Teacher at Sea
David Riddle
Onboard NOAA Ship Albatross IV
July 13 – 28, 2006

Mission: Sea scallop survey
Geographical Area: New England
Date: July 17, 2006

A seahorse that came up with the dredge

A seahorse that came up with the dredge

Science and Technology Log

It’s almost halfway through my watch now, and I have a little down time.  The day started with several stations that were close together, which kept us busy. Now the sampling stations are farther apart, and I’ve had time to work on some photographs of shells.

Our catches turn up lots of interesting creatures.  Some I recognize from my college invertebrate zoology course (oh, so many years ago!)  Others I’ve only seen pictures of.  There are occasional sea squirts, bulbous little creatures that squirt a stream of water when squeezed.  We find an occasional “sea mouse”, a polychaete worm, bristly-looking on the backside and shaped sort of like, well, a mouse.  Underneath you can see the segments.  Hermit crabs are abundant; many of them simply abandon their shells when they’re dumped onto the deck. This is probably not a good survival strategy, since they get dumped back overboard only to drift slowly to the bottom without any protection at all. Oh well, most everything in the ocean is somebody else’s lunch anyway. We find other species of crabs as well.  The larger ones are set aside and are sitting in a bucket which has seawater continually being pumped through it to keep them alive. I wonder whose lunch they’ll turn out to be?  We’ve caught a few small dogfish sharks, under two feet in length.  I’m told on some of the ground fish surveys they catch tons of them (literally). Considerably smaller were two needlefish, about 6 inches long and ••• inch wide.

I find myself wondering things like, “What must it be like to be that small, living in this huge ocean?”  Them I’m reminded of our little planet’s location in our galaxy, and the Milky Way’s tiny place in a universe with millions of other galaxies.  OK. Humility is a good thing.

Then too, I’m reminded that small is not always equivalent to unimportant.  Do you like breathing?  Well, consider that roughly 3 out of every 4 breaths you take come to you courtesy of the phytoplankton in the oceans of the world.  There they are, soaking up the sunshine and the carbon dioxide and pumping out huge quantities of oxygen every single daylight hour. They’re microscopic, but their importance in the overall scheme of life on this planet is enormous. I suppose it would be helpful to remember, while we’re busy saving the whales, we should take care of the little guys too.  But then, how would “Save the Plankton” look on a T-shirt or bumper sticker?

On a more practical note, we’re due to reach our turn-around point in 5 more stations.  We will have reached our southernmost latitude, which will put us due east of the North Carolina-Virginia border.  Then we’ll begin making our way back up the coast, stopping at the stations in shallower waters.  I flew to Boston from my home in western NC to take part in this Teacher at Sea experience.  So this is the closest to home I’ll be for the next 12 days.

I keep thinking I’m done with my log for the day and then something else happens.  At station 99 we caught a seahorse!  The depth was 24 fathoms, and I seriously doubt it was on the bottom, but when the dredge came up, there it was on deck.

Sightings: The osprey was still here this morning, but as of late afternoon it was gone.

David Riddle, July 15, 2006

NOAA Teacher at Sea
David Riddle
Onboard NOAA Ship Albatross IV
July 13 – 28, 2006

Mission: Sea scallop survey
Geographical Area: New England
Date: July 15, 2006

Not all scallop shells are pretty, but these were outstanding!

Not all scallop shells are pretty, but these were outstanding!

Science and Technology Log

We’re in an area now with an abundance of scallops, and most of them are large. When the catch is emptied from the net onto the deck, it takes 6 to 8 people working steadily, on hands and knees, to separate the scallops from the rest of the catch.  We’ve gotten up to 16 bushels so far in one 15 minute tow, using an 8 foot dredge. If the next station is nearby, we just have time to get the measurements completed and clean up before it’s time to start again.  But it’s not always that busy.  If the next station is several miles away, we get time to sit for a few minutes and relax.

During one of my relaxing moments, I photographed some of the fish that were caught along with scallops and starfish and everything else.  We catch small skates, which are shaped like stingrays, with a broad, diamond-shaped body and an elongated narrow tail.  We also catch goosefish, sometimes called angler fish, with mouths agape, showing rows of needle-like teeth. We catch flounder too.  All of these are bottom-dwellers, probably too slow to swim away from the net, or else when they feel the net coming they just hunker down in their standard defensive posture, which unfortunately is no help when the thing that’s coming after you weighs nearly a ton and is being dragged at between 3 and 4 knots.

Scallop eyes are visible as rows of dots inside the shell margin.

Scallop eyes are visible as rows of dots inside the shell margin.

As we have moved farther south today, I’ve begun noticing scallops with different patterns on their shells. Some look like sunbursts; some are striped.  I’ve collected a few to take home.  I want to get some photos of live scallops also. When they open their shells you can see the row of eyes along the margin of the gills.  Scallops can swim, which is unusual for a bivalve. The powerful muscle (the part we eat) which holds the shells together, opens and closes the shell in rapid succession. This draws water in between the shells and forces it out the back near the hinge in little concentrated jets. Scallops swim by jet propulsion!  Prior to sailing, we saw a brief film clip showing a group of scallops swimming, in a jerky, erratic motion.

Sightings: An osprey landed on the mast about 11:00am.  The fishermen say we’re about 20 miles offshore, so I imagine he/she is pretty tired.  Maybe it will hang around for a while. Later…It’s 9:00 pm now and the osprey is still perched on the mast.  I expect it will still be here in the morning.  Another small songbird showed up later in the afternoon. I didn’t see it, so I don’t know the species.  The fishermen offered it some fresh water, but it didn’t drink.  They say it probably won’t survive this far out, if it won’t drink. Even so, some birds seem quite at home this far out.

Personal Log 

Midnight notes: We did 18 stations in 12 hours; several were back to back.  Do you think I’m ready for a shower and bed?  Does a scallop live in the ocean?

David Riddle, July 14, 2006

NOAA Teacher at Sea
David Riddle
Onboard NOAA Ship Albatross IV
July 13 – 28, 2006

Mission: Sea scallop survey
Geographical Area: New England
Date: July 14, 2006

NOAA Teacher at Sea David Riddle holds a medium-size goosefish.

NOAA Teacher at Sea David Riddle holds a medium-size goosefish.

Science and Technology Log

My first shift involved getting accustomed to the job. It seems like an incredible amount of detailed instructions and procedures at first, but over time, the routine emerges.  The dredge goes out and tows for 15 minutes.  Then it comes back in and the inclinometer data is downloaded. The inclinometer is attached to the frame of the dredge and measures the angle of the dredge in relation to the bottom. This data allows verification that the dredge was towing at the proper angle. Then the dredge frame is moved, the net is dumped, and I take a photo of the catch with Amanda holding a sign telling which tow and which location. Then we dig through the pile, on hands and knees, sorting out scallops, clappers (recently dead scallops with the shell halves still hinged), all fish species, and every third station we save and count crabs and do a random sample count to estimate the number of starfish.  Starfish are scallop predators. Also, at every third station before we do a tow the CTD measuring device is lowered over the side. CTD stands for Conductivity, Temperature, and Density, and these numbers are used to calculate salinity. The temperature data from the CTD helps establish the conditions which scallops may or may not prefer.  CTD data is not only related to the Scallop Survey, but NOAA ships regularly collect data that is used by scientists working on other projects.

The location of each tow is selected randomly by computer within various strata which vary by depth. There’s a navigational chart posted on the wall that shows the precise location of all the areas being sampled.  Some samples are taken from areas that are closed to commercial fishing, for resource management purposes.  Some areas may be closed indefinitely while others are rotated or allow fishing on a “restricted access” program.

Sightings: In the afternoon, whales were blowing on the horizon, too far away to see any more than that.  I counted five spouts together in one place, then two more a little farther behind. Hammerhead shark, reported from the bridge.  I saw the fin. Dolphins alongside in the dark: they look silver-gray, in the reflection of the ship’s lights.

Personal Log 

I awoke feeling fine, and went around taking some video of fishing operations.  But I felt uneasy from late morning on.  Twelve hours is a long time to work when feeling queasy, but interestingly, when I was focused on a specific task, even something as simple as shucking scallops and talking, I was less aware of my discomfort.  I was tired toward the end of my 12-hour shift, tired of feeling queasy, tired of the half-asleep feeling that comes from the anti-nausea medication.  A shower and bed were most welcome!