Elizabeth Nyman: First Day at Sea, May 28, 2013

NOAA Teacher at Sea
Elizabeth Nyman
Aboard NOAA Ship Pisces
May 28 – June 7, 2013

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: May 28, 2013

Weather Data:
Surface Water Temperature: 23.84 degrees Celsius
Air Temperature: 23.90 degrees Celsius
Barometric Pressure: 1017.8 mb

Science and Technology Log

So I’ve known for about two months or so that I was going to be taking part in one leg of an ongoing reef fishery survey. I even had an idea that it involved surveying fish that lived on reefs. But after our first full day at sea, and many hours of helping take part in the scientific work, I now begin to understand how exactly one surveys reef fish.

There’s a couple of different things that the scientific crew is doing to observe and understand the reef fish population. First, there is an ongoing video recording process throughout the day, from just after sunrise to just before sunset. For this, the ship and scientific crew lower a large, 600 pound camera array off of the starboard side of the ship. The cameras will go and sit on the sea floor and record all the fish that pass in front of it, for a total recording time of 25 minutes. After this time has passed, plus a little extra time, the cameras are pulled back up, the recordings are downloaded, we move to a different spot and the process begins again.

Underwater Camera Array

Hauling the camera array back on deck. I said it was big, didn’t I?

The video is reviewed the next day. Since this is our first day at sea, I didn’t get much of a chance to see any reef fishery footage, though I’m told that’s on the agenda for tomorrow. What I spent most of my time doing was helping out with another part of the survey process, something called the bandit reels. They’re used for good old-fashioned hook and line fishing.

Bandit Reel

It looks like a nice day to go fishing, huh?

There are three bandit reels on the Pisces, and each one can hold 10 fishing hooks. Each reel has different sized hooks, and the hook sizes are changed every drop. The line has a weight at the bottom to bring the hooks down to the sea floor, which have been baited with mackerel bits. After five minutes, the line is reeled back in, and you have fish…or you don’t.

My first drop, which had the biggest hooks, had a whole bunch of nothing. As did everyone else’s, though, so it wasn’t a testament to my poor fishing skills.

The second drop, however, was luckier.

Eel on hook.

I caught a moray eel!

A spotted moray eel! I was excited, anyway. But morays aren’t one of the fish that we’re looking for out here, so it wasn’t a particularly useful catch.

Our third drop was the most successful. Our bandit reel hauled in seven fish, one of whom got away (the biggest one, of course, one the size of a killer whale…yeah, just kidding!). The other six were brought into the wet lab, where they joined the other fish caught on that drop and would be measured and dissected.

Fish on a measuring board.

We caught a big one!

The fish are measured three different ways. The first, by total length, examines exactly that, the total length of the fish from the nose all the way to the tip of the tail. The second measure goes from the nose to the fork in the tail, so it’s a shorter distance. The third, standard length, goes from the nose to just before the tail fin, where the fish’s vertebrae end, and is the shortest of all. They’re also weighed at this time as well.

After that, we start cutting into the fish. Two things are of interest here: the ear bone and the sex organs. The ear bones are removed from each fish, because they can be tested to determine the age of the fish. The sex organs will reveal gender, obviously, but also are examined to see how fertile each specimen is. We don’t do this kind of analysis on the ship, however. The ear bones and sex organs are sent back to the NOAA lab in Panama City, Florida, where they will conduct all those tests.

Personal Log

The best part of my first day at sea was definitely the ship safety drills.

Wait, what?

No, seriously.  The absolute highlight of this one was my chance to try on what’s known as the Gumby suit. The Gumby suit is a nickname for a immersion survival suit – if we have to abandon ship and float around in the water, the suit will protect us from the elements. Now, we’re down here in the Gulf of Mexico, so that seems a little crazy, but think about how you’d feel if you were stuck in the water for hours on end. In really cold waters, that suit may be the difference between life and death.

The drills are important, and they’re mandated for a reason. In an emergency, all of this stuff can save lives.

Why do I like the drills so much? We’re required to have safety drills by law, and so as someone who studies and teaches international law, I always enjoy taking part in these things. It’s a chance to see the stuff in action that I talk about in class. And that’s kind of what this program is all about – the chance to experience things firsthand as opposed to just having to read about them.

Gumby suit

I guess you kind of have to take my word for it, but that’s me in there.

Did You Know?

You’re supposed to be able to put on a Gumby suit in under a minute. They wouldn’t do much good if they took too long to put on.

Lesley Urasky: Fish, fish, where are all the fish? June 18, 2012

 NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012


Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 18, 2012

Latitude: 17.6568
Longitude: -64.9281

Weather Data from the Bridge:

Air Temperature: 28.5°C (83.3°F)
Wind Speed:  17.1 knots (19.7 mph), Beaufort scale: 5
Wind Direction: from SE
Relative Humidity: 75%
Barometric Pressure:   1,014.80 mb
Surface Water Temperature:28.97 °C (84.1°F)

Science and Technology Log

Alright, so I’ve promised to talk about the fish.  Throughout the science portions of the cruise, the scientists have not been catching the anticipated quantities of fish.  There are several lines of thought as to why: maybe the region has experienced overfishing; possibly the sampling sites are too shallow and deeper water fish may be more likely to bite; or they might not like the bait (North Atlantic mackerel) since it is not an endemic species/prey they would normally eat.

So far, the night shift has caught more fish than the day shift that I’m on.  Today, we have caught five and a half fish. The half fish was exactly that – we retrieved only the head and it looked like the rest of the body had been consumed by a barracuda!  These fish were in the grouper family and the snapper family.

Coney (Cephalopholis fulvus)

Blackfin snapper (Lutjanus buccanella). This little guy was wily enough to sneak into the camera array and steal some squid out of the bait bag! The contents of his stomach – cut up squid – can be seen to the left between the forceps and his head.

Once the fish have been caught, there are several measurements that must be made.  To begin, the fish is weighed to the nearest thousandth (three decimal places) of a kilogram. In order to make sure the weight of the fish is accurate, the scale must be periodically calibrated.

Then there are several length measurements that are made: standard length (SL), total length (TL) and depending on the type of fish, fork length (FL).  To make these measurements, the fish is laid so that it facing toward the left and placed on a fish board.  The board is simply a long plank with a tape measure running down the center.  It insures that the fish is laid out flat and allows for consistent measurement.

Standard length does not measure the caudal fin, or tail.  It is measured from the tip of the fish’s head and stops at the end of the last vertebra; in other words, if the fish is laying on its side, and you were to lift the tail up slightly, a crease will form at the base of the backbone.  This is where the standard length measurement would end.  Total length is just as it sounds – it is a measurement of the entire length (straight line)  of the fish.  Fork length is only measured if the type of fish caught has a forked tail.  If it does, the measurement begins at the fish’s snout and ends at the v-notch in the tail.

How to measure the three types of lengths: standard, fork, and total. (Source: Australian Government: Department of Sustainability, Environment, Water, Population, and Communities)

Red hind (Epinephelus guttatus) on the fish board being measured for standard length. Ariane’s thumb is on the crease marking the end of its backbone.

Once the physical measurements are made, the otoliths must be extracted and the fish sexed.  You’re probably anxious to learn if you selected the right answer on the previous post’s poll – “What do you think an otolith is?”  An otolith can be thought of as a fish’s “ear bone”.  It is actually a structure composed of calcium carbonate and located within the inner ear.  All vertebrates (organisms with backbones) have similar structures.  They function as gravity, balance, movement, and directional indicators.  Their presence helps a fish sense changes in horizontal motion and acceleration.

In order to extract the otoliths, the fish must be killed.  Once the fish has been killed, the brain case is exposed and peeled back.  The otoliths are in little slits located in the underside of the brain.  It takes a delicate touch to remove them with a pair of forceps (tweezers) because they can easily break or slip beyond the “point of no return” (drop into the brain cavity where they cannot be extracted).

Otoliths are important scientifically because they can tell many important things about a fish’s life.  Their age and growth throughout the first year of life can be determined.  Otoliths record this information just like tree ring record summer/winter cycles. More complex measurements can be used to determine the date of hatch, once there are a collected series of measurements, spawning times can be calculated.

A cross-section of an otolith under a microscope. The rings are used to determine age and other life events. Source: Otolith Research Laboratory, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.

Because they are composed of calcium carbonate (CaCO3), the oxygen component of the chemical compound can be used to measure stable oxygen isotopes; this is useful for reconstructing temperatures of the waters the fish has lived in.  Scientists are also able to look at other trace elements and isotopes to determine various environmental factors.

Extracted otoliths. Often they are around 1 cm long, although the larger the fish, the slightly larger the otolith.

The final step we take in measurement/data collection is determining the sex and maturity of the fish.  To do this, the fish is slit open just as if you were going to clean the fish to filet and eat it.  The air bladder must be deflated if it isn’t already and the intestines moved out of the way.  Then we begin to search for the gonads (ovaries and testes).  Once the gonads are found, we know if it is female or male and the next step is to determine its stage or maturity.  This is quite a process, especially since groupers can be hermaphroditic.  The maturity can be classified with a series of codes:

  • U = undetermined
  •  1  = immature virgin (gonads are barely visible)
  •  2  = resting (empty gonads – in between reproductive events)
  •  3 = enlarging/developing (eggs/sperm are beginning to be produced)
  •  4 = running ripe (gonads are full of eggs/sperm and are ready to spawn)
  •  5 = spent (spawning has already occurred)

Ovaries of a coney (grouper family). These are the pair of flesh colored tubular structures running down the center of the fish.

Personal Log

Today is my birthday, and I can’t think of a better place to spend it!  What a treat to be having such an adventure in the Caribbean!  This morning, we were on our first bandit reel survey of the day, and the captain came on over the radio system, announced my birthday and sang Happy Birthday to me.  Unbeknownst to me, my husband, Dave, had emailed the CO of the Pisces asking him to wish me a happy birthday.

We’ve had a very successful day (compared to the past two days) and have caught many more fish – 5 1/2 to be exact.  The most exciting part was that I caught two fish on my bandit reel!  They were a red hind and blackfin snapper (see the photos above).  What a great birthday present!

Father’s Day surf and turf dinner

My birthday fish! The blackfin snapper is on the left and the red hind on the right.

I even got a birthday kiss from the red hind!

Last night (6/17) for Father’s Day, we had an amazing dinner: filet mignon, lobster, asparagus, sweet plantains, and sweet potato pie for dessert!  Since it was my birthday the following day (6/18), and one of the scientists doesn’t like lobster, I had two tails!  What a treat!

Our best catch of the day came on the last bandit reel cast.  Joey Salisbury (one of the scientists) caught 5 fish: 4 blackfin snapper and 1 almaco jack; while Ariane Frappier (another scientist) caught 3 – 2 blackfin and 1 almaco jack.  This happened right before dinner, so we developed a pretty good assembly line system to work them up in time to eat.

Dinner was a nice Chinese meal, but between the ship beginning to travel to the South coast of St. Thomas and working on the computer, I began to feel a touch seasick (not the best feeling after a large meal!).  I took a couple of meclazine (motion sickness medication) and still felt unwell (most likely because you’re supposed to take it before the motion begins). My roommate, Kelly Schill, the Operations Officer, made me go to bed (I’m in the top bunk – yikes!), gave me a plastic bag (just in case!), and some saltine crackers. After 10 hours of sleep, I felt much, much better!

I had some time in between running bandit reels, baiting the hooks, and entering data into the computers,to interview a member of the science team that joined us at the  last-minute from St. Croix.  Roy Pemberton, Jr. is the Director of Fish and Wildlife for the Department of Planning and Natural Resources of the U.S. Virgin Islands. The following is a snippet of our conversation:

LU: What are your job duties as the Director of Fish and Wildlife?

RP: I manage fisheries/wildlife resources and try to educate the population on how to better manage these resources to preserve them for future generations of the U.S. Virgin Islands.

LU: When did you first become interested in oceanography?

RP: I’m not really an oceanographer, but more of a marine scientist and wildlife biologist.  I got interested in this around 5-6 years old when I learned to swim and then snorkel for the first time.  I really enjoyed observing the marine environment and my interest prompted me to want to see and learn more about it.

LU: It’s such a broad field, how did you narrow your focus down to what you’re currently doing?

RP: I took a marine science class in high school and I enjoyed it tremendously.  It made me seek it out as a career by pursuing a degree in Marine Science at Hampton University.

LU:  If you were to go into another area of ocean research, what would it be?

RP: Oceanography – Marine Spatial Planning

Roy Pemberton holding a recently caught coney.

LU: What is the biggest challenge in your job?

RP: It is a challenge to manage fisheries and wildlife resources with respect to the socioeconomic and cultural nuances of the people.

LU: What do you think is the biggest issue of contention in your field, and how do you imagine it will resolve?

RP: Fisheries and coral reef management.  We need to have enough time to see if the federal management efforts work to ensure healthier ecosystems for future generations.

LU: What are some effects of climate change that you’ve witnessed in the reef systems of the U.S. Virgin Islands?

RP: Temperatures have become warmer and the prevalence of disease among corals has increased.

LU: In what areas of Marine Science do you foresee a lot of a career paths and job opportunities?

RP: Fisheries management, ecosystem management, coral reef diseases, and the study of coral reef restoration.

LU: Is there an area of Marine Science that you think is currently being overlooked, and why?

RP: Marine Science management that takes into account cultural and economic issues.

LU: What are some ideas a layperson could take from your work?

RP: One tries to balance resource protection and management with the cultural and heritage needs of the population in the territory of the U.S. Virgin Islands.

LU: If a high school student wanted to go into the fish/wildlife division of planning and natural resources, what kinds of courses would you recommend they take?

RP: Biology, Marine Science, History, Botany, and Math

LU: Do you recommend students interested in your field pursue original research as high school students or undergraduate students?  If so, what kind?

RP: I would suggest they study a variety of life sciences so they can see what they want to pursue.  Then they can do an internship in a particular life science they find interesting to determine if they would like to pursue it as a career.

Too many interesting people on the ship and so little time!  I’m going to interview scientists as we continue on to San Juan, Puerto Rico. Once they leave, I’m continuing on to Mayport, Florida with the ship.  During this time, I’ll explore other careers with NOAA.

Tara Treichel, April 25, 2008

NOAA Teacher at Sea
Tara Treichel
Onboard NOAA Ship Nancy Foster
April 15-27, 2008

Mission: Lionfish Survey
Geographical Area: Atlantic Ocean, off the coast of North Carolina
Date: April 25, 2008

The diver support boat NF-4 waits for the dive team to surface.

The diver support boat NF-4 waits for the dive team to surface.

Weather Data from the Bridge 
Visibility: 10 n.m.
Wind: 2 knots
Waves: 1 foot
Ocean swells: 2-3 feet
Sea surface temperature: 23.4
Air temperature: 21.5

Science and Technology Log 

Today the morning dive at Lobster Rocks went to 125 feet. The report was that it was an excellent dive, and the video showed this to be true. The visibility was excellent and the habitat looked rich. Among the Amberjacks, Grouper, Blue Angelfish, and Hogfish, were tons of Lionfish! They were everywhere, lurking around every ledge and rock. They look like princes of their domain, regal in their showy capes of red and white, brandishing lances to keep out intruders. Neither aggressive nor fearful, as they have few if any predators, they hover in place, guarding their territory from other lionfish.

NOAA Teacher at Sea, Tara Treichel, has just taken length and fin ray measurements from this large lionfish, and has removed gonads and a gill sample for lab analysis.

NOAA Teacher at Sea, Tara Treichel, has just taken length and fin ray measurements from this large lionfish, and has removed gonads and a gill sample for lab analysis.

The morning divers brought a small collection of creatures back for further study, including a sample of bryozoans (a form of attached invertebrates that looks a lot like algae), a large spiny lobster (carapace at least 5 inches in diameter), a handful of fish for the cryptic fish survey, and about a dozen Lionfish. I helped Wilson take basic measurements from the Lionfish, and dissected them to remove gonads and gill samples for DNA analysis. The fish ranged in size from 150 to 380 mm, from mouth to end of tail. Next, dorsal and anal fin rays are counted, to help determine species classification (lionfish are of Indo-Pacific origin, and are classed in two subspecies based on number of fin rays). On the fish sampled, dorsal fin rays varied between 10 and 11.5, but anal fin rays consistently numbered 7.5. After I had removed the gill section and gonads, I gave the fish to Brian, who opened up their stomachs to take a cursory look at what the fish had been eating. In one, he found a small spiral shell about the size of a shirt button. In another, the stomach was bulging full, and contained four small fish, whole but partially digested and terribly stinky. All in a day’s work of a scientist! After this initial information was collected, the fish were labeled in zip-lock bags and frozen for later study. 

The stomach of this small Lionfish contained four partially digested whole fish.

The stomach of this small Lionfish contained four partially digested whole fish.

Personal log 

Today I had the fortune—and the misfortune—of getting out in one of the small boats. I say fortune because the conditions were ideal: calm seas and sunny blue skies. It was a great day to be out on the water, and I expressed an interest in going for a swim. We were responsible for shuttling the safety diver to assist the dive team, and transporting the dive team back to the NANCY FOSTER. The misfortune occurred toward the end of the dive, as the safety diver was trying to reboard the boat. To make it easier for him to enter the boat, the skipper removed the side door of the craft, a routine task. Under normal circumstances, the bilge pumps purge any water that splashes into the boat, but on this day, for reasons unknown the bilge was already full of water, and the water that surged into the open door space quickly filled the stern of the boat. We tried to replace the door, but the water was spilling in too quickly, and the boat slowly overturned. So, I got my wish to swim faster than I’d expected! Fortunately, as I mentioned, it was a fine day for a swim. Minutes later, two rescue boats were deployed from the NANCY FOSTER, and shortly after we picked up the dive team and were safely onboard the mother ship again. The ship had quite a challenge getting the overturned boat back onboard and into its cradle, but with skilled use of the crane, the boat was recovered in little over an hour. It was the sort of adventure I had least expected when going out to sea. I was happy that no one got hurt, and impressed with the response of the NANCY FOSTER crew.