Julia West: Neuston! March 25, 2015

NOAA Teacher at Sea
Julia West
Aboard NOAA ship Gordon Gunter
March 17 – April 2, 2015

Mission: Winter Plankton Survey
Geographic area of cruise: Gulf of Mexico
Date: March 25, 2015

Weather Data from the Bridge

Time 0900; mostly sunny, clouds 25% altocumulus; wind 5 knots, 120° (ESE); air 21°C, water 21°C, wave height 1-2 ft.

Science and Technology Log

We continue to zigzag westward on our wild plankton hunt. When we are closer to shore, navigation is tricky, because we are constantly dodging oil platforms, so we can never quite do the straight lines that are drawn on the chart.

Plankton stations 3/25/15

Here’s what we have covered through this morning. We’re making good time!

One of our Oak Meadow math teachers, Jacquelyn O’Donohoe, was wondering about math applications in the work that we are doing. The list is long! But don’t let that deter you from science – no need to fear the math! In fact, Commanding Officer Donn Pratt told me that he was never good at math, but when it came to navigating a ship, it all became more visual and much more understandable. I think it’s cool to see math and physics being applied. So, just for fun, I’ll point out the many places where math is used here on the ship – it’s in just about every part of the operations.

Today’s topic is neuston. As soon as we get the bongo nets back on board, the cable gets switched over to the neuston net. This net is a huge pipe rectangle, 1 meter x 2 meters, with a large net extending to the cod end to collect the sample. The mesh of this net is 1mm, much larger than the 0.3mm mesh of the bongo nets. So we aren’t getting the tiniest things in the neuston net, but still pretty small stuff! We lower the net to the surface, using the winch, and let it drag there for ten minutes. The goal is to have the net half in the water, so we have a swept area of 0.5 x 2 meters, or 1 square meter. (See, there’s some math for you!) That’s the goal. Sometimes with big waves, none of the net is in the water, and then all of it is, but it averages out.

Deploying neuston net

Here I am helping to deploy the neuston net. Photo credit: Kim Johnson

Neuston net

Neuston net in the water. Photo credit: Madalyn Meaker

Then we hose the net off thoroughly to get what is stuck to the net into the cod end.

Neuston net cleaning

Andy is hosing off the neuston net.

As I mentioned before, neuston is the array of living organisms that live on or just below the surface. Some of it is not plankton, as you can also catch larger fish, but mostly, the sample overlaps with the larger plankton that we catch in the bongos. There tends to be more jellyfish in the neuston net, so we sometimes wear gloves. Pam got stung by a man o’ war on the first day while cleaning out the net!

 

neuston sample

Pam is sorting an interesting neuston sample. See her smile – she clearly loves plankton!

Collecting neuston

Madalyn funneling the neuston into a jar with ethanol

Sometimes we end up with Sargassum in our nets. Sargassum is a type of brown “macroalgae” (seaweed) that grows in large clumps and floats on the surface. Have you ever heard of the Sargasso Sea? It is a massive collection of Sargassum in the Atlantic Ocean, held in place by the North Atlantic Gyre.

Sargassum

Sargassum taken from a sample

Sargassum

Sargassum in the water

 

 

 

 

 

 

 

Sargassum often collects in our nets. Sometimes we get gallons of Sargassum, and we have to carefully hose the organisms off of it, and throw the weeds back. We get the most interesting variety of life in the Sargassum! It supports entire communities of life that wouldn’t be there without it. If you want to know a little more about Sargassum communities, check out this website.

Here are a few examples of some of the photographable organisms we have collected in the neuston net. I’m working on getting micrographs of the really cool critters that are too small to see well with the naked eye, but they are amazing – stay tuned. All of the fish, except the flying fish, are very young; the adults will be much, much larger. (If you click on one of these, you will see a nice slide show and the full caption.)

Lastly, here is a really cool neuston sample we got – whale food!

copepods

This sample looks like it is almost entirely made up of copepods; this species is a beautiful blue color.

Personal Log

Now let’s turn to the other life form on the ship – the people. There are a total of 26 people on this cruise. Everyone is really great; it’s a community of its own. First, let me introduce the NOAA Corps crew who run the ship.

The NOAA Corps, or NOAA Commissioned Officer Corps, is one of the seven uniformed services of the United States (can you name the others?). It seems that many have never heard of the NOAA Corps, so it’s worth telling you a little bit about them. Officers are trained to take leadership positions in the operation of ships and aircraft, conducting research missions such as this one and much, much more! NOAA Corps has all the career benefits of the U.S. military, without active combat. Our officers all have a degree in some kind of science, often marine science or fisheries biology.

The crew members generally keep 4 hour watches, twice a day. I really enjoy going up to the bridge to hang out with them. It’s a whole different world up there, and they have been gracious enough to explain to me (as best as I can understand it) how they navigate the ship. Conceptually, I get it pretty well, but even if I was allowed to, I wouldn’t dare touch one of the buttons and dials they have up there!

Our XO (Executive Officer) on the Gunter is LCDR Colin Little. Colin has been with NOAA for eleven years now, and his previous assignments include Sea Duty aboard Oregon II and Oscar Elton Sette, and shore assignments in Annapolis, MD and Newport, OR. His background is in fish morphology and evolution.  His wife and two sons are currently living in Chicago.

ENS Kristin Johns has been on the Gunter for almost a year. She joined NOAA after getting a biology degree at Rutgers. She is currently being trained to be the next Navigation Officer. Kristin is the safety officer, as well as the MPIC (Medical Person in Charge). Kristin is the one who suggested I use the word “thalassophilia” as the word of the day – something she clearly suffers from!

Our Operations Officer (OPS) is LT Marc Weekley. Marc is in charge of organizing the logistics, and coordinating between the scientists and the crew. He’s been with NOAA for ten years (on the Gunter for two years), and has had some interesting land-based as well as offshore posts, including a year at the South Pole Station (yes, Antarctica) doing clean air and ozone monitoring.

ENS Melissa Mathes is newest officer with NOAA, but spent 6 years in the Army Reserves in college, and then 6 years of active duty with the Navy. Melissa loves archery and motorcycles, and she has been rumored to occasionally dance while on watch.

Melissa and Marc

ENA Melissa Mathes and LT Marc Weekley

ENS (which stands for Ensign, by the way) David Wang, originally from New York City, is our Navigation Officer (NAV). He’s been with NOAA for two years. His job, as he puts it, is “getting us where we gotta go, safely.” He is the one who charts our course, or oversees the other Junior Officers as they do it. Dave used to be a commercial fisherman, and when he’s not on duty, those are his fishing lines extending out from the back deck. He’s also an avid cyclist and ultimate Frisbee player.

ENS Peter Gleichauf has been on the Gunter since November, but finished his training over a year ago. He is also an aviator, musician, and avid outdoors person. In fact, for all of the officers, health, fitness, and active lifestyle is a priority. Pete is in charge of environmental compliance on the ship.

Dave and Pete

ENS Dave Wang and ENS Pete Gleichauf

King mackerel

Lead fisherman Jorge Barbosa and a king mackerel caught today on Dave’s line! It took 2 deck crew men to pull it in!

 

Term of the Day: USS Cole – you can look this one up. Next blog post I will explain what in the world it has to do with a plankton research cruise. I promise it will all make sense!

 

Emilisa Saunders: Finding the rhythm aboard the Oregon II, May18, 2013

NOAA Teacher at Sea

Emilisa Saunders

Aboard NOAA ship Oregon II

May 14, 2013 – May 30 2013

Mission: SEAMAP Spring Plankton Survey

Geographical Area of Cruise:  Gulf of Mexico

Date: May 18, 2013

Weather Data: Wind Speed: 13.94 knots; Surface water temperature: 25.4;  Air temperature: 26.4; Relative humidity: 87%; Barometric pressure: 1,015.33 mb

IMG_1991

Science and Technology Log:

For the scientists on board the Oregon II, each shift follows roughly the same routine.   When we start our shift, we check in at the dry lab to see how much time we have until the next sampling station.  These stations are points on the map of the Gulf of Mexico; they were chosen to provide the best coverage of the Gulf waters.  Our ETA, or estimated time of arrival, is determined by how fast the ship is moving, which is influenced by wind and currents, which you can see in the map below.  A monitor mounted in the dry lab shows us a feed of the route mapping system that is used by the crew on the Bridge to drive the ship.  This system allows us to see where we are, where we are headed, and what our ETA is for the next station.  We also get warnings from the Bridge at one hour, at thirty minutes, and at ten minutes before arrival.

Gulf Currents

The currents in the Gulf of Mexico, plus our planned route.  Image courtesy of NOAA.

At the 10-minute mark, we put on our protective gear – more on that later in this post – and bring the cod ends up to the bow of the boat, where we attach them to the ends of the appropriate nets.  Then, we drop the Bongo nets, the regular Neuston net, the Sub-surface Neuston net, and the CTD into the water, in that order.  These all go down one at a time, and each one is pulled out and the samples collected before the next net goes in.

Neuston

Towing the Neuston net on the night shift

The idea of dropping a net into the water probably sounds pretty simple, but it is actually a multiple-step process that requires excellent teamwork and communication amongst several of the ship’s teams.  The scientists ready the nets by attaching cod ends and making note of the data that tracks the flow of water through the net.  Because the nets are large and heavy, and because of the strong pressure of the water flowing through the nets, they are lifted into the water using winches that are operated by the ship’s crew.  The crew members operate the machinery, and guide the nets over the side of the ship.  While this is happening, the crew members communicate by radio with the Bridge, providing them with information about the angle of the cable that is attached to the net, so that the Bridge can maintain the a speed that will keep the net at the correct angle. At the same time, a scientist in the dry lab monitors how deep the net is and communicates with the deck crew about when to raise and lower the nets.  This communication takes place mostly over walkie-talkies, which means that clear and precise instructions and feedback are very important.

Operating the winches

Crewmember Reggie operating the winch, while crewmember Chris measures the angle of the cable

When each net is pulled back out of the water after roughly 5-10 minutes, we use a hose to spray any little creatures who might be clinging to the net, down into the cod end.  At stations where we run the MOCNESS, we head to the stern of the ship, where the huge MOCNESS unit rests on a frame.  Lowering the MOCNESS takes a strong team effort, since it is so large.  After we retrieve each net, we detach the cod ends and bring them to the stern, where a station is set up for us to preserve the specimens.  I’ll go into more detail about the process of preserving plankton samples in a later post.

Hosing down the nets

Alonzo, hosing down the Bongo nets before bringing them aboard.

We’ve had a couple of nights of collecting now, and so far it has been completely fascinating.  I’m in awe of the variety of organisms that we’ve come across.  The scientists on my shift, Glenn and Alonzo, are super knowledgeable and have been very helpful in explaining to me what we are finding in the nets.  Although this is a Bluefin Tuna study, we collect and preserve any plankton that ends up in the nets, which can include copepods, myctophids, jellies, filefish larvae and eel larvae, to name a few.  When we get the samples back to shore, they will be sent to a lab in Poland, where the species will be sorted and counted; then, the tuna larvae will be sent back to labs in Mississippi or Florida for further study and sometimes genetic testing.

My favorite creature find so far has been the pyrosome.  While a pyrosome looks like a single, strange creature, it is actually a colony of tiny creatures called zooids that live together in a tube-shaped structure called a tunic.  The tunic feels similar to cartilage, like the upper part of your ear.  Pyrosomes are filter feeders, which means they draw in water from one opening, eat the phytoplankton that passes through, and push out the clean water from the other end.  So far on the night shift, we’ve found two pyrosomes about four inches in length and one that was about a foot long; the day crew found one that filled two five-gallon buckets!

Me holding a pyrosome.  So neat!

Me holding a pyrosome. So neat!

Alonzo and the pyrosome

Alonzo holding the pyrosome

Challenge Yourself:

Hello, Nature Exchange Traders!  Pick one of the of the zooplankton listed in bold above, and research some facts about it: Where does it live?  What does it eat?  What eats it?  Write down what you find out and bring it in to the Nature Exchange for bonus points.  Be sure to tell them Emmi sent you!

Gumby Suit

In the Gumby suit, practicing the Abandon Ship drill. Photo by Glenn Zapfe

Personal Log:

Safety is the top priority on board the Oregon II.  We wouldn’t be able to accomplish any of our scientific goals if people got hurt and equipment got damaged.  We started our first day at sea with three safety drills: the Man Overboard drill, the Abandon Ship drill and the Escape Hatch drill.  For Man Overboard, everyone on board gathered, or mustered, at specific locations; for the Science team, our location was at the stern, or back of the ship.  Aft is another word for the back.  From there, we all scanned the water for the imaginary person while members of the crew lowered a rescue boat into the water and circled the Oregon II to practice the rescue.

For the Abandon Ship drill, we all grabbed our floatation devices and survival suits from our staterooms and mustered toward the bow, or front of the ship.  I got to practice putting on the survival suit, which is affectionately called a Gumby suit.  In the unlikely event that we would ever have to abandon ship, the suit would help us float and stay relatively warm and dry; it also includes a whistle and a strobe light so that aircraft overhead can see us in the water.

For the Escape Hatch drill, we all gathered below deck where our staterooms are, and climbed a ladder, where crew members helped pull us up onto the weather deck (the area of the ship exposed to weather) on the bow of the ship.  This is meant to show us how to escape dangers such as fire or flood below deck.

Safety gear

Safety gear on; ready for station!  Photo by Glenn Zapfe

But safety isn’t just practiced during drills; it’s pretty much a way of life on the ship.  Whenever winches or other machinery are in operation, we all have to wear hard hats and life jackets; that means that we wear them every time we reach a station and drop the nets.  We are also all required to wear closed-toed and closed-heeled shoes at all times, unless we’re sleeping or showering.  Another small safety trick that is helpful is the idea of, “keep one hand for yourself and one hand for the ship.”  That means we carry gear in one hand and leave one free to hold onto the swaying ship.  This has been really useful for me as I get used to the ship’s movements.

Until next time, everyone – don’t forget to track the Oregon II here: NOAA Ship Tracker