Clare Wagstaff, September 15, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 15, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Partially sunny, with scattered showers and thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 2
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

I am starting to get used to the scientific names of the corals, but it is taking a while. I keep wanting to refer to them by their common name which is generally descriptive of their physical appearance, but makes little to no reference to which other coral it is more closely related to Dr. Joshua Voss, one of the scientists on board pointed out that the common names could vary depending on who is identifying them, yet the scientific name remains the same. Hence why the whole team refers to the scientific names when referring to the corals.

So what are corals? 

Parts of a coral (http://oceanservice.noaa.gov/education/kits/ corals/media/supp coral01a.html)

Parts of a coral

Corals are members of the Animal Kingdom and are classified in the Phylum Cnidaria. People often mistake    these creatures for plants, because they are attached to the rock, show little movement, and closely resemble plants. Corals consist of a polyp, which are a cup-shaped body with one opening, which is its mouth and anus.

Zooxanthellae (zoo-zan-thel-ee) are single cell plants (photosynthetic algae) that grow within the polyps’ tissue. It forms a mutalistic symbiotic relationship with the polyp. The algae gets a protected environment and the compounds it requires for photosynthesis, whilst the algae provides the polyp with the materials necessary to produce calcium carbonate, which is the hard “shell” that surrounds the polyp.

So why is this cruise surveying corals? 

Clare Wagstaff, Teacher At Sea, snorkeling

Clare Wagstaff, Teacher At Sea, snorkeling

There has been a decreasing trend in coral coverage over the last decade. One theory is that this is due to anthropogenic stress related to water quality and climate change.  Coral’s require certain environmental factors to be within sensitive boundaries, such as water temperature, salinity, clarity of water, and water movement. Although most species only grow a few centimeters each year, they are the backbone to a massive underwater ecosystem, hence their extreme importance to the success of our oceans. By studying the trends in species distribution, size and disease over various geographic regions, their corrolations can be desricbed in better detail.

Personal Log 

Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.

Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.

This morning I once again join Team C that composes of Dr. Joshua Voss, Kathy Morrow and Mike Henley to survey three dive sites called RK01, RK02 & RK03. We have now got into a comfortable routine and everyone seems to work well together. Unfortunately, this cannot be said for the boat, NF4! During our last dive on Monday, the boat started to leak oil and is now out of commission for the rest of the cruise. Instead we are on the much smaller and less luxurious, NF2, which also happens to be much slower! However, after the usual dive brief we set out for a day of adventures upon the open sea. The second dive site today proved to be the best for snorkeling and I was able to observe a large variety of plants and animals from on the surface.

“Did You Know?” 

Here I am pointing to the waterspout

Here I am pointing to the waterspout

Waterspouts are simply tornadoes over water. They are common in tropical areas where thunderstorms regularly occur, such as the Florida Keys! Today we saw a prime example of one within a few miles of the NANCY FOSTER.

“New Term/Phrase/Word” 

Anthropogenic – caused or produced by human activities such as industry, agriculture, mining, and construction.

The final survey site, RK03 was very shallow at around 8 ft. The dive team decided to make their observations snorkeling rather than diving. Unfortunately, Kathy was so engrossed in her work that she did not see a moon jellyfish swim right into her face! She put on a very brave front and we quickly returned to the NF2 and back to the NANCY FOSTER. The medial treatment for such a sting is to drench the area in vinegar, which neutralizes the nematocysts that may still be clinging to the skin. Luckily, Kathy made a quick recovery, even if she did smell a little like vinegar for the rest of the day!

Christine Hedge, September 3, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: September 3, 2009

Weather Data from the Bridge   
Latitude: 780 34’N
Longitude: 1360 59’W
Temperature: 290F

Science and Technology Log 

Ethan Roth shows me the inner workings of a sonobuoy.

Ethan Roth shows me the inner workings of a sonobuoy.

Low-Impact Exploring 

Some of my previous logs have talked about sound in the Arctic Ocean.  Sounds made by seals, whales, ice cracking and ridges forming, bubbles popping, wind, waves – these are the normal or ambient noises that have always occurred. As governments, scientists, and corporations explore the Arctic their presence will have an impact. Ships breaking ice and the seismic instruments they use to explore, add noise to the environment.  We call this man-made noise, anthropogenic noise.  Will these additional sounds impact the organisms that live here? Can we explore in a way that minimizes our impact on the environment?  The marine wildlife of the Arctic has evolved in an ocean covered by ice. But the ice is changing and the human presence is increasing.

Studies of other oceans have shown that more ship traffic means more background noise. In most regions of the Pacific Ocean the background noise has increased 3 decibels every 10 years since the 1960’s. The scientists on the Healy and the Louis are interested in minimizing their impact as they explore the Arctic Ocean.

Do No Harm – Step 1 Collect Data 

I am tossing the sonobuoy off the fantail of the Healy.

I am tossing the sonobuoy off the fantail of the Healy.

One of the ways we are listening to the noise that our own instruments make is with sonobuoys. These are devices that help us listen to how sound propagates through the ocean.  While the Louis is using airguns to collect seismic data – scientists on the Healy are throwing sonobuoys into the ocean to listen to the sound waves created by the airguns. Knowing how the sound waves from airguns travel through the water will help us to understand their impact on the environment. Sonobuoys are self-contained floating units. They consist of a salt-water battery that activates when it hits the water, a bag that inflates with CO2 on impact, a 400-foot cable with an amplifier and hydrophone (underwater microphone).

The data acquired through the sonobuoy are relayed to the ship via radio link. A receiving antenna had to be placed high up on the Louis in order to collect this data. Like many of the devices we are using to collect information, the sonobuoys are single use instruments and we do not pick them up after their batteries run out. After 8 hours of data collection, the float bag burns and the instrument sinks to the bottom. They are known as self-scuttling (self-destructing) instruments. The more we know about the sounds we make and how these sounds are interacting with the animals that call the Arctic home, the better we will be at low impact exploring.

Personal Log 

The float inflates as the sonobuoy floats away.

The float inflates as the sonobuoy floats away.

I’ve had lots of questions from students about the weather. For most of our trip, the air temperature has been around 270F and the visibility has been poor. A log fog has prevented us from seeing the horizon. We have also had quite a few days with snow and freezing rain.  Some of our snow flurries have coated the decks with enough snow to make a few snowballs and prompted the crew to get out the salt to melt the slippery spots. 

This past week we had some seriously cold days.  On September 1st, the air temperature was 160F with a wind chill of -250F. These cold days brought blue skies, sparkling snow, and beautiful crystals forming on the handrails, ropes and many other surfaces on the deck.

Ice crystals on a valve

Ice crystals on a valve

FOR MY STUDENTS: Why do you think it is foggier on warmer days? 

As we travel south we are starting to get some sunsets and sunrises.  There are a few hours of twilight between the times that the sun dips below the horizon – but no true night sky.  One of the things I miss the most is seeing stars.  I look forward to seeing the Indiana night sky in a few weeks. But until then, the gorgeous sun over the Arctic will have to do.

As the seasons change and we travel south, the sun gets lower in the sky

Arctic snowball

Arctic snowball

Christine Hedge, September 1, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: September 1, 2009

The path of the Healy through the ice with the Louis S. St. Laurent from Canada following (See it way in the distance?)

The path of the Healy through the ice with the Louis S. St. Laurent from Canada following (See it way in the distance?)

Weather Data from the Bridge 
Latitude: 800 26’N
Longitude: 1370 16’W
Temperature: 20

Science and Technology Log 

Why Are Two Icebreakers Traveling Together? 

All of the countries that have a coastline on the Arctic Ocean are trying to collect data to determine where their extended continental shelf (ECS) ends. One of the types of data needed is called seismic data.  Collecting this information involves towing a long (a kilometer or more) streamer behind the ship. It is difficult to do this well in ice-covered water.  So, the Canadians and the Americans are collecting data together. One icebreaker leads and breaks a path for the second following with the seismic streamer being towed behind.  For most of our trip together, the Healy has broken ice for the Louis S. St. Laurent. We are both collecting data – just different types with different instruments.

FOR MY STUDENTS: Can you name all the countries that have coastlines on the Arctic Ocean? Of which country is Greenland part? 

Why Do We Care Where Our Extended Continental Shelf Is? 

Close-up of the Louis S. St. Laurent collecting data behind the Healy

Close-up of the Louis S. St. Laurent collecting data behind the Healy

The oceans and ocean floors are rich with natural resources.  Some countries obtain much of their wealth from mining the oceans, drilling for oil or gas in the oceans, or from fish or shellfish obtained from the oceans.  Currently, a nation has the right to explore for and harvest all resources in the water and everything on or below the seafloor for 200 nautical miles beyond its shoreline. One nation can allow other nations to use its waters or charge oil companies for the right to drill in its seafloor and thus make money. But what if we could use resources beyond that 200-mile limit? That would add to a country’s wealth. If a country can show with scientific data that the continental shelf extends beyond those 200 miles they can extend their rights over:

 

1) The non-living resources of the seabed and subsoil (minerals, oil, gas)

2) The living resources that are attached to the seabed (clams, corals, scallops ) An extended continental shelf means a nation has rights to more natural resources.

FOR MY STUDENTS: Look at a map of the oceans. Can you find the continental shelf marked on the Atlantic coast of the United States? What types of resources can you think of that we get from the ocean and the seafloor? 

Where Exactly Is the Healy Going? 

The red line shows where the Healy has been. The yellow waypoints show where we might be after September 1, 2009.

The red line shows where the Healy has been. The yellow waypoints show where we might be after September 1, 2009.

Our trail looks random to the untrained eye but it does have a purpose.  We have been helping the Louis get good measurements of the thickness of the sediments on the seafloor.  You see there are certain features of the seafloor that help a nation identify its ECS.  One is related to depth. Another is related to the thickness of the underlying sediments.  Another is related to the place where the continental slope ends (the foot of the slope).  We have been following a path that takes us to the 2500-meter contour (where the ocean is 2500 meters deep) and following a path to measure the thickness of the sediment in the Canada Basin.  I was surprised to think that there was thick sediment on the seafloor in this area.  But, the Arctic is a unique ocean because continents surround it. It is more like a bowl surrounded by land.  As rivers have flowed into the Arctic over millions of years – layers and layers of sediment have covered the Canadian Basin.

FOR MY STUDENTS: Look at your maps again.  Find rivers, bays, fjords, that flow into the Arctic Ocean.  For More Information About The Extended Continental Shelf

Personal Log 

Erin Clark, Canadian Ice Services Specialist has been working with us on the Healy.

Erin Clark, Canadian Ice Services Specialist has been working with us on the Healy.

The U.S and Canada have been sharing personnel as well as sharing a science mission.  Coast Guard personnel and science party personnel have been traveling between the two ships via helicopter to share their expertise.  As the Canadian visitors come through our science lab and eat meals with us – we have had plenty of time to discuss science and everyday life. There has also been a longer-term exchange of personnel.  A scientist from the United States Geological Survey (USGS) has been sailing on the Louis since they left Kugluktuk, Northwest Territories. Dr. Deborah Hutchinson is on the Louis to provide USGS input to scientific decisions made during the cruise.

My roommate, Erin Clark, is a Canadian Ice Services Specialist.  Erin hails from Toronto, Ontario and is staying on the Healy to exchange expertise with the American ice analysts.  It has been interesting getting to know Erin and hearing the story of her career path.  She was one of those kids in school who just couldn’t sit still in a structured classroom environment.  Erin is a visual learner – and often had a hard time proving to her professors that she understood the material as she worked on her degree in Geography.  Where other students used multi-step equations, Erin used diagrams and often didn’t “show her work”.  NOTE TO STUDENTS: Do you know how you learn best?  What is your learning style?

Matthew Vaughan a Canadian geology student from Dalhousie University shows us pictures of the seismic gear on the Louis

Matthew Vaughan a Canadian geology student from Dalhousie University shows us pictures of the seismic gear on the Louis

Erin was lucky enough to have instructors that worked with her and now she is one of about 20 Marine Services Field Ice Observers in Canada. Luckily, she has found a career that offers lots of opportunities to move around. Some of her time is spent analyzing satellite photos of ice on a computer screen, some ice observing from a ship, and some ice observing on helicopter reconnaissance trips.  She communicates what she observes about ice conditions to ships; helping them to navigate safely in ice-covered waters.

FOR MY STUDENTS: What kind of skills do you think an Ice Specialist would need to succeed in their career? 

Christine Hedge, August 13, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: August 13, 2009

Weather Data from the Bridge  
Long: 14809.54199W
Lat: 78017.31641N
Air Temp: 31.08 0F

Science and Technology Log 

A CTD, above, is much bigger than an XBT, which I’m holding in the picture below.

A CTD, above, is much bigger than an XBT, which I’m holding in the picture below.

Sound waves travel at different speeds through different substances.  If you look up the speed of sound in air you will find it to be about 300 meters/second, in water 1500 meters/second.  But these numbers are not constants.  In water, the temperature, the amount of salt, and the pressure can all impact how fast sound waves travel.  In other words, all water is not created equal.  Our mapping mission depends on data collected from bouncing sound waves off the sea floor.  In order to get an accurate image of what the sea floor looks like and how deep it is – we need to measure precisely how fast the sound waves are traveling.  This means we need to have a handle on any variable that might change the speed of the sound waves.  Measuring the speed of sound in the water column is an important part of data collection for accurate mapping.

So, how does the Healy measure the speed of sound? Sometimes we use a Conductivity-Temperature-Depth instrument (CTDs).  The ship needs to be stationary to deploy these instruments so they don’t happen very often while we are cruising. CTD measurements record conductivity of the water, which gives us the salinity (how much salt is in the water), temperature, and the depth at which these measurements were taken. Four times a day instruments called Expendable Bathythermographs (XBTs) are deployed off the moving ship. These XBTs measure the temperature as the device travels through the water. As pressure increases, (the deeper you go) the speed of sound increases. As temperature decreases, the speed of sound decreases. Four times a day the Healy science crew gets new data so that they can determine more precisely the speed of sound and therefore interpret what the sound waves are telling us.

Here I am deploying the XBT into the Arctic.

Here I am deploying the XBT into the Arctic.

Today, MST-2 (Marine Science Technician) Daniel Jarrett let me participate in the deployment of an XBT. As the device travels through the water it sends back temperature data from different depths to a computer on board.

The data travels through a very thin copper wire attached to the instrument. A graph of this data is observed and that information is used to create a profile of the speed of sound in that part of the Arctic Ocean at that moment in time.

Personal Log 

All the things I do at home also have to be done on board ship. I eat, sleep, shower, exercise, and do laundry. The food is excellent so far. I love not having to cook or plan meals.  There is fresh fruit, a salad bar, and a huge hot breakfast every day. It will be a rude awakening when I return home and have to plan and cook meals again! My daily routine does not involve much physical activity and I worry about gaining weight while on board. In order to stay in shape, it seems everyone uses the gyms or runs on deck. I have been working out on the treadmill or elliptical every day faithfully to avoid a severe weight gain.

Was the data good? Did the deployment work?

Was the data good? Did the deployment work?

The laundry and all other facilities are really nice. I have a 25-year-old washer/dryer at home and was pleasantly surprised to find state of the art, low-water-usage, front-loading washers on board the Healy. From what I can see the United States Coast Guard is working hard to become a “green” organization.  Trash is separated and recycled when possible. People are encouraged to reduce their water usage. Extreme care is given to filtering and recycling wastewater and any kind of oil or lubricants. It is great to see the amount of thought and energy that is being put into helping the community on board the Healy to “walk lightly” on the Earth.

The Healy is very careful to treat the arctic with care

The Healy is very careful to treat the arctic with care