Linda Kurtz: Women in STEM-(at Sea): Meet Allyson Causey, August 23, 2019

NOAA Teacher at Sea

Linda Kurtz

Aboard NOAA Ship Fairweather

August 12-23, 2019


Mission: Cascadia Mapping Project

Geographic Area of Cruise: Northwest Pacific

Date: 8/23/2019

engineer Allyson Causey
Allyson Causey – Engineer aboard NOAA Ship Fairweather

Women in STEM – Engineering

Meet Allyson Causey!  Engineer aboard NOAA ship Fairweather

Job Title:

3rd Assistant Engineer

Time in current position:

2 ½ months aboard Fairweather

Education and/or Specialized training:

Texas A & M- Bachelor of Science in Marine Engineering Technology

Wage Mariners-civil service federal employee (nonmilitary)

Do you have any plans for future education?

Currently investigating at master’s programs in Nuclear Engineering

Engineering aboard Fairweather

  • Generator
  • Boiler
  • Reverse Osmosis Machine
  • Reverse Osmosis Machine
  • Controller
  • Main engine
  • Air compressor
  • Fire main
  • Marine Sanitation Device

How did you find out about your current position at NOAA?

I met a NOAA recruiter at a job fair at Texas A & M, submitted resume and 3 weeks later I got the call!   After that the lengthy background check and physical for Federal employees, I came to work at NOAA aboard Fairweather.

1) When you were a child, what was your dream career?

I wanted to be an astronaut when I was young.   I looked into aeronautical engineering and attended a Federal Service academy – the United States Merchant Marine Academy.  My Dad is an engineer and contractor, so I grew up on job sites and always had the mindset of math and science.  I knew my career would be something in the STEM field

2)  What was your favorite subject in school?

My favorite class was differential equations.  Why I like engineering so much is everything is one big puzzle, and differential equations is like one big puzzle.

3)  Why is what you do important to on the ship?

Engineers on ships are essentially the lifeblood of the ship, we keep the ship moving.  We are the electricians, plumbers, the mechanics, and even the firefighters.  The ship can’t go anywhere without engineers!

4)  What would you tell an elementary school student about your work that is important to you?

 I enjoy solving the puzzles.  When something goes wrong, I enjoy finding out why something is not working and then solving the problem.  That is what is so rewarding — figuring out what is wrong and fixing it!

5)  Where do you do most of your work?

In the engine room.  That’s where I spend my 8-hour shifts.  The engineering room is on A & B deck — the 2 bottom-most levels of the ship.  That is where most of the mechanisms that run the ship are located. 

6)  What tool do you use in your work that you could not live without?

 A crescent wrench!  Mine is handy because it can measure and tell you the exact size of the nut which makes things a lot easier!

7)  If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

I would invent a tool that could reach bolts at odd angles.  Like a magnetic wrench that could adjust to the size bolt head you need and could bend around the odd angles and apply torque when I need it.

8)  What part of your job with NOAA did you least expect?

 I never expected to be in Alaska!

9)  How could teacher help students understand and appreciate NOAA engineering opportunities?

I think it would be valuable to have better understanding of what we engineers do!   It’s a really cool job, with a really good salary, and very few people know there are positions like this available. 

10)  What is your favorite part of your day when you are working and why?

Every day is a little different, you are never doing the same thing over and over again.  Something is always breaking and needs immediate attention.

11)  What was your favorite book growing up?

My favorite book series when I was growing up was Junie B. Jones!  I come from Florida and loved Jacques Cousteau.   He inspired me to become a scuba diver at 17.

12)  What do you think you would be doing if you were not working for NOAA?

I would be still be working on a boat!

13)  Do you have an outside hobby?

 I love camping and hiking, I’ve hiked 40 miles of the Appalachian Trail and would like to hike the rest!

14)  What is your favorite animal?

Manta Rays!

15)  If you could go back in time and tell your 10 year old self something, what would it be?

Take more math and science classes!  It really helps you get ahead in life! 

Did you know?

All of the electrical power on Fairweather comes from the generators, not the engines. It’s a common misconception!

Want to learn more about careers like and Allyson Causey’s and NOAA resources? See the resource links below:

NOAA ENGINEERING

US MERCHANT MARINES ACADEMY

NOAA Teacher Ready Resources

Heather O’Connell: Steering a Ship and Interviewing a Survey Technician, June 6, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7- 21, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast Alaska

Date: June 6, 2018

Weather Data from the Bridge

Seattle weather is sunny, with a high near 75 with South Southwest wind 5 to 7 miles per hour and becoming calm.

Science and Technology Log

There are five different ways to steer NOAA Ship Rainier using the rudders, or vertical blades submerged in the water. All methods rely on a steering pump to activate hydraulic fluid to move the rudders. Three different methods can be done with electricity from the Bridge, or the front windowed area of the ship. The first electrical method is autopilot which simply sets the course of the ship. The second method is hand and helm which uses a wheel to steer the ship. The third method from the bridge is called non follow up and uses a dial to mark the course. The other two methods utilized occur from back of the ship, or the aft, and include the electrical powered trick wheel and manually operated hand pump steering. 

steering the ship

Junior Officer Airlie Pickett steering the ship using hand and helm

Steering allows you to follow a course and can efficiently be done by using the two rudders which are located behind the fifteen foot propellers on either side of ship Rainier. The left-hand, or port side, rudder and starboard, or right side, rudder steer the ship using water pressure. When the rudders are straight the water moving from the propeller to the rudder will keep the boat moving directly forward. When the rudder moves to the right, the back of the boat moves to the left which moves the bow of the boat to move towards the right. The rudder moves in the direction of less pressure, causing the stern and boat to move in that direction.

Trick wheel steering uses electricity to power the steering pump when steering cannot be done from the Bridge. It uses hydraulics which creates power from oil pressure to move the rudders. Rainier is a 50 year old ship that still functions on hydraulics, while most modern ships use low initial cost, simple design pneumatic which uses a compressed gas to create the fluid pressure. In order to activate trick wheel steering at the aft, a toggle pin must be removed to disconnect steering from the bridge and a gear must be put onto its thread. A sound powered phone that doesn’t require electricity operates by using the sound pressure from a person’s voice to create an electrical current which is then converted back to sound by the receiver. This allows for communication of the course to steer between the bridge and the steering aft. The instructions include a degree and a left or right rudder command.

The steering system on the ship is run on hydraulics, whether the steering originates from the bridge or the aft. There are three solenoids at the controller which change electrical power to hydraulic signals in the aft. Solenoids are also in the transmissions of cars and are coils of metal in a helix shape that act as electromagnets. The energy generated from the solenoid moves a shaft with gears that is connected to two pumps. The fulcrum connected to the navigation bar moves from the power generated by the change in pressure from the liquid. The one pump activated pushes hydraulic fluid to the rudder pumps which then move the rudders and steer the ship. Each pump has cylinders and pistons inside of it with the hydraulic fluid, or oil, that creates the change in pressure for the closed system to work.

Hydraulic steering system

Hydraulic steering system in the aft of the boat

 

Personal Log

Amanda Flinn, hydrographic survey technician, has a smile and laugh that makes you feel readily welcomed. When I first met her on Saturday in the mess room watching Game of Thrones, her friendly demeanor immediately put me at ease. I thoroughly enjoyed getting to know her on our walk to Pike’s Marketplace which was filled with moments of genuine laughter. Amanda is a sincere individual with a vast understanding of hydrography.

Amanda’s knowledge about surveying has been accumulated over the past eight months that she has worked on Rainier. Her passion for data processing and map generation became apparent after chatting with her in the Holodeck, the annex survey space behind the plot room on the F deck of Rainier. She shared several maps that were generated from the Channel Islands’ project that was conducted over a six to eight week time period. A highlight of her first survey in the Southern islands of California, included observing the island of basalt rock columns at Castle Rock.

Amanda Flinn

Amanda in front of a launch boat on ship Rainier

Amanda’s passion for rocks led her to study Geoscience with a minor in Oceanography at University of Connecticut. Her college experience in the state where she grew up prepared her for her current surveying position. Her responsibilities during surveys include collecting data in launches and processing data in the evenings. Amanda’s recent promotion from assistant survey technician to an H.S.T, or hydrographic survey technician, proves her competency.

Amanda learned about a job opening with NOAA after her first harp performance last June while living in New Hampshire. She serendipitously met a woman married to a survey technician on the Thomas Jefferson, another NOAA vessel that had a position opening. Since Amanda was looking for hydrographic work, she took a bus into Boston to explore the survey vessel and liked what she saw. She eagerly applied to NOAA and soon had a phone interview and was asked her ship preference. Since Amanda wanted to explore the West coast and travel to Alaska, she chose S-221, survey ship Rainier.

Amanda was hired in October and has loved her experience of sailing on a ship and being on the ocean. One of her favorite parts about surveying includes getting up close to rocks on the launches, or small boats when surveying. While some people find it challenging to be away from family, Amanda appreciates the sea exploration that takes her to natural scenery along the West coast with beautiful sunsets daily. Since she loves it so much, she can see herself continuing to call Rainier home for several more years before returning to live on land someday.

Amanda became qualified in data acquisition last October and began her first round of surveying at the Channel Island Marine Sanctuary in November. A typical day out at sea when surveying includes waking up, eating breakfast, meeting on the fantail, surveying on launches all day with a break for a soup and sandwich lunch. This is followed by eating dinner and beginning evening processing. The sheet manager assigns different sections and prepares all data for the next day.

While being out in the launches and collecting data is her favorite part, Amanda also enjoys processing data. She utilizes Caris and Pydro-Explorer, software Pacific Hydrographic branch has developed for NOAA ships to remove noise from the pixelated images of the two and three dimensional maps generated from the surveys. For quality control, she completes cross lines tests and junction analysis to ensure that new and old surveys match up. Amanda worked on data processing in Newport, Oregon while the ship was dry docked in Portland for the winter season and hopes to complete the report for the Channel Island survey soon.

Amanda processing data

Amanda processing data in the Holodeck

Jenny Smallwood: Rough Seas Asea, September 13, 2017

NOAA Teacher at Sea

Jenny Smallwood

Aboard NOAA Ship Oscar Dyson

September 4 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 13, 2017

Weather Data from the Bridge
Latitude: 55 06.6N
Longitude:158 39.5W
Winds: 20 S
Temperature: 11 degrees Celsius (51.8 degrees Fahrenheit)

Up. Down. Up. Down. Left. Right….no I’m not in an aerobics class. High winds and seas cause my chair to slide across the floor as I type.

weather

Thus far we’ve been working 12 hour shifts, 24 hours a day. Today we’re sitting about twirling our thumbs as 12 feet seas toss us about. It’s not too bad actually, but it is bad enough to make operations unsafe for both crew and equipment. I’ve been impressed with the safety first culture on-board the Oscar Dyson. Hopefully, it’ll calm down soon, and we can start operations again.

Science and Technology Log

Ship support systems for power, water, sewage treatment, and heating/cooling are all several levels below the main deck, which makes ship engineers a bit like vessel moles. These hard working guys ensure important life support systems work smoothly. Highlights from my time with them include a lesson on the evaporator and engines.

The evaporator, which for some reason I keep calling the vaporizer, produces the fresh water drinking supply. The evaporator works by drawing in cold seawater and then uses excess engine heat to evaporate, or separate, the freshwater from the seawater. The remaining salt is discarded as waste. On average, the evaporator produces approximately 1,400 gallons of water per day.
*Side note: the chief engineer decided vaporizer sounds a lot more interesting than evaporator. Personally, I feel like vaporizer is what Star Trek-y people would have called the system on their ships.

IMG_20170909_145438

The evaporator in action.

The Oscar Dyson has 4 generators on board, two large, and two small. The generators are coupled with the engines. Combined they produce the electricity for the ship’s motors and onboard electrical needs, such as lights, computers, scientific equipment, etc.

IMG_20170909_145326

IMG_20170909_145132

I even got to see the prop shaft.

Personal Log

This week I also spent time in the Galley with Ava and Adam. (For those of you who know me, it’s no surprise that I befriended those in charge of food.) Read on for a summary of Ava’s life at sea story.

Me: How did you get your start as a galley cook?

Ava: When I was about 30 years old, a friend talked me into applying to be a deck hand.

Me: Wait. A deck hand?

Ava: That’s right. I was hired on to a ship and was about to set out for the first time when both the chief steward and 2nd cook on a different ship quit. My CO asked if I cook to which I replied “for my kids,” which was good enough for him. They immediately flew me out to the other ship where I became the 2nd cook. 12 years later I’m now a Chief Steward.

Me: Wow! Going from cooking for your kids to cooking for about forty crew members must have been a huge change. How did that go?

Ava: To be honest, I made a lot phone calls to my mom that first year. She helped me out a lot by giving me recipes and helping me figure out how to increase the serving sizes. Over the years I’ve paid attention to other galley cooks so I now have a lot of recipes that are my own and also borrowed.

Me: What exactly does a Chief Steward do?

Ava: The Chief Steward oversees the running of the galley, orders food and supplies, plans menus, and supervises the 2nd Cook. I’m a little different in that I also get in there to cook, clean, and wash dishes alongside my 2nd Cook. I feel like I can’t ask him to do something that I’m not willing to do too.

Me: So you didn’t actually go to school to be a chef. Did you have to get any certifications along the way?

Ava: When I first started out, certifications weren’t required. Now they are, and I have certifications in food safety and handling.

There are schools for vessel cooking though. My daughter just recently graduated from seafarers school. The school is totally free, except for the cost of your certification at the very end. For people interested in cooking as a career, it’s a great alternative to other, more expensive college/culinary school options. Now she’s traveling the world, doing a job she loves, and putting a lot of money into her savings.

Me: Talking with crew members on this ship, the one thing they all say is how hard it is to be away from family for long stretches of time. A lot of them are on the ship for ten months out of the year, and they do that for years and years. It’s interesting that your daughter decided to follow in your footsteps after experiencing that separation firsthand.

Ava: I was surprised too. Being away from friends and family is very hard on ship crew. Luckily for me, my husband is also part of the NOAA crew system so we get to work and travel together. Nowadays I’m part of the augment program so I get to set my own schedule. It gives me more flexibility to stay home and be a grandma!

Did You Know?

Nautical miles are based on the circumference of the earth and is 1 minute of latitude. 1 nautical mile equals 1.1508 statue miles.

Lisa Battig: The Inner Workings of Fairweather…

NOAA Teacher at Sea Lisa Battig

Aboard Fairweather, Alaskan Hydrographic Survey vessel

September 5, 2017

Location: 56o20.5N  166o07.1W  (We are currently ~ 170 miles due east of the Alaskan Peninsular National Wildlife Refuge!)

Weather from the bridge: 51o F, Wind 8-10 knots from 285o, high thin clouds, seas 2-3 ft (1 hour after I wrote this we were socked in with fog, which is fairly common for this part of Alaska during this time of year.)


Science and Technology Log:

Fairweather was commissioned in 1968 and has 2 engines. The engines are pretty ridiculously big. They are diesel combustion engines and run similarly to a diesel tractor engine.

Karla at the engine

Karla Martinez standing next to one of the engines for scale. She is an oiler, and currently the only female member of the engineering crew. Go Karla!!

 

 

She was built with Controllable Pitch Propellers. This technology is fascinating!! It allows for very fine control of the ship’s motion.

CPP in two positions

An image of a CPP propeller with blades in two different positions to show the axis of movement. Image courtesy of Schottel website. 

The CPP technology works by turning each of the propeller blades on its individual axis. In this way, the propellers never have to change the direction of spin, but instead the spin continues the same direction but the ship can come to a stop and then reverse direction. This differs from the fixed propeller system that is on the small launches. The Fairweather’s propeller blades are about 3 feet each in size for a total propeller diameter of 7 feet.

 

She also has a bow thruster which can be used in certain circumstances. The bow thruster enables the bow to move from side to side while the stern of the ship is static. It is essentially a propeller mounted into a tunnel/hole in the bow giving thrust perpendicular to the typical direction of travel. For a large ship like Fairweather, this is especially helpful when moving in and out of docking locations.

The next two technologies are of particular interest for my environmental science classes. Because the ship is often at sea for extended periods, it is necessary to make fresh water from the salt water. Typically Fairweather will take on ~16,000 gallons of water in port, but evaporators will be used to generate supplemental freshwater when it is needed.

Evap seawater in line

This is the seawater intake for one of the evaporators.

The evaporators on Fairweather are flash (plate) evaporators and they can generate around 160 gallons of water per hour when operating optimally. The evaporators are running a distillation process by evaporating the water using heat from the boilers at a low pressure and then separating the freshwater from the brine (highly saline water). Because of the constant removal of salt from the water, the evaporators need to be cleaned often for best use.

Flash evaporator

This is one of the flash evaporators. Inside the pressure is lowered and the temperature runs at about 170 degrees F. While this is below the normal boiling point of water, the water will still vaporize and condense due to the low pressure

The brine is then discharged and the freshwater is added to the supply tanks. When leaving the tanks, it is pumped to higher pressure and further treated through filters and with UV light to kill off any bacteria that may have made it through. That water is stored in a hydropneumatic tank at high pressure so that water can be delivered to all parts of the ship without the need for continuously running pumps.

People eat and drink and then they pee and poop. They also like to shower and brush their teeth and wash their hands. They also need water to drink and cook with and to make coffee and tea. Obviously there is also a lot of gray water (sinks and showers) and black water (toilets) that is produced on a ship of this size carrying ~40 people. So what is done with all of it? Well, blackwater goes through the MSD (marine sanitation device) before it is discharged outside of 3 nautical miles from land. MSDs are standard on all ships and work similarly to land based sewage treatment on a much smaller scale. Gray water can be acceptably discharged as is in most places, but must be stored within NDZs or No Discharge Zones.

Discharge plan

Guidelines for discharge

Other necessary technologies on the ship are the refrigeration system, the boilers and the generators. But I won’t go into all of those processes. It’s just amazing to me that there are so many things that must be accounted for on a ship if it will be at sea for multiple days!


Crew of the Day! Engineering

20170908_084414

If you’re going to get pictures of the engineering crew, you have to find the rare times when lots of them are together… you can find a good group at mealtimes or when the ship is being docked and they all need to be on the boat deck! L-R: Sean, Kyle, John, Mick and Ray

20170907_170858

L-R Sean, Connor, John, Mick, Alex, Eddie… and even with all my stealth, I’m still missing a couple from the group pictures!

The Engineering crew on this ship is a highly eclectic bunch! They are also a REALLY difficult group to get together for pictures. They have about a 40 year span in age and include folks from all over the world with a great diversity of backgrounds. There are several levels within the engineering crew. The entry level position is termed a wiper, next is an oiler, and then engineering utility, and junior engineer. These positions are unlicensed, analogous to enlisted positions in the military. The licensed positions are 3rd Engineer, 2nd Engineer, 1st Engineer and Chief Engineer. There are five licensed engineers on board right now and another six in the department who are oilers and junior engineers.

Anything that is mechanized, motorized, has an electric cable going to it, or needs to be oiled or lubed, those things all fall under the watchful eye of the Engineering crew. One of the young 3rd Engineers, Connor (nicknamed Titan because he really is giant) also describes them overseeing “Hotel Services” – plumbing, lighting, heating & cooling. The crew keeps a 24 hour watch whenever the ship is underway, and can take over aft steering if something were to fail with the bridge steering. They are also on watch whenever the small launches are being deployed or replaced to their cradles. If the bow thruster is being used, a crew member will also watch to see that it engages properly for use.

The well-being of the ship is in the hands of the Engineers and therefore the Chief Engineer reports directly to the Commanding Officer (where all other department heads report to the Executive Officer). The CO and the Chief Engineer really share the task of running the ship, but ultimate responsibility lies with the CO.


Personal Log:

The food! OH MY GOODNESS!!! The food on Fairweather has been terrific. There are two amazing cooks here currently. Tyrone, who is the Chief Cook, has been with Fairweather for 5 years. Prior to that, he cooked for the Navy. Kathy is the Chief Steward (which means she is in charge of the kitchen and develops the daily menus) and has been with NOAA ships cooking in some capacity for almost 20 years! You’ll learn more about her in my next blog… The Interview Issue!

So, here’s a sampling of what’s been on the menu since I’ve been here: Prime Rib, Lobster, Argentinian flap steak with Chimichurri, Halibut with some crazy good pesto type sauce… I am going to leave the ship about 10 pounds heavier than when I got here. So, this is not what you always get on NOAA ships, but this particular pairing of Kathy and Tyrone makes some serious magic!!

Sian Proctor: Sea Sounds Visualized, July 8, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard Oscar Dyson

7/2/2017-7/22/2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 8, 2017

Weather Data from the Bridge

  • Latitude:   56° 13.6 N
  • Longitude: 156° 36.0 W
  • Time: 0600
  • Sky:Clear
  • Visibility: 10 nautical miles
  • Wind Direction: 162
  • Wind Speed: 6 Knots
  • Sea Wave Height: <1 foot swell
  • Barometric Pressure: 1015.8 millibars
  • Sea Water Temperature:  13.2°
  • Air Temperature:  11.5°
  • Sunrise: 0524
  • Sunset: 2307

sproctor_Oscar_Dyson

TAS Sian Proctor admiring the view on board Oscar Dyson in Alaska.

Where Are We Going?

We are off and running in our quest to track Alaskan pollock. The first thing I realized was the complexity of fishing operations. There are so many parts to a successful operation and one of my favorite components is all the maps and navigation.

Science and Technology Log: Using Sound to See

Once the ship is navigated to the first transect line then the scientific research begins. A down-looking echo sounder system located in the centerboard of the ship has five transducers (18, 38, 70, 120 and 200 kHz) that emit short pulses of sound. This means that energy, in the form of sound waves, is being sent out from the bottom of the ship. When sound waves encounter a change in sound speed, density, or a combination of both, some of the energy is scattered (reflected) back to the ship. The amount of sound scattered by an object in the water column is a function of its physical characteristics and the frequency of the sound. In animals, important physical characteristics that affect the amount of scattering include the presence of a swim bladder (a bubble!), bone structure, and size. Various animal types with different morphological characteristic will scatter different amounts of sound as a function of frequency, which scientists can use to aid their interpretation of the observations. The NOAA scientists know, through research, that krill scatter much more energy at 120 kHz and 200 kHz than at 18 kHz, but pollock scatter similar amounts of energy at all of the frequencies used in the survey. Ultimately, the five frequencies are used to support decisions about the types of animals that are scattering the sound in the water column, but the scientist use only the 38 kHz transducer data to derive estimates of fish abundance.

NOAA Chief Scientist Taina Honkalehto analyzing echogram.

NOAA Chief Scientist Taina Honkalehto analyzing an echogram. The echogram is color coded to represent the density of biomass within the water column. Red are areas of high concentrations of biomass and blue are areas of low concentrations. The bottom of the ocean floor shows the rainbow of colors. The NOAA scientists note GPS coordinates spot to fish based on the echogram.

All of the scatter produced by the pollock, and other animals in the water column, is processed by the ship’s computers to produce an echogram. Each column in the echogram is a view of the spatial distribution of animals under the ship at that time. By moving around the survey area and “stacking” many observations a spatial view of the biomass distribution is created. NOAA scientists in the acoustics lab analyze the echogram not only to determine what is in the water column, but also where to perform physical samples (trawls). The ship then navigates to that location and the sampling process begins.

Meet the Crew

Before starting my Teacher at Sea adventure I had no idea that there was a career called ocean acoustics engineer. Everyday I have been interacting with NOAA Acoustics Engineer Chris Bassett and University of New Hampshire graduate student Alexandra Padilla to find out why they chose this career. One thing I notice is that they build really cool instruments and they are teaching me a lot about how we study the ocean using sound.

Interview with Christopher Bassett

Ocean Acoustics Engineer

NOAA Ocean Acoustics Engineer Chris Bassett schooling me on sound.

  • Normal Job Duties
    • I study the use of passive and active acoustics in marine environments.
  • What is your current position on Oscar Dyson?
    • A combination of management of ET/IT support for survey operations and special research projects at night.
  • How long have you been working on Oscar Dyson?
    • This is my third field season. My first cruise was the summer of 2015.
  • Why the ocean? What made you choose a career at sea?
    • A series of fortunate and unfortunate events.
    • When I started graduate school I wanted to transition to working as an engineer in renewable energy. The economic conditions in 2008 resulted in the loss of funding for the project I was planning to work on. Instead I agreed to perform a short study on underwater sound in support of a tidal energy project in Puget Sound, WA. I fell in love with the work and have been studying acoustical oceanography ever since.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • Going to sea in Alaska. It’s beautiful.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • Not until I started doing ocean research. Prior to that the idea had never occurred to me. I didn’t see an ocean for the first time until I was in my teens so the idea of working in ocean science was completely foreign. I did, however, know I was interested in science and engineering from a relatively early age. Nonetheless, pursuing a career in science never occurred to me until I first worked in the field and discovered my passion for the subject.

Chris Bassett at work on Oscar Dyson.

  • What are some of the challenges with your job?
    • Working with data sets (biological or physical) obtained in the field. Working with data obtained at sea from uncooperative sources is not easy. My job also requires a variety of skills (e.g., engineering, math, coding), a willingness to learn about biology, and requires a lot of travel. Expanding my knowledge across these fields is a constant challenge.
  • What are some of the rewards with your job?
    • I learn something interesting every day.
  • Describe a memorable moment at sea.
    • Sunset at the Islands of Four Mountains while one of the volcanoes was smoking. Little more can be said. It was a beautiful day!

Interview with Alexandra Padilla

Ocean Acoustics Engineer

  • Official Title
    • Ocean Engineering PhD Student – and Sian Proctor’s awesome roommate aboard Oscar Dyson.
  • Normal Job Duties
    • I am a PhD graduate student. I usually spend my time split between courses and research. I am about to start my third year at University of New Hampshire and I will be focused mostly on taking classes, passing my qualifiers, and doing research.
  • What is your current position on Oscar Dyson?
    • I am an invited scientist.
  • How long have you been working on Oscar Dyson?
    • This is my first time aboard the Oscar Dyson! Actually, it is the first time I have ever been on a scientific cruise.
  • Why the ocean? What made you choose a career at sea?
    • Oh Boy… That is a long story actually. Life.

Alex Padilla and Chris Bassett working on an acoustic research project aboard Oscar Dyson.

What is your favorite thing about going to sea on Oscar Dyson?

My favorite thing about going to sea is learning from all of the other people that are on Oscar Dyson – from NOAA Corps officers, crew member and fellow scientist.

Why is your work (or research) important?

My research is focused on observing methane seeps in the water column and quantifying the flux of methane within the water column and at the air-sea interface. This research is important for understanding how methane release in the ocean contributes to climate change.

  • When did you know you wanted to pursue a career in science or an ocean career?
    • I knew I wanted to be an engineer since elementary school, but I only realized that I wanted to be an ocean engineer during my third year as an undergrad.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • Counting krill!
  • What are some of the challenges with your job?
    • Things don’t always work out the way you want them to and sometimes you don’t know how to fix them.
  • What are some of the rewards with your job?
    • Doing unique research. Also, getting that sense of satisfaction when you fix that one problem that you thought you couldn’t do.
  • Describe a memorable moment at sea.
    • I have yet to have a specific memorable moment at sea but I do have a memorable feeling every time I look at the horizon when on the ship. It feels like freedom.

Personal Log

I was pleasantly surprised by how much I am enjoying being at sea. I think a big reason why is the smooth ride. The sea has been calm, the weather mild, and the sunshine plentiful. The scenery within the Shelikof Strait, particularly along Katmai National Park, has been stunningly beautiful. A perk of the early morning shift is seeing the sunrise. Take a look at the weather report above for the sunrise and sunset times. You’ll notice that the amount of darkness is minimal this time of year.

Sunrise in Alaska aboard Oscar Dyson.

Sunrise in Alaska aboard Oscar Dyson.

The hardest part of the journey so far has been my schedule. We work 12 hour days and my shift is 4 am to 4 pm. Yep, 4 am!  I am not a morning person – but I am also not a late night person. So given the choice between getting up or going to bed at 4 am – I choose to wake up with the help of coffee – coffee – coffee.

TAS Sian Proctor and NOAA Chief Scientist Taina Honkalehto.

The NOAA crew are friendly, informative, and have made my adjustment to life at sea easy breezy. Every day I learn something new. The NOAA Chief Scientist is Taina Honkalehto. I was thrilled to learn that she’d be my mentor for the Teacher at Sea program because I am an advocate for women in science. I am also surrounded by other crew members, both men and women, who have taken time to teach, advise, and guide me every day. I will be trying to highlight as many of them as possible in my blog posts.

Education Tidbit

One thing I am learning is that there are so many different careers dealing with ocean science. Here is a great resources If you have students who are interested in a career in ocean or marine sciences.

There are so many things you can learn about sound and the sea. The Discovery of Sound in the Sea website is chuck full of information and educational resources.

Did You Know?

Did you know that there is a layer in the ocean where sound gets trapped and can travel across the entire basin. It is called the SOFAR Channel. Click this link to learn more: NOAA SOFAR Channel

NOAA diagram of how sound travels in the ocean.

Andrea Schmuttermair: Engineering Extravaganza! July 21, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 21, 2015

Weather Data from the Bridge:
Latitude: 57 09.0N
Longitude: 151 16.5W

Sky:  broken clouds

Visibility: 10nm
Wind Direction: 245 degrees

Wind Speed: 24 knots
Sea wave height: 3ft

Swell wave: 5-7 ft

Sea water temp: 11.3 C
Dry temperature: 11.1 C

Science and Technology Log

Aside from our survey, there is a lot of other science taking place on the ship. In fact, science is all around us. The officers on the bridge are using science when they use weather patterns and sea swells to calculate the best course of navigation for the ship. The survey technicians are using science when they collect water samples each day and test the salinity of the water. The engineers are using science when they are monitoring the ballast of the ship. Science is happening in places we don’t always take the time to look.

Today we look at a different realm of science, the engineering world. I recently had the opportunity to tour the brains of the ship with two of our engineers on board. I not only learned about the construction of the ship, but I also learned about the various components that help the ship run. The Oscar Dyson was constructed as one of NOAA’s first noise-reduced fisheries vessels. Data have been collected over the years that show fish avoid loud vessels by diving down deeper or moving out of the way of the noise. There was concern that this avoidance behavior would affect the survey results; thus the creation of acoustic quieting technology for research vessels. Another interesting part of the ship’s construction is the retractable centerboard, which allow the transducers to be lowered down below the ship and away from the hull in order to reduce noise and gather higher quality sound data for the surveys.

This slideshow requires JavaScript.

It turns out 2 of our engineers are from San Diego, the place I lived for my first 21 years of life. Nick even graduated from Westview High School, the rival of my high school, Mt. Carmel (albeit 10 years after me). The engineers are responsible for making sure everything is working on the ship. They, along with the rest of the engineering team, have to anticipate and troubleshoot problems, and be ready to fix something at a moment’s notice.

In addition to taking me on a tour around the innards of the ship, Nick and Rob also sat down for an interview about marine engineering.

Interview with the Engineers: Rob Ball and Nick Cuellar

Nick, Rob, and....Wilson!

Nick, Rob, and….Wilson!

What is your educational/working background?

Nick: I played soccer throughout high school and was recruited during my senior year by the US Merchant Marine Academy. I went to school there, played soccer, and received a BS degree in marine engineering. I spent 1 of my 4 years at sea doing hands-on training. I was also commissioned into the US Navy as a reservist.

Rob: I’m what they call a hawespiper in the merchant marine world- I started at the bottom and worked my way up. I started at Scripps Institute of Oceanography in 1988 and worked my way up ranks from oiler to engineer. I received my captain’s license, and ran sport fishing boats because I wanted to know boats from top to bottom. I went to professional college for refrigeration, and my main forte is refrigeration and air conditioning, I know I’ll never be out of work. I’m a first engineer now, and am going to go for my chief’s license.

How long have you been working on the Oscar Dyson?

Nick: I came on in August of 2014.

Rob: I just came on board in April of 2015

What are your main responsibilities as an engineer on board?

Nick: As a second engineer, I give fuel reports and transfer fuel to maintain stability of the ship. We have saltwater tanks for ballast, which changes as we burn fuel, and I help monitor this. I check the electricity, lights, fuel, water, and AC and make sure everything’s running. I fix anything that’s breaking.

Rob: As a first engineer, I am the supervisor of engine room and am responsible for how everything is operating. I get updates on the fuel status, and communicate with CO of the ship if changes need to be made. I also look at when the oil/filter needs to be changed. My position is more supervisory, and I oversee responsibilities and delegate tasks. I handle the plant and the people.

What is your favorite part of the job?

Nick: Travel; getting work experience, marine life

Rob: Money and travel; getting to see things in ocean that most people would only see on National Geographic

What is most challenging about your job?

Nick: The different personalities you have to work with

Rob: I agree with Nick. Our life exists in 204ft. I am able to take frustrations and put it into things I enjoy, such as working out, reading, or playing guitar.

What is something unique to being an engineer on a ship as opposed to an engineer on land?

Nick: You have to have knowledge of every square inch of the ship; the two things I think about are: are we sinking and are the lights on.

Rob: You have to keep things going when you have big seas, and you have to have the knowledge and ability to handle problems and stay on your feet (literally). You have everyone’s lives in your hands- you have to be on all the time.

What would tell students who are looking at careers in engineering?

Nick: Don’t give up and keep on fighting. Don’t let hardships get in the way. If it makes you happy, keep doing it. And know your math!

Rob: it’s a limitless field; you can build anything, and fix anything. If someone else made it, you’ll have the ability to figure out what they did. You get to break stuff and fix it.

What is your favorite marine animal?

Nick: Humpback whale

Rob: Orca and Great white shark

Rob, Nick and I

Rob, Nick and I

Thanks gentlemen for the interview!

 

Personal Log

This baby humpback whale was having a blast breaching over and over again.

This baby humpback whale was having a blast breaching over and over again.

The ringing of the phone woke me up from the gentle rolling of the ship. I had told the officers and scientists to wake me up if there was anything cool happening, and an excited ENS Gilman spoke into the receiver claiming there were hundreds (ok, maybe hundreds was a bit of an exaggeration) of whales breaching and swimming around the ship. Throwing on a sweatshirt and grabbing my camera, I raced up to the bridge to get a view of this. I had low expectations, as it seemed that every time we got the call that there were whales around, they left as soon as we got up there. This time, however, I was not disappointed. It was a whale extravaganza! Humpback whales, fin whales, orcas, there were so many whales it was hard to decide where to point my camera or binoculars. Like one of those fountains that spurt up water intermittently through different holes, the whales were blowing all around us. I was up on the bridge for over an hour, never tiring to see which one would spout next, or show us a fluke before it dove down deep, only to resurface somewhere else 15 minutes later. It was truly a treat to be able to watch them, and the weather couldn’t have been better. My favorite shot was of a baby humpback breeching – we had been tracking him for a while, his blow noticeably smaller than the adults around him. He looked as if he was just playing around in the water, enjoying himself without a worry in the world. I had been hoping to see Alaska wildlife on this trip, and am thrilled my wish was granted.

The bathroom in our staterooms

The bathroom in our staterooms

stateroomI had a question about our living accommodations on the ship, and I must admit they aren’t too shabby. I share a room with another one of the scientists, and she works the opposite shift. This works out nicely as we can each have our own time in the room, and can sleep uninterrupted. We have bunks, or racks as many refer to them, and I am sleeping on the top bunk. We have a bathroom with a shower in our room, and it’s nice not to have to share those amenities. The walls are pretty thin, and the ship can be loud when operations are going, making earplugs or headphones helpful.

Jennifer Petro: Finding the Fish, July 7, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 7, 2013

Weather Data
Air temperature: 27.°C (81.5°F)
Barometer: 1022.50 mb
Humidity: 73%
Wind direction: 195°
Wind speed: 6.1 knots
Water temp: 26.6° C (79.3°F)
Latitude: 34 44.62 N
Longitude: 75 91.98 W

Science and Technology Log

Today we find ourselves off of the coast of northern North Carolina where we will be for the next few days.  An exciting aspect about this cruise is that we will be multi-beam mapping (a blog about that very soon) and sending the ROV down for surveys in new areas off of North Carolina.  For the past few days I have been working with the team from the Panama City Southeast Fisheries Science Center identifying fish.  This can sometimes be a very difficult prospect when the ROV is flying over the fish at 2 knots.  The team from SEFSC consists of Andy David, Stacey Harter and Heather Moe.  David is a 23 year veteran of NOAA and has been working on the MPA project since 2004.  Stacey has been working on this project since its inception as well.  Heather is new to the team and is just coming off of a 1 year assignment with the NOAA Corps at the South Pole.
There are several major objectives of this survey cruise.

There are several major objectives of this survey cruise.

(1)  To survey established MPAs to collect data to compare to previous years’ surveys.

An important aspect of these cruises is to establish the effectiveness of an MPA.  In some MPAs there is usually no fishing allowed.  This includes trolling. bottom fishing (hook and line) as well as all commercial methods of fishing.  The MPAs we are studying are Type II MPAs where trolling is permitted.  They are looking for seven specific target species.

According to Andy, these species have been chosen due to their commercial value.  During each dive a record is taken as to the type of species seen.  We are specifically looking for the target species but we are keeping track of ALL the species that we see.  I think it is fantastic to see scientists get excited about seeing something new.  So far we have seen Oceanic Sunfish (2), Redband Parrotfish, Tautog (a more northerly found fish), Longsnout Butterflyfish and one fish species that we have not identified yet.  There is an emphasis on Lionfish counts to assist in gauging how the introduction of this invasive species is affecting the overall fish populations.  In some areas the Lionfish numbers have increased dramatically over the years.  Today we actually saw one try to eat a smaller fish!  They are very abundant in some locations and not in others but they have been present in 95% of our dives.

A Speckled Hind seen inside the North Florida MPA.

A Speckled Hind seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

(2) Survey outside of the MPAs.

You may ask “Why survey outside the area?”  We want to know if the MPAs are indeed doing what they were designed to do: protect fish species.  That was very evident in Jacksonville where the numbers and size of Gag Grouper and Scamp far exceeded the numbers and size outside the MPA.

Andy David recording for the ROV video log species of fish we are seeing on the dive.

Andy David recording for the ROV video log species of fish we are seeing on the dive.

(3)  Survey new sites for possible MPA designation.

There is a process that is followed when determining if an area is a suitable MPA candidate.  What we are doing on this cruise is both mapping and surveying new areas that have been proposed as MPA sites.  This is the ground level stage.  The MPAs in the region that we are in are ultimately determined by the South Atlantic Fishery Management Council.

A Gray Triggerfish protecting a nest of eggs.  Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

A Gray Triggerfish protecting a nest of eggs. Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

Data during the dives is collected in a few ways.  There are several video monitors that we watch and we call out species that we see.  A data keyboard, like the one Harbor Branch uses for invertebrates counts, is used to keep track of types and number of each species seen.  During every dive a video from the camera on the ROV is recorded and species are highlighted and recorded on to the DVD.  This data will be analyzed thoroughly back at the lab and then sent to the South Atlantic Fishery Management Council.

Personal Log

I am happy to announce that I have finally gotten my sea legs.  It wasn’t as bad as I had envisioned but I was definitely concerned that it would be a major issue.  We had some weather on Thursday, July 4 and that was the worst of it for me.  I now hardly feel the vessel move.  It has been fun over the past several days.  We are in the lab most of the days so we only get to really see the crew at mealtimes and after dinner.  The crew, from the CO to the engineers, are all great people.  They are happy to answer questions, point you in the right direction and are quick to say hi and ask you about your day.  Yesterday afternoon one of the engineers, Steve, gave us a tour of the engine room.  All of the ship’s infrastructure is supported by this room.  The engines run the generators for power, support the a/c, house the desalination filters (all the fresh water on board comes from salt water) as well as getting the boat from point A to point B.  I was impressed!

One of the 4 Caterpillar engines that keep Pisces running ship shape.

One of the 4 Caterpillar engines that keep Pisces running ship shape.

Today after our last ROV dive, a school of Mahi mahi followed it (the ROV) up to the surface.  The fishing was on!  The crew brought out rods, reels and bait and the fishing commenced.  Collectively we managed to land one bull or male and 2 smaller Mahi mahi.  It was a nice diversion for all of us, scientists and crew, as we were back to work all too quickly.  Fish tacos for dinner!

Hoping I can land this one!

Hoping I can land this one!

Fair weather and calm seas.

Jennifer

Did you know that…

Some grouper can grow to be so huge that when they open their mouths to feed, they create a suction that is powerful enough to inhale small prey.