NOAA fisheries research vessels often work with colleges to help provide experiences for the students by allowing them to come on the ship to collect data for their research. On this leg, Makaila Hernandez was aboard to collect environmental DNA (eDNA) under Dr. Alexis Janosik for the University of West Florida. Water samples are taken from different sampling sights in the Gulf of Mexico. Environmental DNA tells scientists what organisms are in the area of water. DNA can be found in the water when organisms shed materials such as the skin, scales, feces, mucous, and gametes. Once the water is collected, a lab will extract the DNA from the water. The extraction is done in such a way that only the purest form of DNA is obtained. It will then be amplified so that it can go through the DNA sequencing process for organism identification. Collecting DNA for the purpose of knowing what organisms are present is done for several different reasons. It helps check the biodiversity and compare the health of the ecosystem to the previous years.
Makailyn working on eDNA samples
Helping with the eDNA samples
NOAA Ship Pisces
On this mission we have 28 people aboard Pisces. Without the engineers, technicians, deck crew, and the NOAA corps, the scientists wouldn’t be able to do their job. As most of you know, when things go wrong with a vessel out in the ocean, you have to rely on those within. The engineers work hard and I haven’t gotten to talk with them as much as I would have liked, but after all they have been busy down below keeping the ship going. While touring and visiting the bridge, the amount of technology there and knowledge from the officers on maneuvering the vessel is astonishing. I even had a slight go at it, and with the waves and current my travel line was a bit everywhere and not even close to being as straight as theirs. No worries, they were right by my side the whole time.
Drew Barth, Second Assistant Engineer
Drew Barth, Second Assistant Engineer
Drew grew up in Montana and has been working for NOAA for around 18 years. Drew has worked his way up through the years, and the knowledge he knows about how to keep everything on this ship running is incredible. I had no idea there was so much down below us, and the amount of things that have to be checked and continuously working to keep this working vessel going. Drew tried to summarize all the things he did to me from operating all the equipment (including plumbing, HVAC, engine), maintaining all of the equipment, and every 2 hours all gauges have to be completely checked. At midnight a full report of how much fuel is being consumed as well as other things. Drew said some challenges he has had to deal with are bad weather, flooding, and having to fix multiple things at once. Drew states that working hands-on, growing up with a dad as a mechanic, and taking welding vocational classes really helped him, but training today can be done by attending a maritime school.
Bridge
NOAA Corps
LCDR John Kidd, Commanding Officer
LCDR Ben VanDine, Executive Officer
LT Nicolas DeProspero
ENS Aaron Macy, Junior Officer
Personal Log
Today is our last day at sea. Later this evening we will start working our way towards Pascagoula, MS. We are finishing up our last camera drops and preparing to disembark. I can already tell this morning by looking at the water that we are getting closer to Mississippi. The coloration of the water is more of a brown hue than blue due to the Mississippi River meeting the ocean. Several deck crew are making last minute plans as we prepare to port. I have met so many amazing people from all walks of Earth, and listening to their stories and how they ended up on Pisces is remarkable. There are a lot of hard-working and dedicated people who keep this ship running.
I can’t believe I have been on the ship now for two weeks. I have several more questions from my students back home that I can’t wait to answer when I get back. When I return there are only 10 days of school left, so it will be a whirlwind. I have been blessed to have experienced this, and I have learned so much that I hope to inspire my students to dream big and put themselves out there. I told them before I left how nervous I was and that blogging for the first time ever and doing the unknown was way out of my comfort zone. However, hopefully I have taught them that it is important to take chances and pursue things that they want to do even though they may seem scary. My hopes are to also talk about all the different career paths involved in keeping this mission going aboard NOAA Ship Pisces.
I thought it would be interesting to compare some specifications of NOAA Ship Thomas Jefferson = TJ (research vessel) with my 2010 Toyota Sienna minivan + 2019 Viking camper = VV (recreational vehicle). I would also like to thank Chief Marine Engineer (CME) Tom Cleary and Husband Phil Grimm for information concerning the specifications of the research vessel and recreational vehicle, respectfully.
NOAA Ship Thomas Jefferson taken from the launch = TJ Research Vessel
2019 Viking camper + 2010 Toyota Sienna minivan taken in my driveway = VV Recreational Vehicle
What is the size of engine? How much power is produced?
TJ = 7,740 cubic inch, 2500 Horsepower. 12-cylinder mechanically injected EMD (a division of Caterpillar) diesel engine. This engine is commonly used on locomotives.
Engine of Thomas Jefferson
Engine of Thomas Jefferson with the “hood” open
What kind of fuel do you use and how big is your storage tank?
VV = Minivan uses 87 octane unleaded gasoline & has a 21 gallon fuel tank. Camper has a 20-pound liquid propane (LP) gas storage tank.
TJ = The ship uses #2 ultra-low sulfur diesel fuel and has a 131,789-gallon storage tank.
Where is the electricity stored? Quantity?
VV = Minivan has a 12-volt battery + Camper has a 12-volt “marine”, deep cycle battery
TJ = The ship has two 24-volt starting banks (2 batteries in series) for the emergency diesel generator (EDG), and two 24-volt emergency power banks for general alarm and other emergency circuits.
Where is the electricity produced? Quantity?
VV = Minivan: belt-driven alternator keeps battery charged. Camper: battery can be charged by the van or with the charger/inverter when plugged into AC.
TJ (underway / while at sea) = Three generators capable of generating 345 Kilowatts each (over 1 megawatt combined); one generator is online at a time. TJ has increased its energy efficiency (LED lighting, more energy efficient AC and appliances, etc.). Now, under normal house loads – not running any of the davits or cranes – TJ requires only 30% of the electricity generated with one generator.
TJ (onshore / while at port) = The ship has the capability to use power from shore via a plug on the port and starboard side. It uses power cables standard to all maritime ships. Each of its NATO plugs is capable of carrying 480 Volts of 3-phase power (400 amps). Typically, TJ only uses one of its NATO plugs while in port unless there is need for additional electricity.
First Assistant Engineer (1AE) Perry checks fluids in one of three generators
Each generator can generate 345 Kilowatts of electricity
How does the driver / engineer know what is happening with the engine and generators?
VV = Dashboard of the van, gauges, check engine lights and warnings
TJ = Modern, Windows-based control room with remote capabilities. This system sends information to the control room, Bridge, and the Chief Engineer’s office. Lots of gauges and computer displays. Multiple lights and warnings if there are problems.
1AE Perry checks gauges in the control room
How about locomotion? How does VV or TJ move forward or backward?
VV & TJ = Both use an internal combustion engine that turns a propulsion shaft. Both use a series of reduction gears (transmission in the case of the van). Speed is maintained via a fixed gear ratio in TJ, unlike the van that has multiple gear ratios. The Chief Marine Engineer (CME), Tom Cleary, tried to convince me that the mechanics of locomotion are very similar in both vehicles except the drive shaft of TJ is much longer and larger and at the end turns a propeller; where the drive shaft of the van eventually makes the wheels turn.
How do the drivers know where to go?
VV = looking out the window, maps, GPS, and when all else fails ask the spouse
TJ = refer to my July 18, 2022, NOAA Teacher at Sea blog post, “Who is driving this ship?”
Do both vehicles have windshield wipers?
VV = 2 windshield wipers
TJ = 9 windshield wipers + 2 Clearview screens which are rotational window wipers that work via centripetal force.
Clearview Screen – Centripetal Windshield Wiper
How big is the freshwater (potable water) tank?
VV = 23 gallons
TJ = 47,382 gallons. The ship also can make its own freshwater from saltwater using a reverse osmosis system
What is greywater and how big is the collection tank?
Greywater is the relatively clean wastewater from baths, sinks, washing machines, and other kitchen appliances.
VV = 25 gallons
TJ = 27,878 gallons
What is black water and how big is the collection tank?
Black water is sewage or the wastewater from toilets.
VV = 25 gallons
TJ = 29,440 gallons
What about the hot water systems?
VV = Has a 6-gallon water tank where water is heated using natural gas.
TJ = Has two separate hot water systems. The first uses electricity to heat water in a 60-gallon tank. This water is available for decks 01, 02, and 03. These are the three decks above the main deck. The other system has two 60-gallon tanks plumbed in series that serve the laundry room, galley, and staterooms on decks 2 and 3. These are the two decks below the main deck. Pumps constantly move water through the systems helping to provide (almost) instantaneous hot water from the tap.
What is the size and amenities of the kitchen (galley)?
VV = 2 burner gas stove, microwave, no conventional oven, two cupboards used for food storage, 1 cupboard used to store pots, pans, and other miscellaneous kitchen items, approximate size of counter next to the sink is 6 square feet.
TJ = Areas including food prep, cooking, serving, dish washer, dry storage and steward’s office are all in an area roughly 800 square feet.
What about where people eat (mess hall)? What is it like?
VV = One table (roughly 2’ x 3’) plus two benches. Entire area is approximately 24 square feet. A picnic table is also an option when available. It is provided by the campground.
TJ = Three tables (roughly 2.5’ x 10’), 20 chairs, multiple refrigerators, freezers, beverage & coffee dispensers, salad bar, sink, and snack shelves. Entire area is about 250 square feet.
Do these vehicles have refrigerators and freezers?
VV = 3 cubic foot refrigerator + ½ cubic foot freezer. Ice is made with a mini-ice cube tray.
TJ = All staterooms have a mini fridge. There are a mixture of small and home-sized refrigerators and freezers in the galley and mess hall for the convenience of the stewards and crew. There are also two very large walk-in refrigerators and freezers that are used by the stewards. An ice maker is housed in the galley and is used to fill coolers, etc.
How many berths (beds) are aboard?
VV = The camper and van each have two, making a total of 4 places where people could sleep.
TJ = There are 36 places for people to sleep, and the hospital has one bed.
What is a “head” and how many are there?
According to a Navy history website, “Head” in a nautical sense referring to the bow or fore part of a ship dates to 1485. The ship’s toilet was typically placed at the head of the ship near the base of the bowsprit, where splashing water served to naturally clean the toilet area.” (Icky!)
VV = One toilet/shower unit in the camper + a portable toilet if needed.
TJ = Each stateroom has access to a toilet/shower unit + a public toilet on the main deck.
How many stairs are there?
VV = Two steps into the camper
TJ = It all depends upon how a flight of stairs is defined and who you ask. If a flight is defined as at least 8 steps, the consensus among those asked is somewhere between 20 and 22 flights of stairs. TJ is essentially a 6-story building after all.
What about doors? How many are there?
VV = Van has 5 doors (if you count the trunk); camper has 1 door
TJ = Too many to count! There are five doors, however, that are very important. They are the internal watertight doors that isolate areas of the ship in case of emergencies. There are also additional watertight doors that one uses to go from the internal spaces to the decks of the ship.
Closed watertight door
Open watertight door
What is the outer cover made of?
VV = Van is painted steel; camper is painted aluminum
TJ = Painted steel. The deckhands really do a fantastic job of keeping TJ in great repair!
What are the external dimensions of each vehicle?
VV = Van: Length: 17”, Width: 6’ 7”, Height: 5’ 10”; Camper: Length: 16’ 7”, Width: 7’ 4”, Height: 10’; total length of the Van + Camper = 33’ 4”
TJ = Length: 208’, Width (beam): 45 ‘, Height (from the keel to the wind birds): ~ 100 feet
Meet the Crew
Chief Marine Engineer (CME) Tom Cleary got his first paycheck for a boat job when he was 16 years old and has not stopped working on boats since. This extremely competent engineer is originally from Cape Cod and has worked for NOAA for over 20 years – the last 11 years have been aboard Thomas Jefferson. His off-ship activities revolve around his wife and four children, and maintaining an 80-year-old home.
Tom states that that, “A jack of all trades is a master of none, but still always better than a master on one”. He enjoys the variety presented to him by his work duties. No two days are alike. He oversees 9 people, and his duties require mechanical, electrical, plumbing, and managerial skills.
He is a classic hawsepiper. This means that he did not go to a maritime academy to become an engineer. He learned from the ground up first by working on sight seeing boats and ferries in the Cape Cod area to working on several NOAA ships. From working as a deckhand, steward, to chief engineer – he has literally crawled up the hawsepipe.
If budget was not a limiting factor, what could I invent for you that would make your job easier? He wanted to be clear that he meant no disrespect, however, he replied that he would like some robots. Much of his job is spent dealing with people. Budget management meetings, payroll, planning schedules, rating performance, training, drills, and dealing with “hotel” services for the crew (refrigeration, air conditioning, plumbing, hot water issues, etc.) take up much of his time. Tom likes the crew, however, if there were fewer people and more robots working on the ship, he would have more time on engineering challenges. (I wonder if he has contemplated the challenges presented by maintaining a gang of robots?)
1AE Perry and CME Cleary
What is the difference between a boat and a ship?
According to Britannica Kids, “A ship is a large boat that can carry passengers or cargo for long distances over water. People have been using ships for transportation, exploration, and war since ancient times.”
Parts of a Ship
Diagram showing the main parts of a ship
“Most ships are much larger than most boats, but they have many of the same parts. As on boats, the front of a ship is called the bow. The back is the stern. A ship’s left side is known as the port side. The right is the starboard side.
A ship’s frame, or body, is called the hull. The keel is like the ship’s backbone. It is a central beam that runs along the bottom of the ship from front to back. The keel keeps the ship from tipping over.
Ships usually have many decks. The decks are like the floors of a building. Cabins for passengers, engine and control rooms, and spaces for cargo are often on different decks.
An engine inside the ship provides energy to propellers at the back of the ship. The propellers push the ship through the water. The rudder, which is also at the back of the ship, helps in steering. When the ship is not moving, a heavy metal anchor may be lowered into the water. This keeps the ship from floating away.” (Britannica Kids)
This excellent video clearly defines all the parts of a ship labeled in the diagram above.
Watch this video to help you learn the parts of a ship!
Did you know?
Earlier, I stated that I use GPS (Global Positioning System) on my phone to help navigate while driving. Just what is GPS? It is a highly accurate satellite-based navigation and location system. With a GPS receiver (like my phone), users can quickly determine their precise latitude, longitude, and altitude.
If I need to drive from Los Alamos, NM to Los Angeles, CA., I place these end points into Google Maps and GPS helps me plan a path to drive. Some people use GPS-capable watches to help them determine how far they have run and how much elevation they have gained. We also use GPS on the ship. At any one time, the survey is using between 25-30 GPS satellites at a time – some from other countries.
Something else I learned today is that GPS is the system developed by the USA. Other countries have their own systems that work in much the same way. Countries cooperate and use each other’s satellite systems. Here is a list of GPS-like systems used by other countries.
GPS = United States
GLONASS = Russia
Galileo = European Union
QZS = Japan
BeiDou = China
SBAS = Korea
Watching this NASA Space Place video, “GPS and the Quest for Pizza” will also help you understand how GPS works.
GPS and the Quest for Pizza
Personal Log
For the Little Dawgs . . .
Q: Where is Dewey? Hint: You use these to climb up or down.
Dewey, what are you sitting on?
A: Dewey is sitting on a step of a flight of stairs. All the steps on the ship have a non-skid surface. They are very effective at giving you sure footing as you climb up or down the stairs. There are flights of stairs inside and outside of the ship. They go from one deck to another. All in all, there are between 20-22 flights of stairs on Thomas Jefferson.
Dewey is sitting on one of the ship’s many flights of stairs.
Many a fine sailor . . .
With only a few more days to go on this incredible journey, I was excited to read on the next day’s Plan of the Day (POD) that I would be going out on the launch (small boat) to help with surveying close to shore. We had a large area to survey and also pick up some “holidays” in areas that were previously surveyed. A data holiday is an area that was missed in a previous survey. I packed my backpack, got a good night’s sleep, and ate a small breakfast to prepare for the day.
TJ Launch = Bucking Bronco
Let’s just say, it was a rough day. The waves were not terribly high (~ 2 feet), however, the launch rode like a bucking bronco! I was fine for the first 30-45 minutes. Then, I started to feel all hot and woozy. After “revisiting” my breakfast several times and losing my TAS hat overboard, the crew brought me back to the ship. I was taken to the infirmary where the medical officer took my vitals every 15 minutes for an hour and encouraged me to eat some saltines and drink Gatorade. After a long nap, shower, and Ramen noodles for supper, I felt much better.
At supper, the three crewmembers who were on the launch with me said that they tried to look for my hat. They found a dead fish, but they thought it wouldn’t look very nice on my head. I kidded back that Dewey, who was in my backpack, threw up a little bit, also. It sure was an adventure!
I cannot say enough nice things about the crew members who took care of me in my time of need. They were professional, kind, and had my wellbeing first and foremost in their words and actions. I am very grateful. Thank you!
Later that evening the Chief Boatswain Pooser told me, “Many a fine sailor has lost their lunch on the launch.” It made me smile. I was finally part of the club.
Mrs. Grimm and her First Mate Husband Phil
Please note – As I complete this post, I am now home. I am on land, however, I have more to share. My final blog posts will be sent from my home office. (Funny. . . Why does the room seem to be rolling from side to side? No one told me that I would still feel the rocking of the ship the day after my disembarkation. I don’t mind. It is pleasant reminder of my time aboard ThomasJefferson.)
Today, I am going to share some science and technology information from the engineering department. The engine room is located on the two decks below the main deck. The engineers have many tasks and responsibilities on the ship. I am going to share some of the main ones.
The first responsibility is to make sure the ship engine is working properly. Engineers work around the clock to make sure that in the case of an emergency, they can act quickly. As you may imagine, the ship has a huge engine with many cylinders. I was very lucky to see the engine before and after it was working. When we anchored our ship near the Rocky River, we stopped the engine. The ship’s electric power is powered by three diesel generators. This powers various systems in the ship such as AC, heating, computers, refrigerators etc.
When we were ready to get underway from anchorage for our next journey on Lake Erie, I thought it was a good idea to observe the engineering department and see how they start and operate the engine. Anyway, I went down there about 20 minutes before our departure. Engineers were busy as bees around the machines touching, clicking, opening/closing valves. There was a constant movement. They all know what to do, including me. My job is to watch how the ship engine operates. I was roaming around to see what would be the best place for me to videotape the moment when they start the engine. Luckily, I found one, and “loudly” waited there. Oh, I forgot to mention. Before you enter this place, you have to have hearing protection. I put my ear plugs in and on top I put on ear muffs. I was told the noise was going to be so loud. Once they checked all the parts, it was time to start the engine. All the pistons started to move, and it reminded me of the sound of my mom’s old sewing machine, where there was constant ticking, clicking sounds. It was fascinating to witness that moment.
Starting the ship’s engine
The ship engine is fully operationalLearning about engineering conceptsEngineering room monitorsI Complex engine room
Hear this! Every important part in the ship has a back up. Some of them even have third, or fourth back up. For example, when I went to the bridge to learn about how they control the ship up there, the first thing they told me was that everything has a back up. If one screen shows a map, here is the same map on a different screen. So the engine also has a back up, an auxiliary engine, in the case of an emergency it would quickly kick in. However, the auxiliary engine does not have the same power as the main engine. Its role is to keep the ship out of danger, until the main engine issue is resolved, or the ship can pull into port. There was also a steering room down in the engine room in case the deck loses its steering control, they can manually steer the ship down below. Isn’t that cool! For that purpose, there is always an engineer on watch who monitors the steering gear around the clock. Remember, the ship works 24 hours.
Besides engines, the ship has a water treatment system down in the engine room. To be honest, this was the moment where my excitement made its zenith point. You would understand this when you read what I am about to say on this. The water treatment system consists of many tubes which contain membranes to filter the water, desalinate it, and make it ready to drink. The system uses the concept of reverse osmosis (RO) to make drinkable water out of any water systems, even the ocean. However, I must note that even though the technology allows you to make the water, engineers make decisions whether to make the water based on several factors. First, it is preferred to be at least 12 nautical miles offshore in open water. This is because the water is less likely to have pollutants that could clog the filters, which would quickly lead to other issues for engineers to deal with. Deep water is also preferable for similar reasons; sediment, mud, and sand that can be churned up in shallow waters is another way for the filters to be clogged. In the case of Lake Erie, engineers decided to NOT make water because we are working relatively close to shore, and would not be an efficient use of resources. This is because the ship fills all its potable water tanks (~50,000 gallons!) in port using municipal water from the City, which is enough to supply the ship for several weeks. The ship uses ~1,500 gallons of freshwater a day! But remember, that is for a 30 person crew – eating/drinking, showering, cleaning, etc. Long story short, we have sufficient water in the tanks for the duration of our mission. Therefore, there is no need to make more water.
Reverse Osmosis (RO) System
Okay, let’s go back to the concept of desalination by using reverse osmosis. It sounds complicated, right? It is quite simple in principle. To be honest, even myself, who trained in biology both during my bachelors and graduate school, thought that so many people in the world can’t use ocean/sea water to solve the water crisis because the technology is very “expensive” and that is not an option. On the contrary, it is a very simple science concept and it is relatively cheap when you think of the product and the benefits it has. However, why is it still not accessible to everyone in the world? I guess the question will stick in my mind from now on.
Let’s get back to the science concept of osmosis and reverse osmosis. In osmosis, you have a semi-permeable membrane where water moves freely without energy input to the system until the two sides of the membrane have equal number of water molecules. The osmotic pressure to the membrane is equal in both sides due to having the same amount of water molecules on both sides of the membrane. Cells in our body are semi-permeable and water can go in and out of the cell based on the concentration of solutes in both sides of the membrane. You can see the concept of osmosis in every biological system. We have even applied the concept of osmosis since ancient times to preserve foods by dehydration with salt or sugar such as jams, pickles, pastrami and so on. The microorganisms that make food go bad can’t survive without the presence of water. That’s why honey is the only natural product that never goes bad due to its high concentration of substances.
In reverse osmosis, the movement involves water molecules passing through a higher substance concentration (sea water) to a lower substance concentration. As you can see it is the opposite of osmosis. Water should move the other way around. How do we achieve that? When we apply a pressure high enough to the point where it is higher than the osmotic pressure to the saline water, it causes fresh water to flow through the membrane while holding back the salt. The higher the applied pressure above the osmotic pressure, the higher the rate of fresh water transports across the membrane. Here you have freshwater on the other side of the membrane. Pure and simple. Based on the membrane you use in the system, it also traps all the other pollutants as well. Mind blowing! This is how the ship makes its own freshwater.
So far, we talked about engines and the RO system of the ship. We also have generators down there. They are the ones that generate electricity by using fuel. The ship generally runs on one generator at a time, but may require two during some operations. However, the ship has three generators on board in case others fail.
One of the generators
I guess I’ll leave it here and let you learn more about the science and technology of ship engines and RO systems on your own!
Personal Log
As educators, we often fail to connect our discipline to other disciplines. We usually don’t understand how one concept has many other applications. If being a Teacher at Sea on Thomas Jefferson taught me one thing, it’s that science concepts intervene with other disciplines. If students don’t see these connections, or how the concepts they learned apply to different circumstances, then I believe they fail to see the bigger picture. As a result, “true” learning will never be achieved.
I was a scientist by training before I became an educator, and of course I know what osmosis is in biological systems. However, I must confess that I did not see the applications of osmosis this far, not even during my graduate studies. There has not been a single educator who showed me the concept of osmosis in this perspective. I don’t blame them. They probably haven’t had a chance to learn that way too. All I remember is the “U” shaped diagram with a semi-permeable membrane in the middle, and each side having different concentrated solutions, which shows how the water moves freely. And then they explained how once it reached equilibrium, both sides of the membrane had equal concentration. From there, they talked about different solution types, energy requirements of moving molecules from one side to another, etc. I guess you all remember this from your biology or related courses.
From this teaching, did you ever think about how this science concept is used in different applications? Like in this case, reverse osmosis to make freshwater from seawater. If you did, lucky you! You are one of those lucky ones- I didn’t have that opportunity. At least, I did not think about it at the moment. All I worried about was learning the concept and moving on. I guess my teachers at that time had the same “vision” as me. Teach the concept, test it with multiple choice questions and then move on thinking that students learned. When those students come across the same concept in different settings, they mostly fail. The justification of the educator would be like, “I don’t know why they failed. I taught them the materials and had great scores. They must have had a bad day during the testing.” Yeah! Yeah! Yeah! I know those.
Sorry for my long thoughts about our educational system. We really should, at least, teach science concepts to our classroom through its real world application. Only then, would they appreciate the power of the science concept they are learning, which could open a lot more creative ideas on their own, leading to innovation. These were thoughts that sparked my mind thanks to reverse osmosis (RO) system technology on the ship.
Another important thing that came to mind while I was down in the engine room was the importance of teamwork, and how important it is to always have a back up. We all know the importance of teamwork, and how the members of each team are equally important. But when it comes to teaching teamwork to the kids who have not experienced real teamwork, do they really understand its importance? If we want our students to work as a team in our classrooms, we need to design our lessons in a way that if one of the team members fails to complete a task assigned to them, the whole task fails along with it. Once they know this, I think the true understanding of teamwork will prevail to the students.
These were the thoughts that I have been contemplating while witnessing all the cool things I saw in the engine room. Who knows how students would be impacted if they saw these things?
Did you know?
Waves in Lake Erie are mainly caused by winds because of its shallow nature. If those waves move away from their generation zone, they become more regular and then are referred to as swells.
Sitting in the sun on a launch, Rainier in the background
Science and Technology Log
For my second time out on a launch, I was assigned to a shoreline survey at Narrow Cape and around Ugak Island (see chart here). Survey Tech Audrey Jerauld explained the logistics of the shoreline survey. First, they try to confirm the presence of charted features (rocks) along the shore. (As you may remember from my last post, a rock is symbolized by an asterisk on the charts.) Then, they use the small boat’s lidar (LIght Detection And Ranging) to find the height of the rocks. Instead of using sound pulses, as with sonar, lidar uses pulses of laser light.
Point Cloud: Each dot represents a lidar “ping”, indicating the presence of features above the waterline
Once a rock was identified, Audrey photographed it and used the laser to find the height of the rock to add to the digital chart. The launch we used for the shoreline survey was RA-2, a jet boat with a shallow draft that allows better access to the shoreline. We still had to be careful not to get too close to the rocks (or to the breakers crashing into the rocks) at certain points around Ugak Island. The line parallel to the shore beyond which it is considered unsafe to survey is called the NALL (Navigable Area Limit Line). The NALL is determined by the crew, with many factors taken into account, such as shoreline features, marine organisms, and weather conditions. An area with many rocks or a dangerously rocky ledge might be designated as “foul” on the charts.
Amanda and Audrey discussing the locations of rocks along the shoreline
I must pause here to emphasize how seriously everyone’s safety is taken, both on the small boats and the ship itself. In addition to strict adherence to rules about the use of hard hats and Personal Flotation Devices in and around the launches, I have participated in several drills during my stay on the ship (Man Overboard, Fire and Emergency, and Abandon Ship), during which I was given specific roles and locations. At the bottom of each printed Plan of the Day there is always a line that states, “NEVER shall the safety of life or property be compromised for data acquisition.” Once more, I appreciate how NOAA prioritizes the wellbeing of the people working here. It reminds me of my school district’s position about ensuring the safety of our students. No institution can function properly where safety is not a fundamental concern.
Career Focus – Marine Engineer
Johnny Brewer joined the Navy in 1997. A native of Houston, Texas, many of his family members had served in the military, so it seemed natural for him to choose a similar path after high school. The Navy trained him as a marine engineer for a boiler ship. Nearly 15 years later he went into the Navy Reserve and transitioned to working for NOAA.
Johnny Brewer, Marine Engineer
Working as an engineer requires mental and physical strength. The Engineering Department is responsible for maintaining and updating all of the many working parts of the ship–not just the engine, as you might think! The engineers are in charge of the complex electrical systems, plumbing, heating and cooling, potable water, sewage, and the launches used for daily survey operations. They fix everything that needs to be fixed, no matter how large or small the problem may be.
Johnny emphasized how important math is in his job. Engineers must have a deep understanding of geometry (calculating area, volume, density, etc.) and be able to convert measurements between the metric and American systems, since the ship’s elements are from different parts of the world. He also described how his job has given him opportunities to visit and even live in new places, such as Hawaii and Japan. Johnny said that when you stay in one place for too long you can become “stuck in a box,” unaware of the world of options waiting for you outside of the box. As a teacher, I hope that my students take this message to heart.
Personal Log
In my last post I introduced Kimrie Zentmeyer, our Acting Chief Steward. In our conversation, she compared the ship to a house, the walls of which you cannot leave or communicate beyond, except by the ship’s restricted wi-fi, while you are underway. I would like for my readers (especially my students) to imagine living like this, confined day in and day out to a single space, together with your work colleagues, without family or friends from home. How would you adjust to this lifestyle? Do you have what it takes to live and work on a ship? Before you answer, consider the views from your back porch!
Ugak Bay (Can you spot the whale?)
Word of the Day
bulkhead – a wall dividing the compartments within the hull of a ship
Q & A
Are there other NOAA ships working in Alaska?
Yes! NOAA Ship Fairweather is Rainier’s sister-ship and is homeported in Ketchikan, Alaska. Also, the fisheries survey vessel, NOAA Ship Oscar Dyson is homeported in Kodiak, not far from where we are currently located.
What did you eat for dinner?
This evening I had sauteed scallops, steamed broccoli, and vegetable beef stew. And lemon meringue pie. And a cherry turnover. And ice cream.
Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau
Date: May 31, 2019
Weather Data:
Latitude: 28°29.0’ N
Longitude: 079°34.1’ W
Wave Height: 1-2 feet
Wind Speed: 15 knots
Wind Direction: 155
Visibility: 10 nautical miles
Air Temperature: 27.6 °C
Barometric Pressure: 1013.7
Sky: Few
Science and Technology Log
Today and tomorrow I am learning all about the who and how of making the ship go. Ric Gabona, the Acting Chief Marine Engineer, has been teaching me all about the mechanics of powering the ship, managing waste, and providing clean drinking water. Today I will focus on two aspects of making it possible to live on a ship for weeks on end. First, I will teach you about waste management. Second, I will explain how freshwater is made to support cooking, drinking, cleaning, and bathing needs. In conjunction, all of these systems contribute to our comfort on board but also our safety.
Wastewater Management
Waste on board has many forms and it all must be handled in some way or it can lead to some pretty stinky situations. The main forms of waste I will focus on include human waste and the waste that goes down the drains. The waste is broken down into two categories. Black water and gray water. Gray water is any water that goes down the drain as a result of us washing dishes, our hands, or ourselves. Gray water is allowed to be discharged once we are 3 miles from shore. The water does not need to be treated and can be let off the ship through the discharge valve. Black water is water that is contaminated with our sewage. It can be discharged when we are 12 miles from shore. Black water goes into a machine through a macerator pump and it gets hit with electricity breaking the solid materials into smaller particles that can be discharged into the ocean.
Discharge of gray or black water has its limitations. These discharge locations follow strict rules set in the Code of Federal Regulations (CFR) and by the International Convention for the Prevention of Pollution from Ships (MARPOL). The CFR are set by the federal government and the regulations tell you where (how far from shore) you are allowed to discharge both gray and black water. However, sometimes Okeanos Explorer is in areas where black water cannot be discharged so the black water must be turned into gray water. At this point, once the black water has been mashed it will pass through a chlorine filter that will treat any contamination and then the waste can be discharged. However, there are places where nothing can be discharged such as Papahānaumokuākea Marine National Monument in Hawai’i. When in these no discharge areas the ship will store the gray and black water and then discharge when regulated to do so.
It is important to follow these regulations because as Ric says, “We are ocean stewards.” It is important that ships such as Okeanos Explorer be able to explore the ocean while making the smallest environmental impact as possible. The engineers and other ship and science mission personnel are dedicated to reducing our impact as much as possible when out at sea.
Making Water
Water makes up 60% of the human body and is vital for life. However, 71% of the water on earth is saltwater, not able to be taken up by humans, making it challenging to access freshwater unless you live near an inland freshwater system like where I come from up in Ohio along the Great Lakes. While out at sea, we have no access to freshwater and we cannot store freshwater from land on the ship so we must make it. On Okeanos Explorer freshwater is made using two types of systems, reverse osmosis and desalination. Reverse osmosis is used by seabirds to turn saltwater into freshwater. Saltwater passes through a semipermeable membrane allowing the smaller water particles to pass through while leaving the larger salt particles and other impurities behind. If you are seabird, you excrete this salt by spitting it out the salt glands at the top part of your bill or if you are a ship out through a separate pipe as brine, a yellow colored super salty liquid. The other method on the ship used to make water is desalination. Desalination is the process of boiling salt water, trapping the water that evaporates (freshwater), and then discharging the salty water left behind. The engineers could use a separate boiling system to heat the salt water however they have a much more inventive and practical way of heating the water. But before I can let you know of their ingenious solution we must learn how the engines run. Oops! Sorry, I need to go. Need to switch my laundry. So sorry. We will explore ship movement and the engines in the next blog. Stay tuned…
Reverse osmosis system on the ship.
Can you see the yellow colored brine and the clear colored potable water?
Filtered water station on the ship. Look familiar? You may have one like this in your school.
Personal Log
I really enjoyed learning all about the mechanics of operating the ship. It takes lots of very skilled people to make the equipment work and I love the ingenuity of the machines and those who run them. Space is limited on a ship and I am just fascinated by how they deal with the challenges of managing waste and making freshwater 50 plus nautical miles from coast for up to 49 people. Today was a great learning day for me. I do not know much about engines, wastewater treatment, and water purification systems so I really learned a lot today. I now have one more puzzle piece of ship operations under my belt with many more to go.
Aside from my lesson in thermodynamics, combustion, chemistry, physics, and other sciences that I have not touched since college, I learned about the safety operations on the vessel. Today we practiced a fire drill and an abandon ship drill. We learned where we need to go on the ship should one of these events ever occur and which safety gear is needed. I donned my immersion suit and PFD (Personal Flotation Device) to make sure they fit and all the pieces/parts work. Being in the ocean would be a bad time to realize something isn’t right. Donning the safety suit was a funny situation for all movement is super restricted and you feel like a beached whale trying to perform Swan Lake on point shoes.
Me in my immersion suit, fondly known as the gumby suit.
However,
with some help from my friends we were all able to get suited up in case an
emergency should arise.
Tonight I
look forward to another sunset at sea, some yoga on the deck, and seeing a
spectacular star display.
My yoga spot
Did You Know?
Eating an apple a day while at sea can keep seasickness at bay.
Ship Words
Different terms are used to describe items, locations, or parts of the ship. As I learn new words I would like to share my new vocabulary with all of you. If there is a ship term you want to know more about let me know and I will find out!
Galley: Kitchen
Mess Deck: Space that crew eat aboard ship
Fantail: Rear deck of a ship
Pipe: Announcement on the ship via a PA system
Muster: Process of accounting for a group of people. Used in safety drills on a ship such as a fire or abandon ship drills.
Stateroom: Sleeping quarters on the ship
Abeam: On the beam, a relative bearing at right angles to the ship’s keel
Bearing: The horizontal direction of a line of sight between two objects
Animals Seen Today
1 flying fish
Whales (Too far away to tell what they were but we saw their spouts!)
My first day onboard was spent following around 2nd Engineer Will Osborn. Will is an officer in the Merchant Marines, and a NOAA Augmentation Pool Engineer assigned to the Oregon II. He invited me to follow him around and learn how the engineers prepare the ship for sea. One of the duties of the engineers is to check the liquid levels of each of the tanks prior to sailing. They do this by performing soundings, where they use a weighted measuring tape and a conversion chart to determine the number of gallons in each of the tanks.
2nd Engineer Will Osborne performing a sounding on deck
Performing a sounding on the dirty oil tank
The engineering team then prepared the ship to sail by disconnecting shore power and turning on the engines aboard ship. I got to flip the switch that disconnects the ship from shore power. I followed the engineering team as they disconnected the very large cable that the ship uses to draw power from shore. I then got to follow 2nd Engineer Will as he turned on the engines aboard ship.
Kristin Hennessy-McDonald turning off the shore power in the engine room
Once we set sail, the science team met and discussed how longline surveys would work. I am on the day shift, which is from noon to midnight. We got the rest of the day, after onboard training and group meetings, to get used to our new sleep schedule. Because I was on the day shift, I stayed up and got to watch an amazing sunset over the Gulf.
Gulf Sunset
Gulf Sunset
Our second day out, we set our first two longlines. The first one was set before shift change, so the night shift crew bated the hooks and set the line. My shift brought the line in, and mostly got back unbaited hooks. We got a few small Atlantic Sharpnose (Rhizoprionodon terraenovae) sharks on the line, and used those to go over internal and external features that differentiated the various species we might find.
After the lines were in, it was time for safety drills. These included the abandon ship drill, which required us to put on a submersion suit, which is affectionately referred to as a Gumby suit. You can see why below. It was as hard to get into as it looks, but it will keep you warm and afloat if you end up in the water after you abandon ship.
Kristin Hennessy-McDonald in the Gumby Suit
Personal Log
I have learned a few rules of the boat on my first days at sea. First, always watch your head. The stairwells sometimes have short spaces, and you have to make sure not to hit them on your way up. Second, always keep a hand free for the boat. It is imperative at sea that you always have a hand free, in case the boat rocks and you need to catch yourself. Third, mealtimes are sacred. There are 31 people aboard the boat, with seating for 12 in the galley. In order for everyone to get a chance to sit down and eat, you can’t socialize in the galley.
Did You Know?
In order for the crew to have freshwater to drink, the Oregon II uses a reverse osmosis machine. They create 1000-1200 gallons of drinkable water per day, running the ocean water through the reverse osmosis generator at a pressure of 950 psi.
Quote of the Day
And when there are enough outsiders together in one place, a mystic osmosis takes place and you’re inside.
View of the Oscar Dyson on our last morning in Dutch Harbor, AK
Weather Data from Norfolk, VA
Latitude: 36.8508° N
Longitude: 76.2859° W
Tide Heights: 2.76 ft & 3.35 ft
Wind Speed: 19 km/h
Wind Direction: NE
Air Temperature: 28°C, 82°F
Barometric Pressure: 1028.1 mb
Sky: Clear
Humidity: 76%
“If you’re awake at 6:00 a.m., you’ll get to see the Oculus as I prepare it to glide around in the Bering Sea!” With this promise from Dr. Chris Bassett, I made sure I was ready at the appointed time on our last day on the ship.
Dr. Chris Bassett preparing the Oculus.
The launching of the Oculus was not on Chris’ schedule for that day beforehand; our expedition was ending earlier than expected. That setback, however, did not diminish the drive to pursue science. The resilience and perseverance of the science team to readjust was apparent. Through the mist of disappointment, the scientists continued to do as much as possible to continue our mission of the pollock survey.
Science and Technology Log
Developed at Pacific Marine Environmental Laboratory in partnership with the University of Washington’s Joint Institute for the Study of the Atmosphere and Ocean and the University of Washington Seaglider Fabrication Lab, the Oculus is an ocean glider which samples abiotic factors in the ocean such as temperature, salinity and dissolved oxygen at different depths.
Inner component of the Oculus which regulates buoyancy.
After setting the Oculus upright, Chris connected it via the Internet to a computer operated by a scientist at the University of Washington. This scientist is going to be sending coordinates to the Oculus and guiding it at various depths in the Bering Sea. Chris explained that the Oculus has the ability to adjust its buoyancy quickly and is able to carry out a more reliable survey than other gliders. Through the data remotely sent by the Oculus, scientists can gather a more accurate picture of ocean dynamics such as water column layers and ocean mixing.
Unfortunately, I was not able to observe the launch of the Oculus as I had to leave for the airport.
Personal Log
View from dock in Dutch Harbor, AK.
The week I spent on the ship was a whirlwind of experiences. I was just hitting my stride being completely awake for my 4:00 a.m. to 4:00 p.m. work shift and efficiently measuring the length of the pollock in each trawl.
Pollock and jellyfish in trawl.
At the end of the last trawl, I held a pollock, out of its element of water. Its dense, streamlined body shimmered with iridescence. One eye stared, unfocused on the strange surroundings. I too would be out of my element were it not for the 208.6 ft. boat on which I was standing. Being on the boat was a constant reminder that my species is alien to this ocean habitat and that to explore it, we have to use technology such as the Oculus, underwater cameras, and acoustic technology as well as physical trawls. Together, these different means of exploring combine information so that we can evaluate our interactions with the ocean and its inhabitants.
The view of the horizon from the deck of the Oscar Dyson.
At times, the ocean had a disorienting effect. When on the deck, I looked out from all directions and saw nothing but ocean capped by a dome of stratus clouds. Under this lid of heavy clouds, the sun gave no clue to discern our direction or time of day.
Marine Careers
Karla Martinez, Junior Unlicensed Engineer, on duty on the Oscar Dyson.
With her philosophy of focusing on the positive, Karla Martinez enjoys her time on and off duty on the Oscar Dyson. As a Junior Engineer, Karla is responsible for ship upkeep and repairs. On our last day of the trip, I spoke to her as she changed air filters in all of the staterooms. Karla began working as a NOAA Junior Engineer three years ago after seven years in the U.S. Navy. Since working for NOAA, she has traveled extensively and makes sure she visits each place the Oscar Dyson docks. Karla is on the ship for at least 7-8 months of the year, and she makes the ship feel like home by getting to know people.
Karla Martinez, Tourist, off duty in field of flowers, Unalaska, AK.
For young people who are interested in a career like Karla’s, she advises asking many questions and studying technology as much as possible. In high school, students should take the ASVAP test before entering the military. Once admitted to the military, students should get trained. Karla states that students should talk to their counselors and find out all they can.
Location: 56o20.5N 166o07.1W (We are currently ~ 170 miles due east of the Alaskan Peninsular National Wildlife Refuge!)
Weather from the bridge: 51o F, Wind 8-10 knots from 285o, high thin clouds, seas 2-3 ft (1 hour after I wrote this we were socked in with fog, which is fairly common for this part of Alaska during this time of year.)
Science and Technology Log:
Fairweather was commissioned in 1968 and has 2 engines. The engines are pretty ridiculously big. They are diesel combustion engines and run similarly to a diesel tractor engine.
Karla Martinez standing next to one of the engines for scale. She is an oiler, and currently the only female member of the engineering crew. Go Karla!!
She was built with Controllable Pitch Propellers. This technology is fascinating!! It allows for very fine control of the ship’s motion.
An image of a CPP propeller with blades in two different positions to show the axis of movement. Image courtesy of Schottel website.
The CPP technology works by turning each of the propeller blades on its individual axis. In this way, the propellers never have to change the direction of spin, but instead the spin continues the same direction but the ship can come to a stop and then reverse direction. This differs from the fixed propeller system that is on the small launches. The Fairweather’s propeller blades are about 3 feet each in size for a total propeller diameter of 7 feet.
She also has a bow thruster which can be used in certain circumstances. The bow thruster enables the bow to move from side to side while the stern of the ship is static. It is essentially a propeller mounted into a tunnel/hole in the bow giving thrust perpendicular to the typical direction of travel. For a large ship like Fairweather, this is especially helpful when moving in and out of docking locations.
The next two technologies are of particular interest for my environmental science classes. Because the ship is often at sea for extended periods, it is necessary to make fresh water from the salt water. Typically Fairweather will take on ~16,000 gallons of water in port, but evaporators will be used to generate supplemental freshwater when it is needed.
This is the seawater intake for one of the evaporators.
The evaporators on Fairweather are flash (plate) evaporators and they can generate around 160 gallons of water per hour when operating optimally. The evaporators are running a distillation process by evaporating the water using heat from the boilers at a low pressure and then separating the freshwater from the brine (highly saline water). Because of the constant removal of salt from the water, the evaporators need to be cleaned often for best use.
This is one of the flash evaporators. Inside the pressure is lowered and the temperature runs at about 170 degrees F. While this is below the normal boiling point of water, the water will still vaporize and condense due to the low pressure
The brine is then discharged and the freshwater is added to the supply tanks. When leaving the tanks, it is pumped to higher pressure and further treated through filters and with UV light to kill off any bacteria that may have made it through. That water is stored in a hydropneumatic tank at high pressure so that water can be delivered to all parts of the ship without the need for continuously running pumps.
People eat and drink and then they pee and poop. They also like to shower and brush their teeth and wash their hands. They also need water to drink and cook with and to make coffee and tea. Obviously there is also a lot of gray water (sinks and showers) and black water (toilets) that is produced on a ship of this size carrying ~40 people. So what is done with all of it? Well, blackwater goes through the MSD (marine sanitation device) before it is discharged outside of 3 nautical miles from land. MSDs are standard on all ships and work similarly to land based sewage treatment on a much smaller scale. Gray water can be acceptably discharged as is in most places, but must be stored within NDZs or No Discharge Zones.
Guidelines for discharge
Other necessary technologies on the ship are the refrigeration system, the boilers and the generators. But I won’t go into all of those processes. It’s just amazing to me that there are so many things that must be accounted for on a ship if it will be at sea for multiple days!
Crew of the Day! Engineering
If you’re going to get pictures of the engineering crew, you have to find the rare times when lots of them are together… you can find a good group at mealtimes or when the ship is being docked and they all need to be on the boat deck! L-R: Sean, Kyle, John, Mick and Ray
L-R Sean, Connor, John, Mick, Alex, Eddie… and even with all my stealth, I’m still missing a couple from the group pictures!
The Engineering crew on this ship is a highly eclectic bunch! They are also a REALLY difficult group to get together for pictures. They have about a 40 year span in age and include folks from all over the world with a great diversity of backgrounds. There are several levels within the engineering crew. The entry level position is termed a wiper, next is an oiler, and then engineering utility, and junior engineer. These positions are unlicensed, analogous to enlisted positions in the military. The licensed positions are 3rd Engineer, 2nd Engineer, 1st Engineer and Chief Engineer. There are five licensed engineers on board right now and another six in the department who are oilers and junior engineers.
Anything that is mechanized, motorized, has an electric cable going to it, or needs to be oiled or lubed, those things all fall under the watchful eye of the Engineering crew. One of the young 3rd Engineers, Connor (nicknamed Titan because he really is giant) also describes them overseeing “Hotel Services” – plumbing, lighting, heating & cooling. The crew keeps a 24 hour watch whenever the ship is underway, and can take over aft steering if something were to fail with the bridge steering. They are also on watch whenever the small launches are being deployed or replaced to their cradles. If the bow thruster is being used, a crew member will also watch to see that it engages properly for use.
The well-being of the ship is in the hands of the Engineers and therefore the Chief Engineer reports directly to the Commanding Officer (where all other department heads report to the Executive Officer). The CO and the Chief Engineer really share the task of running the ship, but ultimate responsibility lies with the CO.
Personal Log:
The food! OH MY GOODNESS!!! The food on Fairweather has been terrific. There are two amazing cooks here currently. Tyrone, who is the Chief Cook, has been with Fairweather for 5 years. Prior to that, he cooked for the Navy. Kathy is the Chief Steward (which means she is in charge of the kitchen and develops the daily menus) and has been with NOAA ships cooking in some capacity for almost 20 years! You’ll learn more about her in my next blog… The Interview Issue!
So, here’s a sampling of what’s been on the menu since I’ve been here: Prime Rib, Lobster, Argentinian flap steak with Chimichurri, Halibut with some crazy good pesto type sauce… I am going to leave the ship about 10 pounds heavier than when I got here. So, this is not what you always get on NOAA ships, but this particular pairing of Kathy and Tyrone makes some serious magic!!
Dana Clark and ENS Joe Brinkley aboard a skiff returning to the Fairweather after tide observations
Today is my last full day on the Fairweather and tomorrow I will be departing when we dock in Seward, Alaska. I could not have asked for a better final day! But first, yesterday I went out on a launch to survey a near shore polygon. Let me explain. A project is the survey area that the Fairweather is tasked with, in this case, Sitkinak Strait. The project is then broken down into sheets which are areas to cover each day. The sheets are divided into areas called polygons and each day, the launches will be tasked with surveying specific polygons. Yesterday, our polygon was very close to shore. This was difficult because the rocks and vegetation could be hazards. The surveyor in charge, Pat, had to be in constant communication with our launch driver Rick so that they could maneuver safely as we used the multi-beam sonar to scan the area. Since we were so close to shore I kept a steady scan of the landscape for bears. I did this not because we were too close and in danger from a bear, but just because I wanted to see one. We accomplished our task and finished our polygons and did not see a bear, but we did see a brown fox walking along the black sand beach!
Bald Eagle, Japanese Bay, Kodiak Island, Alaska
Now, for today. I did tide observations in Japanese Bay and as we were setting up I snapped this picture of a bald eagle in flight with prey in its claws, possibly some kind of rodent since it appears to have a tail! (Click on the picture to see it better) We took tide observations which were interesting today for three reasons. First, the tide level was totally different than it was last week when I took measurements. If you look at the two pictures below, one from June 28th and the other from today, July 2nd, you can see how much lower the tide is. Look at how close to the staff I was today and how far away last week. The water actually went lower than the tide staff today! Earth Science is so interesting.
Dana Clark reading water level off tide staff, Japanese Bay, Alaska, June 28, 2014
Dana Clark reading water level off tide staff, Japanese Bay, Alaska. July 2, 2014
Now, the second and third reason I found tide observations so cool today did not have anything to do with the tides. It was all about the animals. And no, it did not involve a bear. Second reason it was interesting was the bald eagle in the picture above. I just love how I was able to capture it with its wings spread so majestically. It has a nest in the tree that it was flying into. Since it was carrying lunch in its claws, I thought maybe it was taking food to the nest to feed baby eagles. What do you think? Now, third reason tide observations in Japanese Bay were so cool today was because of swimming deer! I know I should have led with that but I knew it would be pretty awesome to put a swimming deer video into the middle of my blog. The video is a little jumpy because I was fighting the waves in a small boat called a skiff. Check out the video!
Before I thought to start videotaping I was able to capture a picture of them swimming!
Swimming Deer. Japanese Bay, Kodiak Island, Alaska.
Scientist of the Day Today I would like you to meet Shauna Glasser, a First Assistant Engineer for NOAA who is currently aboard the Fairweather. It’s old hat for Shauna to travel wherever the Fairweather may take her. Growing up, she moved so many times that college was the first school she went to for four years in a row! Even though she moved often she still managed to be successful in her academics. She received a BA in Marine Engineering Technology from California Maritime Academy but it was by chance that she even enrolled there. As a senior in high school she received a postcard in the mail from this college.
Shauna Glasser, First Assistant Engineer on the Fairweather
Knowing nothing about the school, Shauna decided to visit the school for a week long introduction program to see their campus and curriculum. She knew she wanted to be a marine biologist and she enrolled. However, before college began, her math teacher from high school recommended she take a summer class in chemical engineering. Shauna always excelled in math and she really liked the engineering, but not so much the chemical side. She soon switched paths from marine biology and became a marine engineering major.
Shauna has been with NOAA for five years and has worked her way up in the job. As first assistant engineer she is the person on the ship directly under the chief engineer. There are eight people who report under first assistant engineer. The engineers do all the maintenance on the ship and they keep it running. Shauna says that this is a job that is in high demand. The Fairweather, along with two other ships in the fleet, will actually be docked at port starting July 7th because they are in need of more engineers aboard. The ships can’t run without them! This young engineer has risen to a leadership role in her field and sees being a chief in her future. Shauna says, “Go for it! Ask questions, be yourself, think smart, and you can do it!”
Personal Log
NOAA Ship Fairweather, July 1, 2014
My day today is ending just as magical as it began with several more animal sightings. We are underway to Seward, Alaska where I will say goodbye to the wonderful crew of the Fairweather. As we got underway we had a fire drill and then a little while later, an abandon ship drill. As the crew at my drill station were standing on the port side of the ship wearing our life jackets, hats, and in possession of our survival suits, a pod of orcas swam by spouting from their blowholes. They play and blow as they pass by our ship. Then, after dinner I am working on this blog and take a break and go to the bridge to see what’s going on. There were pods of orcas to the port side and humpback whales a mile north of us. The humpbacks were spouting and breaching. I have an out of focus picture of a whale going straight up in the air. It looks like it’s pirouetting. The crew on the bridge said that this was a large sighting of whales and everyone was excited.
Dana Clark at the helm of the Fairweather with Jim Klapchuk
I begin looking at the equipment on the bridge and asking questions when I was asked if I would like to steer the ship. Nervously I said yes. They explained that it was currently on a type of ship auto pilot which they would turn off and I would take the helm, similar to a steering wheel on a car, and I would be in control of the ship’s path. Jim Klapchuk, an Able Seaman on the Fairweather, showed me what to do. I would be at the helm and would continue in the correct direction by looking at my gyroscopic compass and my rudder angle indicator. The gyroscopic compass would tell me my heading, which was 030° which would keep me going north-east. The rudder angle indicator would move every time I moved the wheel because turning the wheel turned the rudder and the rudder changes the course of the ship. Keeping this lesson in mind, they turned off the auto pilot and I was steering the 231 foot ship on a heading for Seward! I kept constantly looking at the numbers and trying to keep it at exactly 030°. After a short while, the boat felt like it was swaying a bit so I gave the helm back to Jim and they set it back to auto. What a way to end my science adventure!
Fairweather navigational chart that shows route from Kodiak Island heading to Seward, Alaska
A warm thank you to all the crew aboard the Fairweather. I have learned so much and will take back to my classroom a new excitement along with tons of science. Terms like hydrographic, surveys, hydrographer, polygon, launch, CTD, gyroscopic compass, swells, tides, charts, cartographer and many more will be introduced. I have also enjoyed getting to know you and hearing about your lives. You are a talented group. And I learned to play cribbage – thanks Tim and Charlie!
Question: But first, an answer to the last plant or animal poll. It appears that all of you know what a jellyfish looks like because you voted animal. Thanks for voting and thanks for following my blog. There are a lot of jellyfish here in the Gulf of Alaska and I will leave you with a few of my favorite shots. It’s amazing how each one looks so different. Which is your favorite? Vote in the poll below!
NOAA Teacher at Sea Yaara Crane Aboard NOAA Ship Thomas Jefferson June 22, 2013 – July 3, 2013
My roommate, Ensign Kristin, is teaching me how to steer at the helm.
Mission: Hydrographic Survey Geographical area of cruise: Mid-Atlantic Date: Saturday, June 29, 2013
Latitude: 38.81°N Longitude: 75.06°W
Weather Data from Bridge: Wind Speed: 13.50 knots|
Surface Water Temperature: 22.61°C
Air Temperature: 23.30°C
Relative Humidity: 87.00%
Barometric Pressure: 1001.38mb
Sunset over the bow of the Thomas Jefferson.
Science and Technology Log
At any given time, the Thomas Jefferson is home to about 30-40 individuals. These individuals come from all walks of life to become deck hands, engineers, stewards, scientists, or officers. Yesterday, I spent a couple of hours with Chief Engineer Tom learning about how his team of engineers works to keep this home afloat and functional. There are currently 4 licensed engineers, and 3 QMEDs (Qualified Members of the Engine Department) aboard the TJ.
The engineering control console keeps and eye on all of the mechanics of the ship. If the bridge loses control, the engineers could steer the ship from here!
How do you become an engineer on a NOAA ship? There are two routes to becoming an engineer on a NOAA ship. If you wanted to start working immediately aboard a ship, you could apply to start as an undocumented engineer. You are required to work 180 days at sea, pass a basic safety course, and then would become eligible to take a test to become a QMED. Another 1080 days would make you eligible to take a licensing test to become third engineer. From there, time and more licensing tests help you work up the ranks. There are a myriad of licensing tests that depend on the horsepower of the ship you want to work on. For example, most NOAA ships require the same license, but the NOAA ship Ron Brown has more horsepower and requires what is called an unlimited license. All licensing falls under the purview of the U.S. Coast Guard and various federal regulations. A different route to becoming an engineer involves attending a four-year program at a maritime academy. The maritime academy gives graduates the necessary skills to move straight into a third engineer position because it includes internships and semester at sea opportunities. The students from the academy must still take all of the same licensing tests. Clearly, engineers must have a great amount of knowledge as part of their toolkit no matter their background.
What really stood out to me was when Tom mentioned the fact that the word engineer comes from engine. The primary purpose of the engineer is to make sure that the ship has enough power for all of the tasks that happen around the clock. The TJ has two engines for propulsion and three generators for electricity that can be put online to boost the power output. When I was in the engine room yesterday, second engineer Steve was on watch and communicating with the bridge about having more power for their bow thruster. The bow thruster increases the maneuverability of the ship when it is slowing down, such as when anchoring. Steve made sure that Generator 1 was providing the energy needed for this particular task while Generator 2 was providing power for the rest of the ship’s needs. Overall, the Thomas Jefferson can hold approximately 198,000 gallons of diesel fuel, and uses about 1,500 gallons a day for all of its operations.
Can you tell which of these reverse osmosis machines is working, and which one is offline?
Most of the engineering equipment comes in duplicate just in case anything breaks down. For example, there are two reverse osmosis machines whose purpose is to turn seawater into potable water. One of them is currently down, so it is imperative that we have a second aboard. Reverse osmosis is the process by which seawater is pushed through a semi-permeable membrane in order to filter out the solutes, and only allow the water solvent through. The solute (sea salt) can then be dumped right back into the ocean. The water that is collected must be chlorinated before use, but will then go on to the galley, bathrooms, laundry, etc. The TJ can store around 21,500 gallons of freshwater and uses about 2,500 gallons of fresh water a day.
When being built, NOAA ships are outfitted for water usage in different ways, and Tom is busy planning how to make the ship more energy efficient. The TJ does not have the ability to use and recycle gray water or sea water very efficiently. Some NOAA ships have the ability to use seawater in the toilets, but the TJ does not. Have you ever thought of how much water is used when flushing a toilet? Well, you might have to think of that if you live in a desert area, or on a ship! Tom will be able to reduce the amount of water used in each flush by about 1.4 gallons with a simple valve that he plans on installing when the ship is docked for some maintenance work this summer. If we assume that there are 35 people on board the ship, and each person flushes 5 times a day, then the TJ can save 245 gallons of water each day with just a simple upgrade. This amounts to a reduction in water use of around 10% a day!
Tom has thought through many other types of upgrades, most not so simple, to better put to use the resources on board. Instead of using reverse osmosis, some NOAA ships make water through an evaporator. An evaporator is a much more efficient way of creating water because it needs a reduced pressure and average temperature near 160°F. On ships that have evaporators, water is diverted into pipes near the heat of the main engine so that the waste energy created by the engine can be transferred to reduce the amount of energy needed in the evaporator.
Although I have a particular interest in wastewater treatment and energy usage, these are by no means the extent of the engineer’s tasks. They are also responsible for checking fuel levels, keeping the air conditioning running (crucial considering the heat generated by the servers required to hold all of the ship’s scientific data), maintaining a workshop, being the ship’s electricians, and much more. Finally, they also work to keep up the morale of everyone in this floating town.
Personal Log
I am trying to keep myself busy learning about all of the aspects of the ship. It is difficult to throw myself into the data analysis because the CARIS program is so complex; however, I spend lots of time watching the scientists plug at it. I have also been spending a lot of time on the bridge where some of the officers have been letting me help to collect hourly weather data, and teaching me to take navigational fixes. It is interesting to see that even with all of the digital data, the bridge officers must still take time to read a wall-mounted barometer and interpret cloud formations in the sky. For navigation, the officers still need to know how to use a compass and protractor, which brought me back to 1998 and my days in geometry class.
I also love hearing travel stories from the many people on board. Keith, a deckhand, has travelled all over the world on a NOAA ship based in Hawaii. It motivates me to continue to find opportunities to expand my horizons and see the world. I hope that I can also motivate my students back at Annandale to get creative with their ambitions.
Did You Know?
Officers must be on watch 24/7, even when at anchor. To help preserve their night vision after the sun sets, the bridge is stocked with red plastic squares which are mounted over the screens to help minimize glare from white light.
NOAA Teacher at Sea Wes Struble Aboard NOAA Ship Ronald H. Brown February 15 – March 5, 2012
Mission: Western Boundary Time Series Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas Date: February 24, 2012
Weather Data from the Bridge
Position: Windspeed: 15 knots
Wind Direction: South/Southeast
Air Temperature: 23.9 deg C/75 deg F
Water Temperature: 24.5 deg C/76 deg F
Atm Pressure: 1016.23 mb
Water Depth: 4625 meters/15,174 feet
Cloud Cover: less than 20%
Cloud Type: Cumulus
Science/Technology Log
Moving a ship through the water has come a long way since Ben-Hur was chained to a rowing bench as a Roman War Galley slave. I was interested in what systems powered the Ron Brown and Lt. James Brinkley was kind enough to take me on a tour of the ship’s engine rooms.
The Ron Brown has a total of six separate power units. Three of these are V16 (16 cylinders) diesel engines connected to electric generators.
Second Assistant Engineer Jake DeMello sits watch in the entrance to the engine room
These generators produce electricity to run the ship’s electric motors which turn the screws (propellers). In the past the diesel engines would have been connected directly to the propeller shaft, but in the last 20 – 30 years many ships have gone to using electric motors as an interface between the diesel engines and the propellers. On the Brown at any given time two of the V16 diesel engines are online running the generators while the third engine is held in reserve. These generators produce 600 volts of AC current. A transformer converts the 600 V AC to a DC current to run the ship’s large DC electric motors.
Image credit: nauticexpo.com
This image shows a diesel engine connected directly to the “Z” drive.
On the Ron Brown there is a generator and an electric motor between the
diesel engine and the “Z” drive.
A view of the main propulsion diesel engines of the Ron Brown. The V16 propulsion engines are in the foreground while the Ship Services V8 engines are in the background
Close-up of two of the V16 Marine diesels on the Ron Brown. For scale notice the flight of stairs behind the engines
Most ships have a propeller shaft that exits the rear of the ship parallel to the keel. The propeller is stationary – it can only rotate to propel the ship forward or backward. To turn the ship a rudder is employed which is usually controlled by a wheel on the bridge. The Ron Brown does not have a rudder; instead it is propelled by a “Z” drive. This type of propulsion system is specially suited for research vessels. In a “Z” drive the main drive shaft from the electric motors comes out parallel to the ship’s keel. It then is joined to a type of “spline gear” and makes a 90 degree turn down. At this point the shaft exits the ship where there is another “spline gear” which turns 90 degrees again parallel to the keel.
NOAA Corps Officer Lt. James Brinkley stands next to one of the V16 "exhaust pipes" from the main propulsion engines on the Ron Brown
The region between the two “universal joints” is mounted on a kind of turn table which allows each of the screws (there are two – one on the starboard side of the ship another on the port side) to rotate 36o degrees. In addition to precise maneuvering, this system of two “Z” drives and a bow thruster, when interfaced with a computer control system and GPS, allows the ship maintain an exact position in the water to within a few feet or better.
The Ron Brown's inboard portion of the "Z" drive. The electric motor that propels the ship is at left. If you look carefully just to the left of center you can see the main drive shaft connecting the motor to the "Z" drive mechanism
The engine status monitor. Notice at the very top it indicates that Propulsion engines 1 & 2 are operating.
The Ron Brown has three other smaller V8 diesel engines that power generators that are used to provide electricity for SS (ship services). This would represent things like radios, heating & air conditioning, lighting, computers, etc. The electricity produced by these three generators goes through two step-down transformers. The first reduction drops the potential from 600 V to 480 V. The next step down brings it from 480 V to 120 V. This is the form that is available to power the equipment throughout the ship. In addition, these three smaller engines and their generators can be used to power the Ron Brown’s propulsion in case of an emergency.
NOAA Corps Officer, Lt. James Brinkley stands next to one of two cable spools, located in the stern of the Ron Brown, that contain 5000 meters of cable each. They are used for long distance towing. For scale Lt. Brinkley is 6'3".
I would like to thank Lt. James Brinkley for the tour and Second Assistant Engineer Jake DeMello for explaining some of the technical aspects of the engines and answering my questions.
NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier September 17 — October 7, 2011
Mrs. Heins Taking a CTD Cast
Mission: Hydrographic Survey Geographical Area: Alaskan Coastline, the Inside Passage Date: Tuesday, October 4, 2011
Weather Data from the Bridge
Clouds: Overcast 7/8
Visibility: 8 Nautical Miles
Wind: 21 knots
Temperature
Dry Bulb: 12.0 degrees Celsius
Barometer: 997.0 millibars
Latitude: 55.23 degrees North
Longitude: -133.22 degrees West
Science and Technology Log
Watching The Sonar
I was able to go out on another launch boat Sunday to collect survey data. It was a beautiful day with amazing scenery to make it by far the best office I have ever been too. Despite the fact that the ship is usually “off the grid” in many ways, the location of their work environment, or office, in Alaska is visually stunning no matter where you turn. Keeping your eyes off the cedar trees and focused on the sonar in a launch can be challenging at times! However, when there is a specific job to be done that involves time and money, then the scenery can wait until the job is finished. During Sunday’s launch survey we had to clean up some “Holidays” and acquire some cross line data.
View Of the Data Acquired For the Ship On The Bridge
The word “Holiday” might lead to some confusion about what you might think we are doing when you read that word. Holiday =vacation right? In this case it is when there is a gap, or missing information, in the survey data that is acquired. This poses a problem for the survey technicians because this leaves holes in the data that they must use for their final charts. Holidays can be caused by the boat or ship being off the planned line, unexpected shoaling (or where the water gets shallow) so the swath width decreases, or a slope angling away from the transducer so that a return path for the sound wave is not possible. The speed, direction, weather, swells, rocking of the boat, and the launches making wider turns than anticipated. It is easy to see where holidays occur as we are surveying because amidst the rainbow of color there will be a white pixel or square showing that data is missing. When we are finished surveying or “painting” an area, we communicate with the coxswain where we need to go back and survey over the missing data or holidays. If there are holidays or data is missing from the survey, then the survey technicians must explain why the data is missing in their final Descriptive Report. This document covers everything that was done during the project from how the area was chosen to survey, what data was collected, what data wasn’t collected and why. This is where holidays are explained, which could be due to lack of time or safety concerns.
Ship Hydrographic Survey
This launch was a little different because we were cleaning up holidays from the Rainiers’ multibeam. Not only do the smaller survey boats collect sea floor surface data, but the Rainier has its own expensive multibeam sonar as well. The ships sonar is called a Kongsberg EM 710 and was made in Norway. Having the Rainier fitted with a multibeam sonar allows the ship to acquire data in deeper water and allows for a wider swath coverage. The lines that are surveyed on the ocean floor are also much longer than those in a launch. This means that instead of taking around 5-10 minutes to acquire a line of data, it can take around 30 minutes or more with the ship. This is great data because again, the ship can cover more area and in deeper water. We also took the ships previous data and ran cross lines over it. The importance of running a cross line over previous survey data helps to confirm or deny that the data acquired is good data. However, there is a catch to running a cross line. To confirm the data they have to use a different system than what was used before, the cross line has to be conducted on a different day, and it has to be during a different tide. All of this is done to know for sure that the data is acquired has as few errors as possible before the projects are finished.
Rainier Multibeam Sonar
Personal Log
Each day when the scientists go out and survey the ocean floor they acquire tens of gigabytes of information! The big question is what is next after they have acquired it all? When they are on the launch they have a small external hard drive that holds 500 gigabytes to a terabyte of information plugged into their computer. At the end of the day all their information and files are downloaded to this hard drive and placed in a water tight container in case it happens to get dropped. Keeping the newly acquired data safe and secure is of the utmost importance. Losing data and having to re-survey areas due to a human error costs tens of thousands of dollars, so everything must get backed up and saved constantly. This is where I have noticed that computer skills and file management are so important in this area of research.
Once we get off of the boats the data is brought upstairs to what is called the plot room. This is where all the survey technicians computers are set up for them to work on their projects. The technicians that are in charge of downloading all the data and compiling all the files together is called night processing. There are numerous software programs (tides, CTD casts, POS, TPU, Hypack,) and data from these programs that all have to be combined so that the technicians can produce a finished product for the Pacific Hydrographic Branch (part of Hydrographic Surveys Division), who then process the data some more before submitting to Marine Charting Division to make the final chart. The main software program that combines all the different data is called Caris and comes out of Canada. Once all of the data has been merged together it allows the technicians start cleaning up their data and produce a graphic plan for the launches to follow the next day. Every movement on the keyboard or with the mouse is very important with surveying because everything is done digitally. Numerous new files are created each day in a special way so that anyone that reads the name will know which ship it came from, the day, and the year. File management and computer skills are key to keeping the flow of work consistent and correct each day.
We have also had numerous fire drills while on the ship. This is very important so that everyone knows where to go and what to do in case of an emergency. They had me help out with the fire fighters and the hose this time. I learned how to brace the fire fighter so that the force from the hose doesn’t knock them over. I never knew that would be an issue with fire fighting until this drill. I learn so many new things on this ship every day!
NOAA Teacher at Sea
Lindsay Knippenberg
Aboard NOAA Ship Oscar Dyson
September 4 – 16, 2011
Mission: Bering-Aleutian Salmon International Survey (BASIS) Geographical Area: Bering Sea Date: September 15, 2011
Weather Data from the Bridge
Latitude: 55.41 N
Longitude: -167.98
Wind Speed: 25.86 kts
Wave Height: 10 – 13ft with some larger wind-blown waves
Surface Water Temperature: 8.7 C
Air Temperature: 8.7 C
Science and Technology Log
Real women aren't afraid of piles of jellyfish.
I will admit that before I met the scientists and crew onboard the Dyson I had imagined that the majority of the people on the boat would be men. I had wrongly gone along with the stereotypical view that scientists, engineers, fishermen, and the crew onboard ships were mostly men. Therefore when I finally met the people who I would be sailing with for the next two weeks, I was surprised and very happy to see that women had taken over the Dyson. For example, of the 12 scientists onboard the Dyson for this cruise, 9 are women including the Chief Scientist who is in charge of us all.
The seabird observers looking for birds.
On the ship there are also NOAA Corps officers. The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States. Officers can be found operating one of NOAA’s 18 ships or 12 aircraft to provide support to meet NOAA’s missions. Their duties and areas of operations can range from launching a weather balloon at the South Pole, conducting fishery surveys in Alaska, maintaining buoys in the tropical Pacific, to flying P-3 Hurricane Hunter airplanes into hurricanes. I have met several NOAA Corps officers while I have been at NOAA and they have mostly been men. I was excited to see that of the six officers onboard the Dyson three are women.
NOAA Corps Officers - Rene, Sarah, and Amber taking a break from their duties to pose for a picture.
There are also several other women onboard the Dyson and my mission today was to meet some of these amazing women and interview them to see what they do onboard the Dyson and what motivated them to choose this as their career. Let’s meet them:
Name: Ellen Martinson
Hometown: Juneau, AK
Position: Research Fisheries Biologist and Chief Scientist for Leg 2 of BASIS
Ellen showing off a tiny squid that she was measuring on the scale.
Ellen has always loved solving puzzles and has had a curiosity for nature and how it works. That love of nature and problem solving led her to become a fisheries biologist. She has worked at NOAA since 1995 and she does research to support the management of federally-controlled commercial fisheries. She is currently a Ph.D. candidate and is doing her research and dissertation on developing indexes of ecosystem health in the Bering Sea that includes climate and fish growth factors. Pollock is her species of choice and she is looking at the success rate of Age 0 (zero) pollock surviving their first year to become Age 1 pollock as a prediction of the future health of the commercial pollock fishery.
What does she like the best about her job? She gets to work with a variety of people ranging from scientists and fisheries managers to fishermen and even teachers like me. She listens to their problems and ideas and then looks for the important questions to address all of those viewpoints. She also gets to travel to a lot of cool places, learn new things from a variety of topics, and her job is often an adventure. How did she get such a cool job? Going to college is the first step. Ellen has a bachelor’s degree in Marine Biology and a master’s degree in Fisheries Resources. She is currently finishing up her Ph.D. at the University of Alaska Fairbanks and then she will be Dr. Martinson.
Name: Kerri Curtin
Hometown: Chicago, IL
Position: Able-Bodied Seawoman
Kerri tying up the trawl net after pulling in a big haul of salmon.
Kerri is one tough cookie. All week I have been amazed by her as she shuffled around the back deck pulling in fishing nets, lifting heavy science equipment, and tying all different types of knots. She is the only able-bodied seawoman onboard and her responsibilities include various deck maintenance jobs, setting up the nets for fishing and bringing in the catch, tying and untying the boat when we are at port, serving time on the bridge as an observer, and helping to launch the small boats. Her favorite part about her job is that she gets to go to work at sea and be outside in the fresh air. She also gets to travel to unique places and see the world. So far her favorite place that she has been to are the Greek Isles. How do you get a job like this? Kerri went to school in Maryland at Seafarers International and did an apprenticeship program. Through that program she gained the basic training necessary to get an entry-level position on a boat. Since then, she has continued her training and has taken several other Coast Guard certification tests. All her time at sea and trainings have paid off because she just received her 3rd Mates license.
Name: Amber Payne
Hometown: Fenton, MI
Position: Navigation Officer
Amber is in control of the Oscar Dyson as the trawl net is being brought in.
Amber is a NOAA Corps officer onboard the Dyson. Her job as the Navigation Officer is to plot all the routes that the ship takes on paper and electronically. She also updates all the charting publications and she gets to stand watch on the bridge every day for eight hours. When she is on watch she is responsible for driving the ship and is in charge of all the operations. Amber has been onboard the Dyson for a year and a half and has several favorite things about her job. She likes that being on a ship in the Bering Sea is an adventure that many people may not get experience. She also likes the authority and trust that she is given to correctly navigate and drive the ship when she is all alone on the bridge. How did Amber get from Michigan to navigating a ship through the Bering Sea? Amber went to a four-year college in St. Petersburg, FL and studied Marine Biology. While in college she joined the search and rescue team and learned a lot about driving small boats. She knew that she wanted to go into a career that included both boats and science and her college advisor told her about the NOAA Corps. She applied to the NOAA Corps after graduation, was accepted, spent 4 months in basic trainings with the NOAA Corps, and then was placed on a ship. She loves that she gets to be a part of scientific research going on in the Bering Sea and she gets to drive boats all as a part of her job.
Name: Wendy Fellows
Hometown: Liberty Lake, WA
Position: Junior Engineer
Wendy has a lot of screens and buttons to monitor when she is on watch.
When I first met Wendy she was sitting in the galley with the other engineers wearing her cover-ups from working in the engine room and I thought to myself, this girl is pretty cool. There aren’t too many female marine engineers and Wendy has a great story. When she graduated from high school she didn’t know what to do. She wanted to see the world so she took a job working in the kitchen of an oil tanker. She traveled all over the world and learned a lot about the different jobs on the ship throughout her journey. Her dad had been a marine engineer and she liked the work that the engineers did, so she went to school at the Seattle Maritime Academy to learn the trade. As a part of a year-long program she became a qualified member of the engineering department and did an internship onboard the OscarDyson. She liked it so much that she decided to stay on the Dyson as a Junior Engineer. Her job on board the Dyson is to basically make sure the ship is working properly. She tests emergency batteries, monitors the generators and pumps, services the small boats, fuels the ship when it is in port, fixes random things that break around the ship, and tests the drinking water. Her favorite part about her job is when she gets to use the welding skills she learned onboard the Dyson to fabricate things for the ship or scientists.
Name: Kathy Hough
Hometown: Kodiak, AK
Position: Senior Survey Technician
Kathy is busy on the hero deck connecting plankton nets to be lowered over the side.
As the senior survey technician onboard the Dyson, Kathy has the responsibility of working with the scientists to insure that the collection of their data goes smoothly. She helps the scientists to collect their data by lowering and monitoring the CTD, helping with the various nets, and making sure that all of the equipment in the labs are functioning properly. She also collects data of her own. As the Dyson cruises around the Bering Sea, Kathy is in charge of collecting the weather and oceanographic data that is sent to scientists and posted on the NOAA Ship Tracker website. What does she like best about her job? Kathy likes the diversity of operations that she gets to be a part of. The science teams that are doing research onboard the Dyson only stay for 2 – 4 weeks and then another team gets on and might be doing a completely different project. As the science teams constantly rotate, Kathy stays on and helps with a variety of projects and different types of scientists. Does this job sound cool to you? To get an entry-level position as a survey technician you need a bachelor’s degree in science or mathematics. Kathy’s background is in ecology/biology, but a background in engineering, mathematics, or chemistry can be helpful too. If you want to move up to be a senior survey technician like Kathy, you need time and experience working on boats and with the instruments the scientists use for their research.
Name: Rachelle Sloss
Hometown: Juneau, AK
Position: Lab/Research Technician
Rachelle with a huge king salmon from one of our hauls.
Rachelle and I have gotten to know each other pretty well these last couple of weeks as we sorted through piles of fish and did a lot of counting to fifty. Rachelle just graduated from college in May and for the past two summers she has worked in the NOAA labs in Juneau as a lab/research technician. She works in a lab that is studying bioenergetics. While onboard the Dyson, she has been collecting and sorting zooplankton and looking for specific species of krill that will be used for bioenergetic experiments back in Juneau. She has also been collecting juvenile fish species like pollock and herring for similar experiments. While at the lab back in Juneau, Rachelle does lipid class analyses of fish to look at the energy content of their lipids by season. Does this sound like a cool summer job? Rachelle thinks that it is because she gets to work with some really cool people, she is gaining great experience for the future, and she got to spend two weeks on the Bering Sea seeing tons of species of fish. What lies ahead for Rachelle? She got a degree in Biochemistry, Biophysics, and Molecular Biology from Whitman College and is thinking about becoming a high school science teacher. For now she is headed to a much warmer South America and will be traveling around for the next couple of months on her next adventure.
Personal Log
We finally made it back to land and now we are all heading off in opposite directions towards home.
By now I am safely back to my warm living room and I owe all of the women above and the men of the OscarDyson my deepest gratitude. I had an incredible adventure on the Bering Sea and I learned so much. Even though we had some rough seas, I still loved seeing all the different fish that we caught in our nets and I loved being a part of a research project that has so much importance to our fisheries. The NOAA Corps officers, crew, and scientists were all incredible teachers and had a lot of patience as they took time out of their day to answer all of my questions. I can’t wait to share my experiences with my students and other teachers and I couldn’t be more thankful for the experiences that I gained as a NOAA Teacher at Sea.
NOAA Teacher at Sea Kathleen Harrison Aboard NOAA Ship Oscar Dyson July 4 — 22, 2011
Location: Gulf of Alaska Mission: Walleye Pollock Survey Date: July 12, 2011
Weather Data from the Bridge True Wind Speed: light (< 5 knots), True Wind direction: variable
Sea Temperature: 9.75° C, Air Temperature: 10.38° C
Air Pressure: 1012.3 mb
Ship Heading: 297°, Ship Speed: 11.3 knots
Latitude: 56.45° N, Longitude: 155.04° W
Patchy fog, very calm seas
Science and Technology Log
The Oscar Dyson is like a self-contained city for 35 people that floats on the sea. All of the engine fuel and oil, food and provisions for the NOAA staff, ship’s crew, and scientists have to be brought on board while the ship is in port. On this leg of the Walleye Pollock Survey, the ship will be out to sea for 19 days. This presents several issues that must be solved in order for the people to be comfortable, and for the research to be performed.
This piece of machinery converts sea water into fresh water for the people on the Oscar Dyson. (courtesy of Anne Mortimer)
First, fresh water is needed, about 100 gallons per person, per day. For 35 people, that is 3500 gallons per day. The ship has a storage capacity of 9000 gallons. Do the math, and you can see that a daily supply of fresh water is needed. Well, the ship has 2 water makers that convert sea water into fresh water. Basically, the water is heated, vacuum pumped, and evaporated, then collected in the fresh water storage. Salt does not evaporate, so it is left behind. The evaporator uses the sea water to power an ejector pump (that creates the vacuum) and keep the unit cool. The brine (super salty water) created from the evaporation is sent overboard by the ejector pump.
The engineer controls the power that the generators make with this panel. See the horizontal bar running the length of the panel - even the engineers need something to hold on to during rough seas. (courtesy of Anne Mortimer)
Next, electricity is needed to power the galley appliances, run the washers and dryers, lights, computers, ship’s bridge instruments, and a host of other things. The ship has 4 generators that are capable of producing enough energy to not only power the propeller, but also the whole electrical need of the ship. The control panels for each generator are used to divert some of the power to each part of the ship, so that I can charge my camera battery, use my computer, or turn on the light in my room.
This is generator number 2 on the Oscar Dyson. There are 4 generators, but only 2 are online at any one time. (courtesy of Anne Mortimer)
Another issue is the power needed to run the propeller. For the 19 days the ship is out to sea, there are usually 2 generators running. The ship’s computer decides which generators are needed for the speed that is required at any one time. In heavy seas, or when more power is needed, a 3rd, or even the 4th generator will be brought on. As generators are used, they wear and tear, so the computer determines what the most efficient use of them will be for each situation. Everything can be manually controlled as well. Every month or so, each generator needs an oil change.
The current price of diesel fuel in Kodiak, Alaska.
They hold about 65 gallons of oil! The used oil is kept on board until the ship docks back in Kodiak. Also, about every 20,000 hours, each generator needs to be overhauled. This is done by a team of mechanics when the ship is in port, during the off season. About 100,000 gallons of diesel fuel is stored at the beginning of the trip, and 2000 gallons are used each day.
Now, since the Oscar Dyson is a biological research ship, the usually noisy generators have been quieted, so that the fish are not scared away. One way to quiet a very large, 1600 hp engine, is to put it on a rubber mat. Another way is to send the energy from the generator through a large box, which then converts it to electrical energy, and that is transmitted to the propeller by thin wires. This reduces the vibrations in the hull.
To be an engineer on a ship, a person usually would go to a marine academy and obtain a degree in marine engineering. During school and shortly after, time spent as an intern is valuable to gain experience. Once the new engineer is employed on a ship, he or she would start at the bottom of the team, maybe as 3rd engineer, depending on how large the ship is. With experience, and management skills, the engineer could move up to 2nd, then 1st, then Chief engineer. Of course, a ship’s engineer must love being at sea, and living on a ship.
Personal Log
We had a fabulous day for wildlife and scenery watching – bright sunshine (until 11:00 pm), calm seas, and close proximity to Kodiak Island. I saw stunning rocky cliffs, Dall’s porpoises, and whales – probably Fin whales. I was overwhelmed with the beauty and scale of Kodiak Island.
I love the way that the sun glitters on the water. I took this photo about 7:00 in the evening.
Rocky cliffs of Kodiak Island on a sunny day.
The sun light is breaking through the clouds about 2 miles away.