Laura Grimm: R/V vs. RV, July 27, 2022

NOAA Teacher at Sea

Laura Grimm

Aboard NOAA Ship Thomas Jefferson

July 4 – July 22, 2022

Mission: Hydrographic Survey of Lake Erie

Geographic Area of Cruise: Lake Erie

Date: July 27, 2022

Weather Data from my home office in Dalton, Ohio

Latitude: 40 45.5’ N

Longitude: 081ᵒ 41.5’ W

Elevation: 1135 feet

Sky Conditions: Mostly sunny

Visibility: 10+ miles

Wind Speed: 7 mph

Wind Direction: NW

Air Temperature: 25 ᵒC (77 ᵒF)

Relative Humidity: 58%

Science and Technology Log

Research Vessel vs. Recreational Vehicle

I thought it would be interesting to compare some specifications of NOAA Ship Thomas Jefferson = TJ (research vessel) with my 2010 Toyota Sienna minivan + 2019 Viking camper = VV (recreational vehicle).  I would also like to thank Chief Marine Engineer (CME) Tom Cleary and Husband Phil Grimm for information concerning the specifications of the research vessel and recreational vehicle, respectfully.

NOAA Ship Thomas Jefferson underway, as seen from a launch vessel
NOAA Ship Thomas Jefferson taken from the launch = TJ Research Vessel
a minivan and a camper trailer parked in a driveway
2019 Viking camper + 2010 Toyota Sienna minivan taken in my driveway = VV Recreational Vehicle

What is the size of engine?  How much power is produced?

                VV = 3.5 Liter, 3500cc, 211 cubic inch / 265 Horsepower

                TJ = 7,740 cubic inch, 2500 Horsepower.  12-cylinder mechanically injected EMD (a division of Caterpillar) diesel engine.  This engine is commonly used on locomotives. 

engine of NOAA Ship Thomas Jefferson
Engine of Thomas Jefferson
an engineer wearing protective earmuffs works on the innards of NOAA Ship Thomas Jefferson's engine
Engine of Thomas Jefferson with the “hood” open

What kind of fuel do you use and how big is your storage tank?

                VV = Minivan uses 87 octane unleaded gasoline & has a 21 gallon fuel tank.  Camper has a 20-pound liquid propane (LP) gas storage tank.

                TJ = The ship uses #2 ultra-low sulfur diesel fuel and has a 131,789-gallon storage tank.

Where is the electricity stored?  Quantity?

VV = Minivan has a 12-volt battery + Camper has a 12-volt “marine”, deep cycle battery

TJ = The ship has two 24-volt starting banks (2 batteries in series) for the emergency diesel generator (EDG), and two 24-volt emergency power banks for general alarm and other emergency circuits. 

Where is the electricity produced?  Quantity?

                VV = Minivan: belt-driven alternator keeps battery charged.   Camper: battery can be charged by the van or with the charger/inverter when plugged into AC.

                TJ (underway / while at sea) = Three generators capable of generating 345 Kilowatts each (over 1 megawatt combined); one generator is online at a time.  TJ has increased its energy efficiency (LED lighting, more energy efficient AC and appliances, etc.).  Now, under normal house loads – not running any of the davits or cranes – TJ requires only 30% of the electricity generated with one generator.

                TJ (onshore / while at port) = The ship has the capability to use power from shore via a plug on the port and starboard side.  It uses power cables standard to all maritime ships.  Each of its NATO plugs is capable of carrying 480 Volts of 3-phase power (400 amps).  Typically, TJ only uses one of its NATO plugs while in port unless there is need for additional electricity.

Engineer, wearing protective ear muffs, checks fluids in one of three generators
First Assistant Engineer (1AE) Perry checks fluids in one of three generators
one of the generators aboard NOAA Ship Thomas Jefferson
Each generator can generate 345 Kilowatts of electricity

How does the driver / engineer know what is happening with the engine and generators?

                VV = Dashboard of the van, gauges, check engine lights and warnings

                TJ = Modern, Windows-based control room with remote capabilities.  This system sends information to the control room, Bridge, and the Chief Engineer’s office.  Lots of gauges and computer displays.  Multiple lights and warnings if there are problems.

engineer stands in the control room next to a control panel with at least four monitors, levers, buttons
 1AE Perry checks gauges in the control room

How about locomotion?  How does VV or TJ move forward or backward?

                VV & TJ = Both use an internal combustion engine that turns a propulsion shaft.  Both use a series of reduction gears (transmission in the case of the van).  Speed is maintained via a fixed gear ratio in TJ, unlike the van that has multiple gear ratios.  The Chief Marine Engineer (CME), Tom Cleary, tried to convince me that the mechanics of locomotion are very similar in both vehicles except the drive shaft of TJ is much longer and larger and at the end turns a propeller; where the drive shaft of the van eventually makes the wheels turn.

How do the drivers know where to go?

                VV = looking out the window, maps, GPS, and when all else fails ask the spouse

                TJ = refer to my July 18, 2022, NOAA Teacher at Sea blog post, “Who is driving this ship?”

Do both vehicles have windshield wipers?

                VV = 2 windshield wipers

                TJ = 9 windshield wipers + 2 Clearview screens which are rotational window wipers that work via centripetal force. 

a centripetal windshield wiper on one of the windows of NOAA Ship Thomas Jefferson's bridge; through the window we can see the foredeck
Clearview Screen – Centripetal Windshield Wiper

 How big is the freshwater (potable water) tank?

                VV = 23 gallons

                TJ = 47,382 gallons.  The ship also can make its own freshwater from saltwater using a reverse osmosis system

What is greywater and how big is the collection tank?

                Greywater is the relatively clean wastewater from baths, sinks, washing machines, and other kitchen appliances.

                VV = 25 gallons

                TJ = 27,878 gallons

What is black water and how big is the collection tank?

                Black water is sewage or the wastewater from toilets.

                VV = 25 gallons

                TJ = 29,440 gallons

What about the hot water systems?

                VV = Has a 6-gallon water tank where water is heated using natural gas.

                TJ = Has two separate hot water systems.  The first uses electricity to heat water in a 60-gallon tank.  This water is available for decks 01, 02, and 03.  These are the three decks above the main deck.  The other system has two 60-gallon tanks plumbed in series that serve the laundry room, galley, and staterooms on decks 2 and 3.  These are the two decks below the main deck.  Pumps constantly move water through the systems helping to provide (almost) instantaneous hot water from the tap.

What is the size and amenities of the kitchen (galley)?

                VV = 2 burner gas stove, microwave, no conventional oven, two cupboards used for food storage, 1 cupboard used to store pots, pans, and other miscellaneous kitchen items, approximate size of counter next to the sink is 6 square feet.

                TJ = Areas including food prep, cooking, serving, dish washer, dry storage and steward’s office are all in an area roughly 800 square feet.

 What about where people eat (mess hall)?  What is it like?

                VV = One table (roughly 2’ x 3’) plus two benches.  Entire area is approximately 24 square feet.  A picnic table is also an option when available.  It is provided by the campground.

                TJ = Three tables (roughly 2.5’ x 10’), 20 chairs, multiple refrigerators, freezers, beverage & coffee dispensers, salad bar, sink, and snack shelves.  Entire area is about 250 square feet.

Do these vehicles have refrigerators and freezers?

                VV = 3 cubic foot refrigerator + ½ cubic foot freezer.  Ice is made with a mini-ice cube tray.

                TJ = All staterooms have a mini fridge.  There are a mixture of small and home-sized refrigerators and freezers in the galley and mess hall for the convenience of the stewards and crew.  There are also two very large walk-in refrigerators and freezers that are used by the stewards.  An ice maker is housed in the galley and is used to fill coolers, etc.

How many berths (beds) are aboard?

                VV = The camper and van each have two, making a total of 4 places where people could sleep.

                TJ = There are 36 places for people to sleep, and the hospital has one bed.

What is a “head” and how many are there?

                According to a Navy history website, “Head” in a nautical sense referring to the bow or fore part of a ship dates to 1485. The ship’s toilet was typically placed at the head of the ship near the base of the bowsprit, where splashing water served to naturally clean the toilet area.”  (Icky!)

                VV = One toilet/shower unit in the camper + a portable toilet if needed.

                TJ = Each stateroom has access to a toilet/shower unit + a public toilet on the main deck.

How many stairs are there?

                VV = Two steps into the camper

                TJ = It all depends upon how a flight of stairs is defined and who you ask.  If a flight is defined as at least 8 steps, the consensus among those asked is somewhere between 20 and 22 flights of stairs.  TJ is essentially a 6-story building after all.

What about doors?  How many are there?

                VV = Van has 5 doors (if you count the trunk); camper has 1 door

                TJ = Too many to count!  There are five doors, however, that are very important.  They are the internal watertight doors that isolate areas of the ship in case of emergencies.  There are also additional watertight doors that one uses to go from the internal spaces to the decks of the ship.

one of the watertight doors on NOAA Ship Thomas Jefferson. it has a large, heavy handle. it says "Watertight Door Keep Closed"
Closed watertight door
view of the watertight door when opened; we can see the seal around the curved edges
Open watertight door

What is the outer cover made of?

                VV = Van is painted steel; camper is painted aluminum

                TJ = Painted steel.  The deckhands really do a fantastic job of keeping TJ in great repair!

What are the external dimensions of each vehicle?

                VV = Van: Length: 17”, Width: 6’ 7”, Height: 5’ 10”; Camper: Length: 16’ 7”, Width: 7’ 4”, Height: 10’; total length of the Van + Camper = 33’ 4”

                TJ = Length: 208’, Width (beam): 45 ‘, Height (from the keel to the wind birds): ~ 100 feet

Meet the Crew

Chief Marine Engineer (CME) Tom Cleary got his first paycheck for a boat job when he was 16 years old and has not stopped working on boats since.  This extremely competent engineer is originally from Cape Cod and has worked for NOAA for over 20 years – the last 11 years have been aboard Thomas Jefferson.  His off-ship activities revolve around his wife and four children, and maintaining an 80-year-old home. 

Tom states that that, “A jack of all trades is a master of none, but still always better than a master on one”.  He enjoys the variety presented to him by his work duties.  No two days are alike.  He oversees 9 people, and his duties require mechanical, electrical, plumbing, and managerial skills. 

He is a classic hawsepiper.  This means that he did not go to a maritime academy to become an engineer.  He learned from the ground up first by working on sight seeing boats and ferries in the Cape Cod area to working on several NOAA ships.  From working as a deckhand, steward, to chief engineer – he has literally crawled up the hawsepipe.

If budget was not a limiting factor, what could I invent for you that would make your job easier?  He wanted to be clear that he meant no disrespect, however, he replied that he would like some robots.  Much of his job is spent dealing with people.  Budget management meetings, payroll, planning schedules, rating performance, training, drills, and dealing with “hotel” services for the crew (refrigeration, air conditioning, plumbing, hot water issues, etc.) take up much of his time.  Tom likes the crew, however, if there were fewer people and more robots working on the ship, he would have more time on engineering challenges.  (I wonder if he has contemplated the challenges presented by maintaining a gang of robots?)

Engineers Perry and Cleary pose for a photo in the galley. CME Clearly is wearing work overalls and a radio.
1AE Perry and CME Cleary

What is the difference between a boat and a ship?

According to Britannica Kids, “A ship is a large boat that can carry passengers or cargo for long distances over water. People have been using ships for transportationexploration, and war since ancient times.”

Parts of a Ship

Diagram of a ship with the following parts labeled: 1 - Funnel, 2 - Stern, 3 - Propeller, 4 - Port, 5 - Anchor, 6 - Bulbous bow, 7 - Bow, 8 - Deck, 9 - Superstructure, 10 - Starboard, 11 - Bridge
Diagram showing the main parts of a ship

“Most ships are much larger than most boats, but they have many of the same parts. As on boats, the front of a ship is called the bow. The back is the stern. A ship’s left side is known as the port side. The right is the starboard side.

A ship’s frame, or body, is called the hull. The keel is like the ship’s backbone. It is a central beam that runs along the bottom of the ship from front to back. The keel keeps the ship from tipping over.

Ships usually have many decks. The decks are like the floors of a building. Cabins for passengers, engine and control rooms, and spaces for cargo are often on different decks.

An engine inside the ship provides energy to propellers at the back of the ship. The propellers push the ship through the water. The rudder, which is also at the back of the ship, helps in steering. When the ship is not moving, a heavy metal anchor may be lowered into the water. This keeps the ship from floating away.” (Britannica Kids)

This excellent video clearly defines all the parts of a ship labeled in the diagram above. 

Watch this video to help you learn the parts of a ship!

Did you know? 

Earlier, I stated that I use GPS (Global Positioning System) on my phone to help navigate while driving.  Just what is GPS?  It is a highly accurate satellite-based navigation and location system. With a GPS receiver (like my phone), users can quickly determine their precise latitude, longitude, and altitude.

If I need to drive from Los Alamos, NM to Los Angeles, CA., I place these end points into Google Maps and GPS helps me plan a path to drive.  Some people use GPS-capable watches to help them determine how far they have run and how much elevation they have gained.  We also use GPS on the ship.  At any one time, the survey is using between 25-30 GPS satellites at a time – some from other countries.

Something else I learned today is that GPS is the system developed by the USA.  Other countries have their own systems that work in much the same way.  Countries cooperate and use each other’s satellite systems.  Here is a list of GPS-like systems used by other countries.

  • GPS = United States
  • GLONASS = Russia
  • Galileo = European Union
  • QZS = Japan
  • BeiDou = China
  • SBAS = Korea

Watching this NASA Space Place video, “GPS and the Quest for Pizza” will also help you understand how GPS works.

GPS and the Quest for Pizza

Personal Log

For the Little Dawgs . . .

Q: Where is Dewey?  Hint: You use these to climb up or down.

Dewey the beanie monkey sits on a textured black surface
Dewey, what are you sitting on?

A: Dewey is sitting on a step of a flight of stairs.  All the steps on the ship have a non-skid surface.  They are very effective at giving you sure footing as you climb up or down the stairs.  There are flights of stairs inside and outside of the ship.  They go from one deck to another.  All in all, there are between 20-22 flights of stairs on Thomas Jefferson.  

Dewey the beanie monkey on a stair on NOAA Ship Thomas Jefferson
Dewey is sitting on one of the ship’s many flights of stairs.

Many a fine sailor . . .

With only a few more days to go on this incredible journey, I was excited to read on the next day’s Plan of the Day (POD) that I would be going out on the launch (small boat) to help with surveying close to shore.  We had a large area to survey and also pick up some “holidays” in areas that were previously surveyed. A data holiday is an area that was missed in a previous survey. I packed my backpack, got a good night’s sleep, and ate a small breakfast to prepare for the day.

a black-and-white photo of a cowboy riding a bucking bronco
TJ Launch = Bucking Bronco

Let’s just say, it was a rough day.  The waves were not terribly high (~ 2 feet), however, the launch rode like a bucking bronco!  I was fine for the first 30-45 minutes.  Then, I started to feel all hot and woozy.  After “revisiting” my breakfast several times and losing my TAS hat overboard, the crew brought me back to the ship.  I was taken to the infirmary where the medical officer took my vitals every 15 minutes for an hour and encouraged me to eat some saltines and drink Gatorade.  After a long nap, shower, and Ramen noodles for supper, I felt much better. 

At supper, the three crewmembers who were on the launch with me said that they tried to look for my hat.  They found a dead fish, but they thought it wouldn’t look very nice on my head.  I kidded back that Dewey, who was in my backpack, threw up a little bit, also.  It sure was an adventure!

I cannot say enough nice things about the crew members who took care of me in my time of need.  They were professional, kind, and had my wellbeing first and foremost in their words and actions.  I am very grateful.  Thank you!

Later that evening the Chief Boatswain Pooser told me, “Many a fine sailor has lost their lunch on the launch.”  It made me smile.  I was finally part of the club.

Laura, wearing a Teacher at Sea hat, hugs her husband, who is earing a NOAA Ship Thomas Jefferson t-shirt, in front of a chain-linked fence; the ship is visible through the fence
Mrs. Grimm and her First Mate Husband Phil

Please note – As I complete this post, I am now home. I am on land, however, I have more to share. My final blog posts will be sent from my home office. (Funny. . . Why does the room seem to be rolling from side to side? No one told me that I would still feel the rocking of the ship the day after my disembarkation. I don’t mind. It is pleasant reminder of my time aboard Thomas Jefferson.)

Jill Bartolotta: Start Your Engines, June 1, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 13, 2019

Mission:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 1, 2019

Weather Data:

Latitude: 28°19.3’ N

Longitude: 079°21.6’

Wave Height: 1-2 feet

Wind Speed: 11 knots   

Wind Direction: 195

Visibility: 10 nautical miles

Air Temperature: 28°C

Barometric Pressure: 1012.5

Sky: Broken

Making the Engines Run

Engines on this ship are run with marine grade diesel. Before the diesel can be put through the engine it must be cleaned of any impurities. A centrifuge system is used to spin the diesel at a very fast pace in a circle. As the diesel spins any impurities are flung out leaving behind the purified fuel. If the fuel is not purified before it is put through the engines, they will gunk up and not function properly. NOAA Okeanos Explorer has 4 engines. Currently we are running 3 of them and the fourth one is the backup. There is also a fifth generator that can serve as a backup if needed. There are roughly 180,000 gallons of diesel on the ship and roughly 2,200 gallons of fuel are used per day.  In order to make the engine work, air in the engine is compressed causing the air to heat up. Then you spray fuel into the compressed air and the heat of their air causes an explosion leading to the process of combustion. In order to determine if complete combustion is occurring and the engine fuel is clean of impurities you look at the exhaust. If the exhaust is clear it means you are seeing full combustion and the fuel is clean. If the exhaust is not clean, black for example, it means that combustion is not complete or the fuel is dirty.

Fuel purification centrifuge
The fuel purification centrifuge system. If you look closely you can see a pink liquid, purified diesel.
Engine
One of the engines. There are four engines on board. Three are running and the fourth will be used as a backup.

Cooling the Engines

The engines must run at a temperature below 200°F. When these engines run they create heat so to keep them at a temperature under 200°F you need to cool them off using a heat exchanger. A heat exchanger is a series of pipes that run hot substances past cooler substances. These substances do not come into contact with one another, but are piped past one another. The heat transfers to the cooler substance through the series of pipes thus cooling the previously hot substance. On this ship, oil is used to lubricate the pistons on the engine, but it also serves a coolant. The oil is then cooled via freshwater called jacket water and the freshwater is cooled via seawater taken from the ocean. The ocean surface water is 74°F when it enters the ship and leaves the ship at roughly 84°F.

However where does this heat go? The first law of thermodynamics, The Law of Conservation of Energy, tells us that energy cannot be created or destroyed, only transferred or converted. So why not convert this heat energy into some of use? Well guess what. The engineers on Okeanos Explorer do just that. Some of the heat goes into the seawater used to cool the jacket water and some of the heat is used in the desalination system.

Remember we left off with desalination in the previous blog.  They use the heat coming off the engines to heat the saltwater, evaporate it, and retrieve the freshwater. However, if you remember these engines must run below 200°F and in order to boil water you must be at a temperature of 212°F. I know many of you are probably thinking salt in water actually lowers the boiling point, but really the opposite is true. Salt actually increases the temperature needed to boil water. However, it is minimal so it won’t affect your pasta too much. Feel free to add that pinch of salt like a true chef.

In order to boil water with 200°F of temperature or less we need to change the pressure of the system. This is done through a vacuum that decreases the pressure in the system allowing water to boil at a lower temperature. It is similar to when you go hiking in the mountains (less pressure than when you are at sea level) and go to boil water. It boils quicker because less heat is needed since the pressure is lower. So by changing the pressure in the system to one that would be seen at a higher altitude, engineers are able to use the heat from the engines to boil the salt water on the ship, allowing us to have access to freshwater for drinking, bathing, and cooking purposes. Pretty ingenious right?

Maintaining Balance

Now hopefully you were paying attention in the first paragraph when I talked about how much fuel is on board and how much is used each day. As fuel is used, the weight on the ship will change affecting stability. A ship with weight is more stable in the water than a ship will little to no weight. Therefore as fuel weight is lost it must be replaced. One gallon of diesel weighs approximately 7 pounds. So if we are using 2200 gallons a day we are losing 15,400 pounds of weight. How do the engineers accomplish the task of adding more weight? What is all around us weighing 8.6 pounds per gallon??? Seawater! Yes! So ballast tanks are filled with seawater to add weight to the ship that is removed when fuel is used.

Ballast water filtration and UV purification system
Ballast water filtration and UV purification system. The parts to the right are the filtration system and the parts to the left are the UV system.

Ballast water is taken in through a filtration system before it even reaches its holding tanks (separate than the fuel tanks). The water first passes through a filter to remove large particles (such as larger pieces of plant material or debris) and then passes through a UV system that will kill any organisms. When the ballast water is released from their holding tanks in order to allow more fuel to come on board, the water must pass through the UV system once more to make sure nothing alive (plants, animals, bacteria, etc.) is getting into the water.

This purification of ballast water occurs to prevent invasive species from entering new areas. An invasive species is a plant or animal that is from somewhere else and is introduced through human actions. When these species establish in a new area and begin to outcompete native species, affect human health, and become costly to remove, they are classified as invasive.

Where I live on Lake Erie several species such as zebra and quagga mussels, round goby, and spiny water flea have all been introduced from ballast water from ships coming from the inland lakes of Eurasia. These ships would need to dump their water when they entered the shallower river ports of the Great Lakes, spurring a silent invasion. All four species are negatively affecting native populations of important species and are costly to manage. Then same is happening along the East Coast with species such as European green crab.

I would like each of you reading this blog to learn more about a species introduced to U.S. waters, whether they be fresh or salt, through ballast water. Feel free to let me know which organism you chose to learn more about in the comments section of the blog.

Personal Log

Today was a really special day at sea. It was my 30th birthday. I could not have imagined a more amazing place to turn 30. I spent the day learning all about the engine systems on board, out on the bow enjoying the breeze and sunshine while looking for ocean critters, and was treated to the sweetest cake ever. It was so kind of the chefs on board to make me a cake for my birthday. It was a red velvet cake (my favorite) with chocolate frosting and decorated with chocolate pieces and white icing. We had it with some chocolate raspberry swirl ice cream. Truly a wonderful celebration with my new friends.

Jill with birthday cake!
My delicious birthday cake. Thank you everyone for a great birthday!

I spent the hour before sunset enjoying a nice yoga and meditation session before the most amazing sunset we have seen at sea yet. The clouds and sun put on the most spectacular display of color. Afterwards I learned more about the happenings of the mission control room (basically the mapping hub for the ship). I learned how we launch equipment to collect water column data and how we clean the data removing noise. I will be writing a blog on the mapping mission soon.

After our shift ended, my roommate and I ventured to the bridge to learn about piloting a vessel at night. We learned what equipment they rely on and how they manage their night vision. And then the most spectacular part of the whole night! The stars! Wow! It looks like someone through glitter (plastic free glitter preferably) into the sky. I have never seen so many stars in my life. We saw the Milky Way, Big Dipper, Little Dipper, North Star, Jupiter and so many other constellations. It was a wonderful end to a great birthday day.

Did You Know?

Even numbered locations (such as muster stations or staterooms) on ships are located on the port (left) side of the ship and odd numbered locations are located on the (starboard) right side of the ship.

Sea Measurements

Different ways to measure are used at sea. You can see some measurement conversions below.

1 nautical mile = 1.151 statute mile

1 knot = 1 nautical mile per hour = 1.151 statute mile per hour

1° Celsius = 33.8 °F

Animals Seen Today

Flying fish

Northern gannet

Lesley Urasky: June 30, 2012, Goodbye Pisces

NOAA Teacher at Sea
Lesley Urasky
Aboard the NOAA ship Pisces
June 16 – June 29, 2012

Mission:  SEAMAP Caribbean Reef Fish Survey
Geographical area of cruise: St. Croix, U.S. Virgin Islands
Date: June 30, 2012

Location:
Latitude: 29.1215
Longitude: -78.9042

Weather Data from the Bridge:

Water Temperature:
Air Temperature: 32°C (90°F)
Wind Speed:  9 knots (10 mph), Beaufort scale:  3
Wind Direction: from W-SW
Relative Humidity: 61%
Barometric Pressure:   1,012.0 mb
Surface Water Temperature: 28°C (82°F)

Science and Technology Log

During our last night, I had the Third Assistant Engineer, Steve Clement, give me a tour of the engine room and fresh water system.  I can’t believe the engineers are able to work down there – the noise and heat (110°) is amazing!

Steve Clement, Third Assistant Engineer, explaining how things work in the engine room.

I’m not a mechanically oriented person, so Steve had to keep his explanations short; it was more of a show-and-tell tour.  The engine room, majority of equipment controlling the ship’s motion, and water treatment are located on the bottom deck of the ship.  The quantity of both electronic and mechanical equipment is mind-boggling; all the men who work in this capacity have to be proficient in so many areas so the ship can support the science missions.  Hats off to all those hard-working and talented men!

Computer screen showing the operations in the generation plant on the Pisces.

The operation of the ship can be monitored on the main distribution computer screen.  Levels of fluids and functioning of all the components are continually assessed and modifications to operation made from the control panel.

Computer screen showing current fuel consumption for each generator.

The ship uses lots of diesel fuel when it is operating at full steam (14.5 knots/hour) – around 2,500 gallons a day!  The Pisces has a tank capacity of 110,000 gallons; I’d hate to pay their fuel bill when it’s time to fill up! This quantity of fuel allows it to travel about 12,000 NM (nautical miles) or 13,800 miles; that’s a little over half-way around the Earth on one tank of fuel!

Two of the Pisces‘ generators: the one on the left is a 12-cylinder and an 8-cylinder on the right.

The propeller is located at the stern (back) of the ship.  I was able to look down through grating in the floor and see the drive shaft turning at 134 rpm.  It has a diameter of 14.1 feet; it has to be so large so that it can efficiently move the ship through the water.

Main shaft of the Pisces‘ propeller.

Lastly, I got to see the Pisces‘ water generation system.  This is as important as the ship’s engines because without fresh water, the scientists and crew members wouldn’t have drinking water as well as no water for washing or cooking.  The ship isn’t big enough to carry all the freshwater that it needs for a long cruise.  But with reverse osmosis technology, and the fact that we’re surrounded by nothing but water, fresh water is readily available.  The Pisces takes in seawater which is pumped through a reverse osmosis (RO) system.

Reverse osmosis (RO) system that creates fresh water for the Pisces.

In reverse osmosis, the salty water is forced (pumped) through membranes with very small openings.  These are so small that the ions making the water “salty” cannot pass through; the water is able to pass and after leaving the ions behind, becomes fresh water.  The RO system on the Pisces generates about 624 gallons per hour.  The tan “box” in the picture above contains all of the controls and gauges.  The long, white tube behind it contains the permeable membrane that the water is forced through.

Membrane filter in a reverse osmosis apparatus. (Source: Wikipedia)

Personal Log

It is with some sadness that my adventure as a NOAA Teacher at Sea has come to an end.  Today I said goodbye to the crew of the Pisces.  They are an amazing crew, and made my final portion of the cruise without the scientists interesting and fun.  I admit that I was a bit apprehensive about being without the scientists and seeing the ship under different circumstances (lacking a specific scientific objective), but the Pisces steamed forward with two goals in mind: retrieving the buoy (see my last posting on June 27), and arriving in Mayport in a timely manner to receive the next group of scientists as they embark on their cruise.  I’d like to invite you to continue to follow the Pisces and their new Teacher at Sea, Marsha Skoczek as she learns about Deep Sea Corals.

Pisces life preserver

On the afternoon of the 28th, we encountered a line of squalls generated by Tropical Depression Debby as she moved off the coast of Florida and into the Atlantic.  At one point, we had 40 knot (46 mph) winds and rain.  After the winds had died down a bit, I spent some time up on the bridge. Being up so high in the ship, coupled with 8-foot confused seas (waves coming in from different directions) began to make me feel seasick.  I took another meclazine (similar to Dramamine), had some saltine crackers and ginger ale, and sat on deck looking at the horizon for a while.  When even this failed to make me feel better, I crawled into bed.  I really must have been feeling poorly to miss dinner!

By next morning, the seas had calmed down dramatically, and I was feeling as good as new.  As this was our last full day at sea, I headed up to the bridge to do one last thing that the Commanding Officer told me I could do – drive the ship!  While the ship is underway, it is usually under “auto-pilot”.  A course can be entered into the computer and the ship doesn’t need anyone actively at the helm.  The Navigational Officer, Ensign Michael Doig, placed the Pisces under manual control and showed me how to steer the ship.  The Pisces is an incredibly responsive ship and can turn very quickly in just a few feet.  I was shown the current heading and the compass and tried to keep the ship on course – it was definitely much harder than it looks!  After zig-zagging back and forth, off course by about 10 degrees, I handed control back to Ensign Doig.

Lesley Urasky at the helm (aka “driving” the ship).

After this concentration zapping task, he had me plot our current position on the navigational chart and record the hourly weather information.  This included the ship’s current latitude and longitude, course heading, wind speed, air temperature, relative humidity, barometric pressure, and cloud cover.

These are some of the nautical charts the Pisces used while on our cruise: Puerto Rico and the U.S. Virgin Islands and East Coast of Florida: Approaches to St. Johns River

Lesley Urasky plotting the Pisces‘ current position

While many aspects of travel in the modern age have various computer based technologies to assist with navigation, the crew still needs to know how to find their location manually. I spent some time learning about navigation with Peter Langlois, 3rd Mate on the Pisces.  He showed me how they plot their course on a navigational chart.  Once a ship’s current location is determined, those crew members on watch will use dead reckoning to determine where they will be at a given point in time if all the current conditions remain the same (course and speed).  Peter also attempted to show me how to determine the time of sunrise/sunset for each specific location using our latitude, longitude, and an almanac.  For an interesting way to determine when sunrise/sunset (as well as moon rise/set) for your specific location, NOAA has a great website called Solar Calculator.  This site will also tell you when solar noon occurs (point where the sun is most directly overhead) and show you the path the sun takes across the sky.

Plotting our current position and using dead reckoning to project future positions.

Unfortunately, at that point in time, I wasn’t able to fully understand Peter’s directions as the seasickness was just beginning to hit me. The effects were compounded by being up on the bridge (almost the highest point on the ship) and trying to follow lines of small numbers in the almanac while the ship was being  buffeted by waves from all directions.

As my final day at sea came to a close, I spent quite a bit of time “prowling” the ship and taking pictures of all the little things that had become so “ordinary” to me.  After dinner, I climbed up to the flying deck and spent time watching the sunset with the Commanding Officer (CO), Peter Fischel.  It was a beautiful sight; one that I’ll always remember.

Sunset on the last night of the cruise.

Before I went to bed, I checked the ship’s information board to find out when we’d be arriving in Mayport, Florida.  The board holds important information and updates the crew needs to know as part of their jobs as well as other useful information.

Information board on the NOAA ship Pisces.

Last night when I went to bed, there was nothing but open ocean surrounding the ship.  When I woke up the next morning, the sun was rising and Mayport/Jacksonville, Florida could be seen along our port side (left).  It was a welcome sight after not seeing land for a few days.  However, I knew this view was also bringing my adventure to an end.  It was an amazing journey and full of wonderful experiences.  I met so many kind and knowledgeable people who I won’t soon forget.  A HUGE thank you to NOAA, the science team, and the crew members of the Pisces!

Panoramic view of the Mayport Harbor as we pull in at the end of our cruise.

Kathleen Harrison: City on the Sea, July 20, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 12, 2011

Weather Data from the Bridge
True Wind Speed:  light (< 5 knots), True Wind direction:  variable
Sea Temperature:  9.75° C, Air Temperature:  10.38° C
Air Pressure:  1012.3 mb
Ship Heading:  297°, Ship Speed:  11.3 knots
Latitude:  56.45° N, Longitude:  155.04° W
Patchy fog, very calm seas

Science and Technology Log

The Oscar Dyson is like a self-contained city for 35 people that floats on the sea.  All of the engine fuel and oil, food and provisions for the NOAA staff, ship’s crew, and scientists have to be brought on board while the ship is in port.  On this leg of the Walleye Pollock Survey, the ship will be out to sea for 19 days.  This presents several issues that must be solved in order for the people to be comfortable, and for the research to be performed.

the water maker of the oscar dyson
This piece of machinery converts sea water into fresh water for the people on the Oscar Dyson. (courtesy of Anne Mortimer)

First, fresh water is needed, about 100 gallons per person, per day.  For 35 people, that is 3500 gallons per day.  The ship has a storage capacity of 9000 gallons.  Do the math, and you can see that a daily supply of fresh water is needed.  Well, the ship has 2 water makers that convert sea water into fresh water.  Basically, the water is heated, vacuum pumped, and evaporated, then collected in the fresh water storage.  Salt does not evaporate, so it is left behind.  The evaporator uses the sea water to power an ejector pump (that creates the vacuum) and keep the unit cool. The brine (super salty water) created from the evaporation is sent overboard by the ejector pump.

engineering room control panel
The engineer controls the power that the generators make with this panel. See the horizontal bar running the length of the panel - even the engineers need something to hold on to during rough seas. (courtesy of Anne Mortimer)

Next, electricity is needed to power the galley appliances, run the washers and dryers, lights, computers, ship’s bridge instruments, and a host of other things.  The ship has 4 generators that are capable of producing enough energy to not only power the propeller, but also the whole electrical need of the ship.  The control panels for each generator are used to divert some of the power to each part of the ship, so that I can charge my camera battery, use my computer, or turn on the light in my room.

generator number 2
This is generator number 2 on the Oscar Dyson. There are 4 generators, but only 2 are online at any one time. (courtesy of Anne Mortimer)

Another issue is the power needed to run the propeller.  For the 19 days the ship is out to sea, there are usually 2 generators running.  The ship’s computer decides which generators are needed for the speed that is required at any one time.  In heavy seas, or when more power is needed, a 3rd, or even the 4th generator will be brought on.  As generators are used, they wear and tear, so the computer determines what the most efficient use of them will be for each situation.  Everything can be manually controlled as well.  Every month or so, each generator needs an oil change.

price of fuel
The current price of diesel fuel in Kodiak, Alaska.

They hold about 65 gallons of oil!  The used oil is kept on board until the ship docks back in Kodiak.  Also, about every 20,000 hours, each generator needs to be overhauled.  This is done by a team of mechanics when the ship is in port, during the off season.  About 100,000 gallons of diesel fuel is stored at the beginning of the trip, and 2000 gallons are used each day.

Now, since the Oscar Dyson is a biological research ship, the usually noisy generators have been quieted, so that the fish are not scared away.  One way to quiet a very large, 1600 hp engine, is to put it on a rubber mat.  Another way is to send the energy from the generator through a large box, which then converts it to electrical energy, and that is transmitted to the propeller by thin wires.  This reduces the vibrations in the hull.

To be an engineer on a ship, a person usually would go to a marine academy and obtain a degree in marine engineering.  During school and shortly after, time spent as an intern is valuable to gain experience.  Once the new engineer is employed on a ship, he or she would start at the bottom of the team, maybe as 3rd engineer, depending on how large the ship is.  With experience, and management skills, the engineer could move up to 2nd, then 1st, then Chief engineer.  Of course, a ship’s engineer must love being at sea, and living on a ship.

Personal Log

We had a fabulous day for wildlife and scenery watching – bright sunshine (until 11:00 pm), calm seas, and close proximity to Kodiak Island.  I saw stunning rocky cliffs, Dall’s porpoises, and whales – probably Fin whales.  I was overwhelmed with the beauty and scale of Kodiak Island.

evening sun shine
I love the way that the sun glitters on the water. I took this photo about 7:00 in the evening.

kodiak cliffs
Rocky cliffs of Kodiak Island on a sunny day.

sunlight through the fog
The sun light is breaking through the clouds about 2 miles away.

Rebecca Kimport, JULY 12, 2010 part2

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 12,  2010

A Floating City

A modern city has a network of companies that provide us with modern conveniences (water, electricity, sewage and trash removal). A NOAA research vessel provides those same conveniences to its crew through the complex engineering network. We wouldn’t be able to eat, drink, take showers, or conduct research without the expertise of our engineers.
Sea water is taken in by an intake valve about 6 m below the surface. It goes through a variety of cleaning processes to filter, distill and purify the water for human consumption. First, small sea creatures are removed by a filter known as the “sea chest.” Here is a picture of some of the creatures captured by the sea chest in the Oscar Dyson. Next, the water is distilled using the heat from the engine under a vacuum to remove dissolved ions. The water is then purified using bromine and UV light before it is pumped into the piping system (running throughout the ship in pipes labeled “potable water”). The water is so pure that we have to add salt for the espresso machine to recognize the water level (the science of the espresso machine will have to wait for a later entry).

Contents of the Sea Chest

Lights, Camera, Acoustics
The Oscar Dyson requires electricity to run the ships instruments, the scientific equipment and the lights which allow us to keep the ship operational 24/7. Our power is generated by the engines which also propel the ship forward. The Oscar Dyson runs on diesel fuel and uses larger, more powerful versions of the engines we find in cars. We use about 110 gallons of fuel each hour to maintain scientific and navigational operations.

Engine

Taking out the trash
Kitchen and food waste are the main sources of trash on the Oscar Dyson. Trash is sorted and disposed of based on how it breaks down. Food, which decomposes, is released into the ocean to re-enter the ecosystem. Combustible items (such as paper, napkins, etc) are burned in the ship’s incinerator which is run every night. Non-combustible items, such as aluminum cans, are recycled and brought back to land.

And out the other end
Although a less than pleasant topic to discuss over dinner, it is important to remember that a ship must track its human waste as well. Per NOAA regulations, human waste is treated through a complex process before being released into the ocean (to re-enter the eco-system). This process, like those of water treatment plants and septic systems on land, break down the waste through multiple steps involving biological, physical and chemical reactions. Ask me for more information if you really want the dirty details.

Who’s watching the engines?
The Oscar Dyson employs an engineering staff of seven, who have specialized training and job responsibilities to ensure proper functioning and maintenance of the vessel. Like all good engineers, they usually work behind the scenes so it was great to get an inside look at the inter-workings of the ship.

New Vocabulary
hull: watertight body of a ship
distill: remove impurities
ions: an atom with a positive or negative charge. Ions are created when elements gain or lose electrons. They can be in the form of a solid or a liquid (dissolved)
UV light: ultraviolet light

Dan Steelquist, July 21, 2009

NOAA Teacher at Sea
Dan Steelquist
Onboard NOAA Ship Rainier
July 6 – 24, 2009 

Mission: Hydrographic Survey
Geographical Area: Pavlov Islands, Gulf of Alaska
Date: July 21, 2009

Weather Data from the Bridge 
Latitude: 55°10.84’ N
Longitude: 161°41.87’ W
Visibility: 10+ Nautical Miles
Wind Direction: 220° true
Wind Speed: 16 knots
Sea Wave Height: 0-1ft.
Swell Waves: 1-2 ft.
Water Temperature: 9.4° C
Dry Bulb: 10.0° C
Wet Bulb: 9.4° C
Sea Level Pressure 980.0 mb  

Science and Technology Log 

NOAA Ship Rainier from the shore of Wosnesenski Island
NOAA Ship Rainier from the shore of Wosnesenski Island

NOAA Ship Rainier is an important workstation used for gathering hydrographic survey data. Rainier is able to cover large distances in order to get to remote places where charting information is needed, but there are no communities from which hydrographers and crew can work. Therefore Rainier herself is a compact city.  The science of operating a small city might seem simple enough, but a closer look at the major parts and it becomes obvious that there is much involved. Two of the areas I have found to be very interesting would be the bridge, where the ship is operated when underway, and the engineering department (the “public works department” of this small community).

The bridge is the command center of the ship. While tied to a pier or at anchor, there are many responsibilities for those on duty on the bridge. Weather data is gathered every hour and radios are monitored for any emergencies that might come up on other ships in the area. While at anchor, the ship’s position is closely watched using radar and GPS to be sure the anchor is holding fast. While underway, the bridge has direct control of the engines and steering. Safe navigation and following a predetermined sail plan are also the responsibilities of those on the bridge. Getting this small city safely and directly to the places it needs to work is critical to the mission of the Rainier.

The engine room is also a very important and interesting area on board this ship. Rainier has two large diesel engines each capable of producing over 1,200 horsepower. A typical automobile produces between one hundred and two hundred horsepower. Those two engines can push this 231 ft ship at a cruising speed of about thirteen knots per hour.  The engineering department can be compared to a public works department of a city because they provide many of the same services. All of the electricity used by Rainier is generated on board. The engineering department is also responsible for making fresh water from salt water using evaporators capable of producing one hundred fifty to one hundred seventy gallons per hour. Any wastewater created on the ship is also treated on board Rainier before it is discharged. The engineering department is also responsible for all of the heating and cooling systems onboard the ship including a large walk-in refrigerator and freezer. Rainier is capable of carrying a crew of over fifty people on hydrographic survey missions for up to three weeks at a time. To make that operation possible, this ship is a floating city complete with all the services and utilities any small town would need to function effectively.

Personal Log 

I’ve been on board Rainier now for almost three weeks. I have seen and learned many things. The work of the hydrographers is very important. The ship provides an excellent work platform from which to gather data and each of the different departments contributes greatly to the mission of the ship. There is quite a bit of quality science and mathematics going on everywhere on board. I have had a chance to watch these people work and I have seen science and math being applied everywhere. What has stood out to me the most over these weeks has been that even with the variety of types of work being done on Rainier everyone works together to get the mission completed. I am excited to share all my experiences on board with my students back home. Perhaps one day some of them will have a chance to be a part of a ship like this.

Something to Think About 
The Rainier has many different types of work on board that require many different types of knowledge. If you want to apply navigation interest, work with computers, become an engineer, work as a deck hand, become a cook, or become a scientist, why not do it on a NOAA ship like Rainier?