Alex Miller: Working the Night Shift, June 3, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

IMG_8309 (1)

The full moon lights up the night on top of the flying bridge.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: June 3, 2015

Weather Data:

  • Air Temperature: 13.3°C
  • Water Temperature: 14.8°C
  • Sky Conditions: Partly Cloudy, I could still see some stars
  • Wind Speed (knots/kts), Direction: 5.5 kts, NNE
  • Latitude and Longitude: 43°29’84”, 124°49’71”

_________________________

Later on Monday, once all the night-shifters had risen from their beds and were beginning to get ready for the bongos and mid-water trawls, I took a tour of the engines with marine engineer and NOAA crewmember, Colleen. We started in the control room. With up to four engines operating at any one time, Colleen says it’s a relief that computer systems help to automate the process. As part of her four-year degree program at Seattle Maritime Academy, she learned how to operate the engines manually as well, but I think we can all agree computers make life easier.

Before moving on to the actual engine room, Colleen made sure I grabbed some ear protection. For a one-time visit they’re probably more for my comfort than to protect from any real damage, but because she’s working with the engines every night, it’s important to protect against early-onset hearing loss. Once the plugs were in, we were basically not going to be able to talk so Colleen made sure that I knew everything I was going to see before we proceeded.

Colleen in the control room.

Colleen in the control room.

First, we made our way past the fresh water tanks. I was really curious about how we get fresh water on the ship, since we’re in the middle of the Pacific Ocean. The Shimada produces freshwater using two processes. Reverse osmosis produces most of the water, using high pressure to push the seawater across a membrane, a barrier that acts like a filter, allowing the water molecules to pass through but not the salt. This is an energy intensive process, but the evaporators use the excess energy produced by the engines to heat the seawater then pass it through a condensing column which cools it, and voilá, freshwater!

Next, we came to the four diesel engines. Four engines. These four engines are rarely all on at one time but never will you find just one doing all the work. That would put too much strain on and probably burn out that engine. While they burn diesel fuel, like a truck, instead of using that energy to turn a piston like the internal combustion engine of that same truck, they convert that energy to electricity. That electricity powers the two motors that ultimately make the ship go.

Panoramic view of the engine room, engines 1 and 3 can be seen in foreground and engines 2 and 4 in the background.

Panoramic view of the engine room, engines 1 and 3 can be seen in foreground and engines 2 and 4 in the background.

A ship the size of the Shimada requires a lot of power to get moving, but Colleen tells me it gets decent mileage. Though the ship’s diesel tank can hold 100,000 gallons, there’s only about 50,000 gallons in the tank right now and the ship only needs to refuel every couple of months.

After a quick pass by the mechanics for the rudder, the fin-shaped piece of equipment attached to the hull that controls the direction the ship is traveling we arrived at our last stop: Shaft Alley. Those two motors I told you about work together to turn a giant crankshaft and that crankshaft is attached to the propeller which pushes water, making the ship move. When I was down there the ship was on station, where it was holding its location in the water, so the crankshaft was only turning at 50 RPM (rotations per minute).

It was a pleasure getting a tour from Colleen!

_________________________

Throughout the night, the Shimada revisits the same transect stations that it visited during that day, but uses different nets to collect samples at each station. To the right, you can see a map of the stations; they are the points on the map. Each line of stations is called a transect. Looking at the map it’s easy to see that we have a lot of work to do and a lot of data to collect.

The transects and stations within them that the Shimada will survey at.

The transects and stations within them that the Shimada will survey at.

Why does this have to happen at night? At night, the greatest migration in the animal kingdom takes place. Creatures that spend their days toward the bottom layers of the ocean migrate up, some as far as 750 m (almost 2,500 ft)! Considering they’re tiny, (some need to be placed under the microscope to be reliably identified) this is relatively very far. And they do it every day!

To collect data on these organisms, three types of nets are used, two of which are not used during the day. Along with the surface-skimming neuston (which is used during the day), the bongo net, so named because it has two nets and looks like a set of bongo drums, and the Cobb trawl which is a very large net that needs to be deployed off the stern (back of the boat).

The operation of the bongo net is similar to the neuston, it is lowered off the starboard (when facing the bow, it’s the right side) side of the boat. Dropping down to 100 m below the surface and then coming back up, the bongo is collecting zooplankton, phytoplankton and fish larvae. The samples are poured from the cod-end into a strainer with a very fine mesh and since the water is full of those tiny bits, the straining can take a bit of time and some tambourine-like shaking.

The Cobb trawl on deck, waiting to be deployed.

The Cobb trawl on deck, waiting to be deployed.

These samples are then fixed (preserved) in ethanol and they will be analyzed for diversity (how many different species are present) and abundance (how many individuals of each species is present). The bongo is the net of choice for this survey because once scientists go to process the data, the double net provides a duplicate for each data point. This is important for statistical purposes because it ensures that the area that is sampled by one side of the net is similar enough to the area sampled by the other side of the net.

Below you can see video of the bongo net after it’s been hauled back. Scientists are spraying it down to make sure all organisms collect in the cod-end.

 

 

_________________________

Once the bongos are done, comes the real action of the night shift. The mid-water trawls take 15 minutes. I’ve become really great at communicating with the bridge and survey technicians who are operating the nets so that I can record data for the beginning and ending of the trawls. Once the catch is on deck, the survey technicians empty the cod-end into a strainer. The scientists prepare to sort, count and measure the species of interest. If the catch is large or particularly diverse, this can be a significant task that requires all hands on deck.

With four trawls a night, some with 30-50 minutes transit time with nothing to do in between, fatigue can set in and make the work hard to finish. To make it through the night, it takes great senses of humor and playful personalities. A little theme music doesn’t hurt either. The scientists of the night shift, under the direction of Toby Auth, a fisheries biologist with Pacific State Marine Fisheries Commission working as a contractor to NOAA and Chief Scientist Ric Brodeur, are Brittney Honisch, a marine scientist with Hatfield Marine Science Center, Paul Chittaro, a biologist with Ocean Associates working as a contractor to NOAA, Tyler Jackson, a fisheries science graduate student, and Will Fennie.


The data collected during these trawls provides a snapshot of the ecosystem. This data will help NOAA Fisheries Service understand the health of the ocean ecosystem as well as how large certain populations of commercially important fish are such as hake and rockfish.

In the meantime, it provides for some late night fun. Over the course of the nights that I’ve spent in the wet lab, we have uncovered some bizarre and fascinating creatures.

But in my opinion the real star of the trawls was the young female dogfish. A dogfish is a type of shark. I know what you’re thinking and no, she did not try to bite us. But dogfish do have two spines, one at the base of each dorsal (back) fin. We all fell in love, but, ultimately, had to say goodbye and return her to the sea.

This slideshow requires JavaScript.

Thank you for your patience as I’ve gathered the images and video to make this and future posts as informative as possible. Stay tuned for Episode 5 coming soon!

Personal Log

First off, a heartfelt CONGRATULATIONS to the first 8th grade class at Village Leadership Academy. I wish I could be there when you walk across that stage on June 4th.

_________________________

Little did I know when I started hanging out with the scientists of the night shift that it would become a way of life. Each night I managed to stay up later and later and finally last night I made it through all four catches and almost to 0800, the end of the night’s watch. After dinner (some call it “breakfast”), I slept a full eight hours, and it felt completely normal to be greeted with “Good Morning!” at 3:30 in the afternoon.

Speaking of the night’s watch, I’m really grateful that someone was able to get one of my favorite TV shows last Sunday. And Game 7! The Blackhawks are in the finals! Even though I can’t call anyone back home to discuss my theories or that amazing goal by Seabrook in the third period, I can email and it feels like I’m missing less.

The only person I can’t email is my cat, Otto! I can’t wait to snuggle him until he scratches me.

output_GIG1yZ

Otto the cat. He loves snuggling.

Question of the Day:

Comment with answers to these questions and I’ll shout your name out in the next post!

What is your favorite animal we have seen so far?

Acknowledgements:

Thanks to Paul Chittaro for assisting in the use of iMovie for this post!

Amy Pearson, August 22, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 22, 2007

Morning light in Woods Hole Harbor

Morning light in Woods Hole Harbor

Weather Data from the Bridge 
Air temp: 18.7
Water temp: 17
Wind direction: 75
Wind speed: 15kts.
Sea wave height. 2 ft.
Visibility: 7 nm

Science and Technology Log 

Woke to the sound of engines warming up.  We were docked in Woods Hole having arrived at 6 p.m. on Tuesday to exchange scientists.  Scientist Joe Kane who supervised my shift was departing and a new scientist, Betsy Broughton, was joining us.  Yesterday, the crew and scientists were very excited for the chance to get on land.  Many joined their families who live nearby.  I met my husband for dinner at a location about half-way between here and my home.  It was great seeing him. The DELAWARE II would be departing Woods Hole at 6a.m. The water was very calm and the morning light just beautiful. Everyone seemed recharged for the final leg of our cruise. After an early morning walk, I got on the exercise bike for a while.

Martha’s Vineyard Lighthouse being restored

Martha’s Vineyard Lighthouse being restored

Today I had a tour of the engine room, a place I had observed engineers entering with earphones but hadn’t seen. I followed Engineer Chris O’Keefe down a ladder into a very warm and noisy engine room.  It is huge and very clean. We first went into the office/control room where it was quiet and he showed me the many dials, switches, and screens that monitor the different systems of the ship.  There is one engine, two generators for producing electricity, and another generator in the bow to run the bow thrusters and hydraulic winches. There is also a system for making fresh water from sea water, utilizing a heat exchanger. Cool salt water condenses the steam to form fresh water, which is then chlorinated. The ship has about 10 fuel tanks and can carry 70,000 gallons of fuel. There is also a machine shop below with tools and some space to work.  I am very impressed with the organization of materials, cleanliness of the space and the size of the engine. There is a lot to keep track of down here, and it is well organized and clean.

Jerry Prezioso and Betsy Broughton changing CTD batteries

Jerry Prezioso and Betsy Broughton changing CTD batteries

As we left Woods Hole, we passed north of Martha’s Vineyard and I noticed a light house with an orange ladder next to it. I recalled that a friend of mine, Marty Nally, was going to be restoring this lighthouse at this time.  Right is a photo of the lighthouse with the orange ladder, Marty must be nearby! The CTD (conductivity, temperature, and depth) unit that we use can work for about 90 times before it needs a battery change. It is close to 60 stations and Jerry decided to change the batteries. He and Betsy (our new scientist on board) did this today during a calm moment.

My first plankton sample was done at around 9 p.m., and loaded with amphipods, tiny crustaceans that have little hook-like structures on their legs that make them very hard to remove from the nets.  Our midnight sample was about the same.  We were collecting at an area called Nantucket Shoals, east of Nantucket. It is shallow and has a hard bottom. I was surprised to get on deck to see at least 15 lights from fishing boats, fairly evenly spaced in a long line.  I heard that we had to change our collection site a bit due to the position of all of these boats.  I was quite tired and went to sleep at about 12:30 until 2:20 a.m. when I thought we would be at our next station.  I discovered that it would not be happening on our shift and went to sleep.  One thing about this ship, there is always noise, humming of some piece of equipment.  Headphones are very helpful in blocking it out…whether there is music, a book on tape, or just no noise.  It looks like tomorrow will be a much busier night, so I hope to stock up on some rest tonight! 

Sena Norton, July 9, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 9, 2004

Location: In transit to Shumagin Island collection, due to anchor at NW Egg Island Date: Friday, July 09, 2004
Latitude: N 55 degrees 26.60’
Longitude: W 159 degrees 33.97’
Visibility: <1 mile
Direction: 221 degrees
Wind Speed: 13 kts
Sea wave height: 0-1 ft
Swell wave height: 1-2 ft
Seawater temperature: 10.6 deg C
Sea level pressure: 1016.0 mb
Cloud Cover: 8/8
Weather: 11.7 deg C, fog cover most of the day, some clearing into high cloud cover.

Plan of Day:

1200 stop ship hydro and begin transit to Shumagin Is, specifically Egg Island for anchorage. Anchor set for 2100 or earlier.

Science and Technology Log

The local patch that was being surveyed is too large to finish in one pass. The RAINIER had already done a few lines during their previous legs and on this pass we got about 10- 12 lines surveyed. They will steam back by here to finish the patch at a later date. Tomorrow is set for the first of 5 days of small boat launches and survey. Because I will be aboard a launch I was run through some basic boat safety this afternoon. I was also given an engine room tour and simple explanation and spoke with some crewmembers about standing watch. The XO showed me some books that might be of interest for my curriculum planning and also my general knowledge.

Small Boat Safety and Etiquette

The launches are put in the water around 0800 and will stay out doing survey work till 1600 or so. There will be a complement of people aboard: the coxswain who drives the boat and in charge of safety, three officers from the ship who will run the program and collect data and myself. The launches are stored on the gravity davits along the ship. The boats will be lowered to deck level where the crew will get on board and then the boat is lowered to the water and unhooked. Getting on board the launch you must wear the Mustang survival coat and a hard hat. Nothing is to be in your hands while you board, so all other material need to be near the rail and will be handed over once you are onboard. One of the most dangerous times on the ship are launching and taking up the smaller boats. You are required to wear positive flotation at all times and since the Mustang jacket is bulky and warm, I was issued a float vest. We are launching number 5 and number 3 boats tomorrow.

Standing Watch

While underway there is a rotating watch schedule 4 on, 8 off, 4 on is its most simple explanation. An example watch schedule would be 0800 – 1200 on watch 1200 – 2000 off, 2000 – 2400 on again. So you work 8-12 on both sides of am and pm. Even though the routine is easy to remember it is very difficult on your body and your sleep schedule. The added hardship is the constant light this far north and the pitch black of your berth. For a visitor who has kept a normal sleeping routine you have a different perspective on just what is required for this ship to keep going 24 hours a day. There is a lot more upkeep then I expected and the watch standers are those people. While anchored most people go back to a normal 8 hour work shift, although some of those work shifts are at night there isn’t the constant change.

Engine Room Tour

The engine room tour was loud, even through earplugs and head phone like muffs that roar is amazing. You hear it throughout the ship but nothing compares to the pure sound when you are right next to it. The control room looks out over the two main engines. Each engine turns the port or starboard screw. Control over the engines can be given to the bridge but ultimately if the engineers need to control anything that comes from that area they are all powerful. There is fuel to keep moving to balance out the ships list, fresh water to make, generators to watch so as not to over load any of their out-puts. In a sense the engine room is the heart of the ship. Being self contained completely means that everything has to be running well. This ship even in port generates its own power and while out at sea is capable of making fresh water from salt water. I felt very much at home seeing as I have been in many engine rooms in my life with my father, I plan on going down there a few more times during my time on board.

Question of Day:

How long would it take to survey the entire patch? 8 days going 24 hours/day.

Personal Log

I did a lot of research today from the resources made available to me from the XO. Today was also a day I collaborated with my fellow TAS, something educators rarely get enough time to do. We bounced off a few adaptations of what we have already learned from our time on board. I hope to continue this process throughout my time onboard. No more seasick patch, I think that I am doing well and can handle the rolls. There is some crazy weather on the way too! If it chooses to run up into the Bering Strait we are okay but according to the XO, if the low pressure rides on the south side of the Aleutians it might get sketchy. The RAINIER would have to find a place to hole up and wait for the storm to pass because she is such a small, top-heavy ship. So I might just get a wild Alaskan ship ride after all.

Jane Temoshok, October 20, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 20, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 19.7º C
Sea Temp. 18.6º C
Sea Wave: 4 – 6 ft.
Swell Wave: 4 – 6 ft.
Visibility: 8 – 10 miles
Cloud cover: 7/8

Science Log

Several students have asked about seeing the stars in the Southern Hemisphere. Well I hate to disappoint, but I haven’t seen one star on this voyage. There’s a good reason though (and it’s not because I’m in the lounge watching movies). One of the main reasons this cruise is in the Eastern Pacific is because a layer of stratus clouds almost always covers it. While that’s not good for stargazing it’s great for the atmospheric meteorologists on board. One theory is that the clouds have a cooling effect on the ocean by reflecting the solar radiation back upwards and letting little of it penetrate to the surface. But it really isn’t completely understood at this time.

Additionally the southeasterly winds in this in this area cause the surface water to move away from the coastline allowing deeper water to move up to the ocean surface, creating an upwelling current. Upwelling currents replenish the surface layers with nutrients which is why the fishing and marine life is so plentiful along the coast. The shifts in the temperature of masses of water, along with the effects of the clouds are what the scientists onboard are hoping to understand.

What I have learned on this cruise is that the study of climate is very complex and that this area is particularly important. The Eastern Pacific may hold the key to a better understanding of the processes that affect the climate of the entire globe.

Travel Journal

The Chief Engineer Mike Gowan gave me a tour of the engine rooms today. He works down in the bottom of the ship and is responsible for overseeing all the major mechanics that keep the ship moving and habitable. There are 6 huge engines, air conditioning, water filtration, and sewage systems. It was really loud and we had to wear ear protection while we toured. He is assisted by Patrick,the Junior Engineer, and June, the “oiler”. (Isn’t it great to see women in the engineering room?!) Frankly I found it hard to conceive of working in that environment on a daily basis but they sure love it.

TAS Jane Temoshok and Chief Engineer Mike.

TAS Jane Temoshok and Chief Engineer Mike.

Temoshok 10-20-01 crewpatrick

This is Junior Engineer Patrick McManos.

Temoshok 10-20-01 crewjune2

June, another crew member of the BROWN’s Engineering Department.

Temoshok 10-20-01 peopleclaudiaandjane1

TAS Jane Temoshok (L) and her roommate, Claudia (R).

Temoshok 10-20-01 brownworkingondeck

A view of the crew at work on deck.

Question of the day: How long will it take the RON BROWN to travel from here to Arica (800 miles) averaging 13 knots/hour?

Keep in touch,
Jane