Bill Lindquist: Emergency Drills & A Foggy Anchor, May 11, 2013

NOAA Teacher at Sea
Bill Lindquist
Aboard NOAA Ship Rainier
May 6-16, 2013

Mission: Hydrographic surveys between Ketchikan and Petersburg, Alaska
Date: May 11, 2013

Weather on board. Taken at 1600 (4:00 in the afternoon)

Overcast skies with a visibility of 2 nautical miles
Wind from the south at 10 knots
Air temperature 10.2° C
Sea temperature  7.2° C

The NOAA Ship Rainier in the fog
The NOAA Ship Rainier in the fog
An interesting rock jutting out of the ocean
An interesting rock jutting out of the ocean

Science and Technology Log: Ship Emergency Drills

Maritime vessels like the NOAA Ship Rainier continually prepare themselves for dealing quickly and effectively for any emergency at sea. During our transit to the southern end of Behm Canal, we conducted two emergency drills. Each of these drills served to prepare the Rainier crew for quick response to a state of emergency.

One drill involved the loss of bridge control to steer the ship. A ship floundering at sea presents a real danger to its own crew as well as any vessel near by. The drill involved two situations. If the electronic connection between the bridge and the steerage center of the ship was lost, the engineers make a physical bypass and engage a steering wheel immediately above the rudders. With hydraulic power and telephone support from the bridge, this steering wheel was able to successfully negotiate the required 15° turn in each direction. In the event there is a loss of hydraulic steering support, the ship’s rudders have to be turned manually requiring two people to physically crank the change in rudders – a challenging task. I was able to step in to work one end of the crank – yes, it was hard work.

In an emergency the ship can be steered by this wheel directly above the rudders.
In an emergency the ship can be steered by this wheel directly above the rudders.
In the event hydraulic pressure is lost, the ship can still be controlled by hand cranking the rudders.
In the event hydraulic pressure is lost, the ship can still be controlled by hand cranking the rudders.

The other drill I was able to view was launching the emergency boat used in man overboard situations. There is a specially designed and dedicated for rescue operations. Under the direction of the Chief Boatswain (in charge of all deck operations), the crew practiced dropping the cables serving as a railing, and lowered the boat with the davit (crane unit that lowers boats off the ship), in preparation for getting on board, and powering up. The goal for this is to happen within several minutes. In the event of a real emergency, every passing minute is critical.

The Chief Boatswain going over emergency procedures for getting the emergency boat deployed.
The Chief Boatswain going over emergency procedures for getting the emergency boat deployed.
Deploying the emergency boat.
Deploying the emergency boat.

Related note – in the event the ship were to sink, 10 life rafts in protected cases are positioned around the ship ready to deploy. They are held closed by a latch designed to release as soon as it is immersed in the water. As the case opens, the raft self inflates and rises to the surface. Each raft is capable of carrying up to 25 people. I am again reminded of the lack of an instant 911 response and the necessity that everyone on board is fully prepared to act quickly on behalf of everyone on board. Such as it is with a life at sea.

When immersed in water the valve is set to open and allow the enclosed raft to self inflate and rise to the surface.
When immersed in water the valve is set to open and allow the enclosed raft to self inflate and rise to the surface.
Life rafts will automatically inflate in the event of an emergency
Life rafts will automatically inflate in the event of an emergency

Personal Log – The Clouds Roll In

I have been told countless times the weather we experienced on my first week at sea was not the norm – in fact far from the norm. We were blessed with sunshine and calm seas throughout. Today it came to an end. A heavy bank of clouds with persistent light rain filled the once clear skies. This is the weather people are accustomed to in SE Alaska.

A cloudy entrance to Punchbowl Cove
A cloudy entrance to Punchbowl Cove
Punchbowl Cove off Behm Canal
Punchbowl Cove off Behm Canal

We spent the day in our customary back and forth survey route. Rain gear was the norm for everyone on deck. At the end of the day, our CO (commanding officer) directed us to Punchbowl Cove as a well protected area with ample locations to set anchor. Gliding into the cove was an ethereal experience. The northern shore of the cove rose majestically into graceful curtains of clouds. Clouds separated into layers dancing across the slope providing sprinkled glimpses of the background of the mountains. Cascades of water tumbled from the heights on their way to the sea. The cloudy turn in the weather allowed this magical layer of mystique and fancy that wouldn’t have been present with the sunshine we had earlier.  Perhaps at sea there is no such thing as inclement weather, each day bringing forth its own majesty.

With enough time after anchor, several groups went out by kayak and boat. I enjoyed the opportunity to go with a small group to explore the shoreline. It felt good to get out and walk around and see the sea from the viewpoint of land. We arrived at low tide giving us room to walk about short of the cedars, spruce, and fir that blanketed the forest floor. To the mariner, kelp is so common it is hardly noticed. To a Minnesotan far removed from the sea, the kelp and barnacles covering the exposed rocks in the tidal flats held a level of fascination.

Punchbowl Cove shoreline
Punchbowl Cove shoreline

This cross-section of the earth has an unparalleled majesty and beauty. What a privilege to witness it so close.

Rita Salisbury: Robots and Sound Waves, April 19, 2013

NOAA Teacher at Sea
Rita Salisbury
Aboard NOAA Ship Oscar Elton Sette
April 14–29, 2013

Mission: Hawaii Bottomfish Survey
Geographical Area of Cruise: Hawaiian Islands
Date: April 19 2013 

Weather Data from the Bridge
Partly cloudy, winds ENE 10-15 knots, sunrise 603, sunset 1846
77 degrees F (25 degrees C)
Humidity 85%
Barometer 30.09” (1019.5 mb)
Dewpoint 72 degrees F (22 degrees C)
Heat Indes 78 degrees F (26 degrees C)
Visibility 10 miles

Science and Technology Log

We have been calibrating the acoustic equipment for a few days in order to be ready for our survey of bottomfish. It was a long process, but necessary. Four of us worked on moving a small titanium sphere under the boat by maneuvering it to different positions. A scientist working in the e-lab (electronics lab) used different frequencies from the transducers to locate the sphere and record the results. Graduate students and NOAA scientists worked until 1:00 in the morning to get the job done.

The ROV on it's first deployment
The ROV on it’s first deployment

While we were working on the acoustics, other scientists were working on a test run of the ROV. The currents were very strong when they deployed the ROV but it performed well and was successfully retrieved. Operating it is a lot like the controls to a video game, only the stakes are much higher. 

The AUV was deployed on Wednesday. The first step was to do a rehearsal of the procedures for deploying and retrieving the AUV. Everyone had a job to do and it was made clear who would be doing what and when. While it was obvious that certain people were in charge, they asked that if anyone thought they had a better idea of how to do something, or had a question, to speak up.  At one point, the captain, CO Koes, asked everyone who was not actually part of the procedure to move to one of the side of the deck so she could see who was  actually supposed to be working.

After the walk-through rehearsal, the AUV was lifted off the deck by a large crane and placed into the water off the fantail of the ship. At first it was tethered to the ship, but after awhile it was released and became independent of the ship. The scientists want to be as sure as they can be that the AUV will operate properly before letting it go so they run through a checklist. If everything is working correctly, they release the AUV.

OLYMPUS DIGITAL CAMERA
The AUV being deployed.
OLYMPUS DIGITAL CAMERA
The AUV going solo!

The AUV is pre-programmed for the mission so it is important to know about the underwater geography of an area. The AUV needs to be within 30 to 35 meters of the ocean floor in order to know where it is. Other than that, it follows the pattern that the scientists created. If the AUV doesn’t return to the ship, it’s a big deal. It’s very expensive and difficult to replace. The scientists designed it with that thought in mind.

In addition to the high-tech solutions programmed into the AUV, the scientists also included low-tech ideas into the equipment to retrieve the AUV in case something goes wrong and the AUV is submerged and unretrievable. There is a “drop weight” attached to a strand of zinc. Zinc corrodes quickly in salt water. Through testing the scientists have already determined how thick the zinc strand should be in order to corrode through in a given amount of time at a particular water temperature. The strand that they are using on this cruise is constructed to corrode through in 5 1/2 hours. Once it corrodes, the weight drops off and the AUV rises to the top of the water where it can be seen and picked up. The zinc strand is replaced and another weight is attached. All the weights are the same size and weight so they are interchangeable. Otherwise, the scientists would have to recalibrate the AUV every time they changed weights. I was really impressed to see that the scientists use a combination of high and low tech to make their AUV successful.

Heat-sealing the ground up squid and sardines for bait.
Heat-sealing the ground up squid and sardines for bait.

The scientists on the Oscar Elton Sette use some smaller boats to assist with their research. One thing that I do to help out is make bait for the small boats to use to attract fish. We take frozen squid and sardines out of the freezer a few hours before we need them and put them on a protected place on the deck. After they thaw, we put them in a commercial quality food processor and grind them up into marble-sized chunk. Then we put the chunky bait into plastic bags, seal them, and put them back in the freezer until they can be delivered to the boats that need them.

Personal Log

This ship is amazing! It’s big and packed with the scientific equipment. The “wet lab” has become the acoustics lab for this trip and the e-lab is above that. The mess is open 24 hours for snacks, (as long as you clean up after yourself), and serves three meals a day. The cooks are really talented and are always providing fresh new ways of serving something. Fortunately, there’s a gym a couple of decks beneath mine!

There’s a movie room, a laundry, a tv room with books and computers, and a ship’s store. There’s even a full-time medical officer on board. My stateroom is set up well. There are 6 spacious bunks, drawers under the bottom ones and lockers for everyone, built-in desks with ethernet access, and a large bathroom. Since everyone is on a slightly different schedule we do our best to be quiet and to keep the lights low.

Uli Uli Manu taking a break on my bunk.
Uli Uli Manu taking a break on my bunk.

 On Tuesday, we had emergency drills. Everyone has a specific place that have to go to when the alarms sound. If it’s a fire alarm or a man-overboard drill, I have to go to the Texas Deck. If it’s an abandon ship drill, I go to the boat deck and put on my orange gumby suit. That was a little tricky and very hot, but I’m glad they let us practice it.

One thing I’ve noticed on the ship is how everyone has a job to do, but they are always ready to pitch in and help someone else. Meals are really interesting. The mess is small and has several tables set up with 4 chairs at each table. People sit with different people all the time. It doesn’t seem to matter who is an officer, a crew member, or a scientist. Everyone sits with everyone else.

 The captain gave me a tour of the bridge on Tuesday. It was late and we ran out of time, so she has invited me to come back up and finish the tour

The Oscar Elton Sette as seen from a small boat off the coast of Maui.
The Oscar Elton Sette as seen from a small boat off the coast of Maui.

soon. I was impressed by the number of back-up plans in place. There didn’t seem to be one piece of equipment that didn’t have another piece doing the same job in a slightly different way. This allows the ship to continue working properly on the chance that something stops working. The bridge is the control center of the ship and has alarms and notifications for anything that might crop up–low fresh water levels, smoke, fire, and anything else you can think of.

Did You Know?

Sound is vibration transmitted through a solid, liquid, or gas. The speed of the vibrations, or how quickly they cycle, determines the frequency. Frequency is measured in cycles per second, or hertz (Hz). Humans can hear certain frequencies, while bats and dogs can hear others. Whales and dolphins hear even more frequencies.

The sound waves we are using on the Oscar Elton Sette will bounce off the fish and reflect back to the ship, allowing the scientists to locate the fish and determine their shape, size, and movement.

 

Animals I Have Seen

Whale fluke off Maui
Whale fluke off Maui

Seen off the coasts of Maui, Molokai, and Lanai:

Needlefish
I thought they were barracuda at first, but someone explained the difference to me
Humpback Whales
Dolphins–too far away to identify the species

Nicolle von der Heyde, June 25, 2010

NOAA Teacher at Sea
Nicolle Vonderheyde
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Nicolle von der Heyde
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Friday, June 25, 2010

Weather Data from the Bridge

Time: 1000 hours (10 am)
Position: latitude = 27°53.9 N longitude = 093º 51.1 W
Present Weather: 5/8 cloudy (cumulonimbus/cumulus clouds)
Visibility: 10 nautical miles
Wind Direction: E Wind Speed: 4 knots
Wave Height: 1 foot
Sea Water Temp: 30.5°C
Air Temperature: dry bulb = 29.2°C, wet bulb = 26.3°C

Science and Technology Log

Video from the camera array
Video from the camera array
Echo Sounder
Echo Sounder

The technology on this ship is amazing! The picture on the left is video of what the camera array filmed yesterday. The fish just swim around and sometimes they even come right up to the camera like they are “kissing” it. Then they back away and swim off. It’s beautiful to watch. The picture on the right is the EK60 Echo Sounder. The red line that you see shows the bottom of the seafloor. The blue above the red line is the water itself and the white specks that you see are fish. The most recent reading is located on the right side of the screen. The echo sounder sends a “ping” to the computer and that “ping” is a fish. Sometimes we can see definite shark outlines in the images below our ship. If you look at the bottom right hand corner of the echo sounder photo, you will see a large white speck along the red line. This indicates a large fish (possibly a shark) trolling the bottom of the ocean. When we came upon the dead sperm whale, the Electronics Technician (ET) came to the lab and told us there were a lot of “large fish,” most likely Mahi Mahi or even sharks, swimming under the ship.

Techonology on the Pisces
Techonology on the Pisces

The Pisces would not be able to operate without the engineers who make sure that everything onboard is functioning properly, including the 4 massive diesel generators that power the ship, the freshwater generators that convert seawater into fresh drinking water, and the hydraulics that power the cranes to lift the cameras in and out of the water. Chief Engineer Garet Urban leads the team of engineers, oilers, and electrical experts who take care of all the mechanical issues on board the ship.

First Engineer, Brent Jones, took us on a tour of the very impressive engine room on the lower deck of the Pisces. He showed us the incinerator which burns all the trash, oil filters, and other waste at a temperature of 1200°C (2192°F). Paper, plastic, and aluminum is brought back to shore and recycled. Before entering the engine room, we were told to put in earplugs because the sound can damage your eardrums. In addition to not being able to hear a thing inside the engine room, the heat is incredible! The engineers need to be careful to stay hydrated while working in these conditions.

Engine Room
Engine Room
Generators in the Engine Room
Generators in the Engine Room

The Pisces is powered by 4 diesel fuel generators which generate electricity that drives two large electric motors. The photo above on the right shows one of the generators in yellow. The engineers are constantly monitoring the mechanics of the ship to make sure everyone on board has a safe and productive voyage while conducting scientific research on board.

Personal Log

Every week the ship is required to conduct emergency drills. Yesterday after dinner, the alarm sounded 6 short bursts and an announcement came on saying, “This is a drill…abandon ship, proceed to your muster stations…this is a drill.” We had to go to our rooms and grab our PFD’s (personal flotation devices), survival suits, a long sleeve shirt, long pants, and a hat. We then proceeded to the 0-1 deck where two officers were in charge of making sure that everyone on their list was present and accounted for. After attendance was taken the drill was over; however Melinda and I wanted to try on the survival suits because no matter who you are, you can’t help but look and feel silly in what the crew refers to as a “Gumby suit” – for obvious reasons. Two of the officers joined us in this cumbersome and entertaining task.

Emergency Drill
Emergency Drill
Melinda Storey and I in our Gumby Suits
Melinda Storey and I in our Gumby Suits
Getting into my gumby suit
Getting into my gumby suit

Never has the routine of an emergency drill seemed more significant than the next morning, shortly after arriving in the lab, when the general alarm sounded and an announcement came on saying, “This is NOT a drill…smoke has been detected near the bow thrusters on the lower deck…repeat, this is NOT a drill.” It took a second for me to register that this was a real emergency and we all quickly moved to the conference room – the muster station for the scientific party. On the way into the room, I smelled something burning and heard in my head the ominous words of one of the scientists during a previous fire drill, “One of the worst things that can happen at sea is a fire.” Now I was nervous. The Chief Scientist called the bridge to let them know that we were all accounted for and asked if we could move because we smelled smoke. We moved to the main deck and waited…not very long actually. Within a matter of minutes an announcement signaled that the fire was secure and we were free to carry on with our business.

The bow thrusters had overheated and fortunately, someone was working near them when the smoking started. Because the ship conducts fire drills on a regular basis, including the simulation of putting out specific types of fires, everyone knew where to go and the crew had the smoking under control very quickly. It was reassuring to know that the crew is so prepared to handle emergencies at sea. I will never again complain about the routine task of emergency drills, especially at school. Preparation and planning is the key to keeping everyone safe.