Hayden Roberts: Wait-and-See (or Is It Sea?) July 8, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Oregon II

July 8-19, 2019

Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 8, 2019

Weather Data from the Bridge

Latitude: 30.35° N 
Longitude: 88.6° W
Wave Height: 1-2 feet
Wind Speed: 10 knots
Wind Direction: Northwest
Visibility: 10 nm
Air Temperature: 33°C 
Barometric Pressure: 1012 mb
Sky: Few clouds

Science Log

Day one of my trip and we are delayed leaving. Growing up in Oklahoma, you think you know weather until one of the NOAA fishery biologists assigned to the ship provides you a lengthy explanation about the challenges of weather on setting sail. As he put it, the jet stream is throwing off the weather. This is true. Studies have suggested that for a few years the polar jet stream has been fluctuating more than normal as it passes over parts of the Northern Hemisphere. The jet stream is like a river of wind that circles the Northern Hemisphere continuously. That river meanders north and south along the way. When those meanders occur over the Atlantic and the Pacific Oceans, it can alter pressure systems and wind patterns at lower latitudes and that affects how warm or raining it is across North America and Europe. 

This spring in Oklahoma, it has led to record-breaking rains that have flooded low lying areas across the Great Plains and parts of the southeastern United States. Thunderstorms have generally been concentrated in the southern and middle section of the US as the jet stream dips down. The NOAA biologist also indicated that the delay in our departure could be blamed on the El Niño effect. 

El Niño is a natural climate pattern where sea water in the central and eastern tropical Pacific Ocean is warmer than average. This leads to greater precipitation originating from the ocean. According to NOAA scientists, El Niño is calculated by averaging the sea-surface temperature each month, then averaging it with the previous and following months. That number is compared to average temperatures for the same three-month period between 1986 and 2015, called the Oceanic Niño index. When the index hits 0.5 degrees Celsius warmer or more, such as right now, it’s classified as an El Niño. When it’s 0.5 degrees Celsius cooler or more, it’s a La Niña. During an El Niño, the southern part of the U.S. typically experiences wetter than average conditions, while the northern part is less stormy and milder than usual. During a La Niña, it flips, with colder and stormier conditions to the north and warmer, less stormy conditions across the south. However, the El Niño this year has been classified as weak, which means typically the wetter conditions do not push into the Gulf of Mexico region, but exceptions can occur. With the fluctuating jet stream, the El Nino has vacillated between the Plains region and the upper South and regions closer to the Gulf. Thus, the storm causing our delayed departure comes from a weather condition that has been pushed further south by the jet stream.

While these may be causes for the delayed departure, the actual sailing conditions at the time of our voyage are the main concerns. Looking at the NOAA Marine Forecast webpage (https://www.nws.noaa.gov/om/marine/zone/off/offnt4mz.htm), the decision for our delay is based on a storm producing significant wave heights, which are the average height of the highest 1/3 of the waves. Individual waves may be more than twice the average wave heights. In addition, weak high pressure appears to dominate the western Gulf and will likely last mid-week. Fortunately, we are set sail into the eastern Gulf off the coast of Florida. We should be able to sail behind the storm as it moves west. We do have to watch the surface low forming along a trough over the northeast Gulf later in the week. The National Hurricane Center in Miami (which provided weather data in the Atlantic and the Gulf for NOAA) predicts that all of this will intensify through Friday (July 12) as it drifts westward. This will produce strong to near gale force winds and building seas for the north central Gulf. Hopefully by then we will be sailing south of it. 

Gulf of Mexico weather forecasts
Digital interface map for regions of the Gulf of Mexico and its weather forecasts (National Weather Service, NOAA)

Did You Know?

The weather terms El Niño and La Niña can be translated from Spanish to English as boy and girl, respectively. El Niño originally applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador around Christmas time before it was linked to a global phenomenon now referred to as El Niño–Southern Oscillation. La Niña is sometimes called El Viejo, anti-El Niño, or simply “a cold event.” El Niño events have been occurring for thousands of years with at least 26 occurring since 1900.

Personal Log

I boarded NOAA’s Oregon II yesterday when the ship was virtually empty. It was Sunday, and we were not set to leave until mid-afternoon the following day (and now Tuesday, July 9). Spending the night on the ship was more comfortable than I had expected. While the stateroom was cramped (I share it with one other crew member), the space is surprisingly efficient. I had plenty of space to store my gear. The bunkbed was more cozy than restricted.

NOAA Pascagoula Lab
Even though it was Sunday and everything was closed, I had to stop for a selfie.
NOAA Ship Oregon II
My first look at NOAA Ship Oregon II.

My first day in Pascagoula, MS was spent learning about the town. Pascagoula is a port city with a historic shipyard. Pascagoula is home to the state’s largest employer, Ingalls Shipbuilding, the largest Chevron refinery in the world, and Signal International, an oil platform builder. Prior to World War II, the town was a small fishing community, but the population jumped with war-driven shipbuilding. The city’s population peak in the late 1970s, but today, there are less than 25,000 in the area. Pascagoula continues to be an industrial center surrounded by the growing tourism industry across the Gulf region to the east and west of the port. The population also declined when Naval Station Pascagoula was decommissioned in 2006. The old naval base is located on manmade strip of land called Singing River Island and is in the middle of the port. The port still maintains a large Coast Guard contingent as well as serving as the home portfor the NOAA Ships Gordon GunterOregon II, and Pisces. The NOAA port is actually called the Gulf Marine Support Facility and is located a block from NOAA’s National Marine Fisheries Service Mississippi Laboratory.

Michael Wing: Introduction to El Niño, July 22, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Pacific Ocean west of Bodega Bay, California
Date: July 22, 2015

Weather Data from the Bridge: Northwest wind 15-25 knots, wind waves 3’-5’, northwest swell 4’ – 6’ at eight seconds, overcast.

Science and Technology Log

UC Davis graduate student and Point Blue Conservation Science intern Kate Davis took some plankton we collected to the Bodega Marine lab in Bodega Bay. She said she is seeing “tropical” species of plankton. A fellow graduate student who is from Brazil peeked into the microscope and said the plankton looked like what she sees at home in Brazil. The flying fish we saw is also anomalous, as is the number of molas (ocean sunfish) we are seeing. Plankton can’t swim, so some of our water must have come from a warm place south or west of us.

The Farallon Islands are warmer this year

The surface water is several degrees warmer than it normally is this time of year. NOAA maintains a weather buoy near Bodega Bay, California that shows this really dramatically. Click on this link – it shows the average temperature in blue, one standard deviation in gray (that represents a “normal” variation in temperatures) and the actual daily temperature in red.

NOAA buoy data
Surface seawater temperatures from a NOAA buoy near Bodega Bay, California


As you can see, the daily temperatures were warm last winter and basically normal in the spring. Then in late June they shot up several degrees, in a few days and have stayed there throughout this month. El Niño? Climate change? The scientists I am with say it’s complicated, but at least part of what is going on is due to El Niño.

Ryan at flying bridge
San Francisco State University student and Point Blue intern Ryan Hartnett watches El Nino

So what exactly is El Niño?

My students from last year know that the trade winds normally push the surface waters of the world’s tropical oceans downwind. In the Pacific, that means towards Asia. Water wells up from the depths to take its place on the west coasts of the continents, which means that places like Peru have cold water, lots of fog, and good fishing. The fishing is good because that deep water has lots of nutrients for phytoplankton growth like nitrate and phosphate (fertilizer, basically) and when it hits the sunlight lots of plankton grow. Zooplankton eat the phytoplankton; fish eat the zooplankton, big fish eat little fish and so on.

During an El Niño event, the trade winds off the coast of Peru start to weaken and that surface water bounces back towards South America. This is called a Kelvin wave. Instead of flowing towards Asia, the surface water in the ocean sits there in the sunlight and it gets warmer. There must be some sort of feedback mechanism that keeps the trade winds weak, but the truth is that nobody really understands how El Niño gets started. We just know the signs, which are (1) trade winds in the South Pacific get weak (2) surface water temperatures in the eastern tropical pacific rise, (3) the eastern Pacific Ocean and its associated lands get wet and rainy, (4) the western Pacific and places like Australia, Indonesia, and the Indian Ocean get sunny and dry.

This happens every two to seven years, but most of the time the effect is weak. The last time we had a really strong El Niño was 1997-1998, which is when our current cohort of high school seniors was born. That year it rained 100 inches in my yard, and averaged over an inch a day in February! So, even though California is not in the tropics we feel its effects too.

Sausalito sunset
Sunset from the waterfront in Sausalito, California

We are in an El Niño event now and NOAA is currently forecasting an excellent chance of a very strong El Niño this winter.

NOAA map
Sea surface temperature anomalies Summer 2015. Expect more red this winter.

What about climate change and global warming? How is that related to El Niño? There is no consensus on that; we’ve always had El Niño events and we’ll continue to have them in a warmer world but it is possible they might be stronger or more frequent.

Personal Log

So, is El Niño a good thing? That’s not a useful question. It’s a part of our climate. It does make life hard for the seabirds and whales because that layer of warm water at the surface separates the nutrients like nitrate and phosphate, which are down deep, from the sunlight. Fewer phytoplankton grow, fewer zooplankton eat them, there’s less krill and fish for the birds and whales to eat. However, it might help us out on land. California’s drought, which has lasted for several years now, may end this winter if the 2015 El Niño is as strong as expected.

Golden Gate Bridge
Rain will come again to California

Did You Know? El Niño means “the boy” in Spanish. It refers to the Christ child; the first signs of El Niño usually become evident in Peru around Christmas, which is summer in the southern hemisphere. The Spanish in colonial times were very fond of naming things after religious holidays. You can see that in our local place names. For instance, Marin County’s Point Reyes is named after the Feast of the Three Kings, an ecclesiastical holy day that coincided with its discovery by the Spanish. There are many other examples, from Año Nuevo on the San Mateo County coast to Easter Island in Chile.

Window selfie
Michael Wing takes a selfie in his reflection in the boat’s window

Alex Miller: Making Waves, June 5, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

Putting ourselves in the way of beauty. Several members of the science crew joined me to witness this sunset.
Putting ourselves in the way of beauty. Several members of the science crew joined me to witness this sunset.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Friday, June 5th, 2015

Weather Data:

  • Air Temperature: 14.0°C
  • Water Temperature: 12.7°C
  • Sky Conditions: Clear
  • Wind Speed (knots/kts) and Direction: 21.9 kts, NNW
  • Latitude and Longitude: 45°00’19”, 124°19’94”


Before I go into the events of the research and life onboard the Shimada, let me explain the weather data I share at the beginning of posts at sea. Weather can change quickly out at sea so the ship’s Officer(s) of the Deck (OODs) keep a running record of conditions throughout the cruise. On the Shimada, the OODs all happen to be NOAA Corps Officers, but there are civilian mates and masters on other ships.

Another important reason to collect weather conditions and location information is that it’s need to be linked to the data that is collected. The ship collects a lot of weather data, but I’ve chosen to share that which will give you an idea of what it’s like out here.

The bridge with a view of the captain’s seat.

First, I’ve shared the temperature of both the air and the water. Scientists use the Celsius temperature scale but Americans are used to thinking about temperatures using the Fahrenheit scale. On the Celsius scale, water freezes at 0°C and boils at 100°C, whereas on the Fahrenheit scale, water freezes at 32°F and boils at 212°F. I won’t go into how you convert from one scale to another, but to better understand the temperatures listed above, temperatures around 10°C are equal to about 50°F.

Second, the sky conditions give you an idea of whether we are seeing blue or gray skies or I guess at night, stars or no stars. Clear skies have graced us intermittently over the past few days, but we’ve seen everything from light showers to dense fog.

Third, is the wind direction and speed. Knots is a measurement used at sea. It stands for nautical miles per hour. 1 knot = 1.2 miles/hour or 10 knots = 12 mph.  The NOAA Marine Weather Forecast allows us to prepare for what might be coming at future stations. Depending on wind speed, some nets cannot be deployed. If wind speeds reach 25-30 kts, the kite-like neuston will literally fly away. If a weather day ends up keeping scientists from collecting data that can be very disappointing and, unfortunately, there’s no way to make up for lost time.

With the wind speeds picking up, so have the swell sizes, making for a rougher ride. As funny as it can be to watch a colleague swerve off their intended path and careen into the nearest wall, chair or person, we have to remember to, “save one hand for the ship,” meaning, be ready to steady yourself.


Randy (foreground) and Larry (background) in their culinary kingdom.
Randy (foreground) and Larry (background) in their culinary kingdom.

Considering how well taken care of I’ve been on this cruise, it only seems right to tell you guys all about the heroes of the mess (also galley, basically, it’s the dining area), Larry and Randy. Larry and Randy plan and prepare three meals a day on board the Shimada. There’s always a hot breakfast and our dinners have included steak, mahi-mahi, and I like to think they were catering to the quarter of me that’s Irish when they made corned beef and cabbage last night. This dynamic duo really outdo themselves. Both are trained merchant mariners, meaning they hold their Z-card, and they tell me that working as a chef at sea definitely helps to bring home the bacon.

It feels good knowing that they don’t want us to just have cereal and sandwiches for the two weeks we are at sea.

Larry (background) and Randy (foreground) admiring their hard work.
Larry (background) and Randy (foreground) admiring their hard work.

I especially want to shout out Randy, the denizen of the desserts. So far Randy has made from scratch: bread pudding, chocolate white-chocolate cookies, rum cake and date bars. Good thing for me his mother was a chef because he’s been cooking since around the age of 6.

I just finished a Thanksgiving style turkey meal prepared by these two and all this told, I’m thankful there’s an exercise room on board with a stationary bike. Seriously though, these guys are doing a lot to make the ship feel like a home. With the disruption in my sleep cycle, I’ve been sleeping through some meals. Like 50% of meals. They noticed. When I came walking into dinner yesterday, after sleeping through two meals, they were full of concern and questions. Awww.

So, on behalf of all the crew and scientists, I want to say thank you for all that you do!


Wednesday night, or Thursday morning–days tend to run together when you’re working the night shift–the net picked up an unusual jelly that Ric had to key out using a jelly identification manual. Using photos in the Pacific Coast Pelagic Invertebrates by Wrobel and Mills, Ric identifies this jelly as the Liriope (sp. ?). While Ric is an accomplished biologist, he specializes in fish identification, so the question mark after the scientific name of this jelly represents the need for a jelly expert to confirm the identification as Liriope. But what’s in a name, right? What’s really interesting about this jelly is that it usually inhabits warm water areas between 40S and 40N. We were towing north of the 44th parallel!

Liriope (?)
Liriope (sp. ?)

That wasn’t the only unusual sighting we had. Amanda, who does her surveys exclusively in the Northeast Pacific, meaning relatively close to shore (12 – 200 km) saw, for her first time in the wild, the Hawaiian petrel, a bird whose name alone suggests that Oregon is too far north to be seeing them. Additionally, it’s being more of an offshore bird makes it even more unlikely to see as far east as we are.

All images in this slideshow were taken by Amanda Gladics, Faculty Research Assistant, Oregon State University. 

This slideshow requires JavaScript.

Her initial reaction to the sighting was mild surprise that she saw something she didn’t quite recognize, she decided to grab her camera and photograph the bird so she could take a second look at it. Later, she realized just how rare of a sighting she had made. After consulting with Josh Adams at USGS, it was confirmed that the bird was a Hawaiian petrel.

Though most of the community nests on the big island of Hawaii, smaller colonies are found on Oahu and Kauai, and Adams explained that they tend to loop around areas of high pressure when foraging (searching) for food. It just so happens that such an area is within our transect range. If you look at the image to the right you can see this area as a loop marked with 1024 (mb, millibars, a pressure measurement) just off the coast of Oregon.

Map of pressure systems
Map of pressure systems and precipitation in the Pacific. Note the high pressure system of the coast of Oregon (1024 mb). Photo courtesy of Amanda Gladics.

Amanda has also sent her images to Greg Gillson and Peter Pyle, two experts in the field; Gillson confirms the sighting as a Hawaiian petrel and is notifying the Oregon Birding Association Records Committee. She is still waiting to hear back from Pyle.

Super cool!


Considering these two events alongside some warmer water temperatures the CTD and ship sensors have picked up in our transect area, the conclusion several of the scientists are reaching is that these unusual sightings are coincident with an El Niño event this year. El Niño events occur in a cycle. They are a disruption of the normal ocean temperatures, leading to anomalously warm temperatures in the Pacific Ocean. This can affect weather and climate and perhaps it can also affect animal behavior. There’s also that warm blob to consider. You yourself can see that the water temperature is warmer here than it was at our earlier transects.

For more information on how NOAA monitors El Niño events, please follow this link.


Personal Log

In an effort to gain a deep understanding of all the research taking place on board the ship, I’ve started transitioning back to the day shift. After investing five days in training myself to stay up all night, I’m now trying to sleep through the night. My body is utterly confused about when it’s supposed to be asleep, so right now it’s settled on never being asleep. I’ve been able to catch naps here and there but I’m resorting to caffeine to keep me going.

However, there’s always a silver lining. This morning I climbed to the flying bridge for a bit of solitude with the rising sun. Few things can compare to a sunrise on a ship while it’s traveling northeast and to top it all off the swells crashing against the bow were so high that, at times, I could feel the sea spray. So I thought I would make this .gif so you can share this moment too.


Until next time, scientists!


Question of the Day:

Amanda can only survey when the ship is traveling faster than 7 kts. If the ship travels at 7 knots for 1 hour, how many nautical miles does it cover? Standard miles?

Richard Jones & Art Bangert, January 7, 2010

NOAA Teacher at Sea
Richard Jones
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 7, 2010

Cups heading to the depths
Cups heading to the depths

Science Log

Today was a day of transit. We did a lot of work on the buoys, preparing them for deployment and Rick, with the help of Tonya our Chief Survey Technician, got about half of the cups that his students decorated for ‘shrinking’ into the mesh bags to attach to the deep CTD when we do one . The CTD is a rosette of bottles that are sent to depth, in this case 3000 meters (how many feet is that and how many atmospheres of pressure?) where water samples and a record of the Conductivity (salinity), Temperature, and Depth are taken. These CTD’s will help provide a double check for the electronic data that our buoys collect and add to the data used to model El Nino/La Nina. One of the side activities of the CTD is to send down the cups to be squeezed by the pressure. We also have a cup of similar size that will be used as a control so that students will be able to see the changes that the cups undergo. Rick also has brought along a Styrofoam wig head from his daughter Teri to see the effect on a larger scale.

In addition to our work on the buoys we had our first at sea drills including an abandon ship drill.But since we had a similar drill in port we only were required to muster to our stations with our exposure suits, long sleeve shirt, head cover, and long pants and wear our personal flotation device.

Ship safety drill
Ship safety drill

A wee bit rocky today.We have a swell that seems to be coming from the starboard (right) aft quarter, which gives the ship a strange movement that has made some of the folks a little queasy.Ships tend to roll (movement around an imaginary line running bow to stern) pitch (movement up and down around an imaginary line running 90 degrees to the direction of roll) and yaw (movement left or right of the imaginary line running bow to stern).Today the KA is doing all three at the same time which is why we are encouraged to take Meclizine HCL (Dramamine) for a few days prior to the trip and for the first few days at sea. Taking this makes it easier for the crew to function in an environment that has un-natural motion without getting ‘seasick’. Even with the weird motion of the ship, we still have work to do and for us “newbies” things to learn before we are allowed to do them, like learn how to set the ‘painter line’ for the RHIB so that we will stay attached to the ship in the advent that the engine of the RIHB doesn’t start or other various bad things that can happen to a little boat in a big ocean. We didn’t actually ride in the RHIB today, we simply learned how to enter the boat, where to sit , where the emergency items are located, and how to start and steer the boat.

Out on the deck
Out on the deck

One of the tasks that needs to be done prior to the deployment of our first Buoy at 8N:155W is to determine (as close as possible) the ideal position for the buoy’s anchor. To do this it is essential to know the true depth of the ocean and the topography (collectively called bathymetry) of the area within a few miles of the target latitude and longitude for the buoy.Brian, our Chief Scientist, will determine the depth and location for the anchor by using both satellite sea surface heights and actual sonar depth data from ships that have been in the area. In reality, there really isn’t much hard data, physical sonar tracks, for much of the ocean and much of the depth is determined by the actually height of the sea surface as measured by satellite. These measurements take into account variables, such as orbit of the satellite, atmospheric effects on radar, and tides and compare the computer result to a mathematical ellipsoid model of the Earth’s shape. Sounds pretty complicated, and it is, but we can use this calculated sea surface to help determine the depth of the ocean since the surface mirrors the actual topography of the ocean floor. For Academy students, you will have the opportunity to do two activities from the American Meteorological Society (AMS) that will help you understand what it is that we are attempting to do.

Bathymetric map
Bathymetric map

Catch of the day!
Catch of the day!


Karolyn Braun, November 1, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: November 1, 2006

Plan of the Day: Arrive in Kwajalein, RMI

TAS Braun assists in driving the KA’IMIMOANA
TAS Braun assists in driving the KA’IMIMOANA

In many of my past journal entries I have talked about El Niño or ENSO, so what is it?  Well El Niño is an oscillation of the ocean-atmosphere system in the tropical Pacific having important consequences for weather around the globe. Among these consequences is increased rainfall across the southern tier of the US and in Peru, which has caused destructive flooding, and drought in the West Pacific, sometimes associated with devastating brush fires in Australia. Observations of conditions in the tropical Pacific are considered essential for the prediction of short-term (a few months to 1 year) climate variations.  To provide necessary data, NOAA operates and assists in the TAO buoy project, which measure temperature, currents and winds in the equatorial band. These buoys daily transmit data, which are available to researchers and forecasters around the world in real time.

In normal, non-El Niño conditions the trade winds blow towards the west across the tropical Pacific. These winds pile up warm surface water in the west Pacific, so that the sea surface is about 1/2 meter higher at Indonesia than at Ecuador.  The sea surface temperature is about 8 degrees C higher in the west, with cool temperatures off South America, due to an upwelling of cold water from deeper levels.  This cold water is nutrient-rich, supporting high levels of primary productivity, diverse marine ecosystems, and major fisheries.  Rainfall is found in rising air over the warmest water in the west Pacific, and the east Pacific is relatively dry.

The track of the KA’IMIMOANA for TAS Braun’s science cruise.
The track of the KA’IMIMOANA for TAS Braun’s science cruise (in light blue).

During El Niño, the trade winds relax in the central and western Pacific leading to a depression of the thermocline in the eastern Pacific, and an elevation of the thermocline in the west.  This reduces the efficiency of upwelling to cool the surface and cut off the supply of nutrient rich thermocline water to the euphotic zone.  The result is a rise in sea surface temperature and a drastic decline in primary productivity, the latter of which adversely affects higher trophic levels of the food chain, including commercial fisheries in this region.  The weakening of easterly trade winds during El Niño is also evident.  Rainfall follows the warm water eastward, with associated flooding in Peru and drought in Indonesia and Australia. The eastward displacement of the atmospheric heat source overlaying the warmest water results in large changes in the global atmospheric circulation, which in turn force changes in weather in regions far removed from the tropical Pacific.

Unfortunately, NOAA recently issued an unscheduled EL NIÑO advisory due to El Niño conditions that developed in the tropical Pacific and are likely to continue into early 2007. Ocean temperatures have increased remarkably in the equatorial Pacific during the last two weeks. “Currently, weak El Niño conditions exist, but there is a potential for this event to strengthen into a moderate event by winter,” said Vernon Kousky, NOAA’s lead El Niño forecaster.

During the last 30 days, drier-than-average conditions have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts.  This dryness can be expected to continue, on average, for the remainder of 2006. Also, the development of weak El Niño conditions helps explain why this Atlantic hurricane season has been less active than was previously expected.  El Niño typically acts to suppress hurricane activity by increasing the vertical wind shear over the Caribbean Sea region.  However, at this time the El Niño impacts on Atlantic hurricanes are small.

So for the past month I have been on the cutting-edge research that assists physical scientists with data that will create ENSO forecast models to improve our understanding of underlying physical processes at work in the climate system.  On our way into Kwajalein, I got to steer the ship.  Didn’t go very straight but not bad for my first time.  I want to give a HUGE thank you to Commanding Officer Mark Pickett; Executive Officer Robert Kamphaus; Field Operations Officer Rick Hester; the Junior Officers, the science team and the crew of the KA’IMIMOANA for the amazing opportunity I’ve had the honor to experience.

Mary Cook, January 3, 2005

NOAA Teacher at Sea
Mary Cook
Onboard NOAA Ship Ronald H. Brown
December 5, 2004 – January 7, 2005

Mission: Climate Prediction for the Americas
Geographical Area: Chilean Coast
Date: January 3, 2005

Location: Latitude 45°49.53’S, Longitude 75°03.22’W
Time: 0930

Weather Data from the Bridge
Air Temperature (Celsius) 11.90
Water Temperature (Celsius) 13.55
Wind Direction (degrees) 343.52
Wind Speed (knots) 5.85
Relative Humidity (percent) 66.50
Air Pressure (millibars) 1016.06
Cloud Cover 6/8 Altocumulus
Sunrise 0615
Sunset 2152

Question of the Day

What is phytoplankton?

Quote of the Day

“Dream no small dreams for they have no power to move men.” Johann Wolfgang von Goethe

Science Log

This afternoon I interviewed Co-chief Scientist, Julio Sepúlveda, an oceanography graduate student from the University of Concepción. Julio did his Master’s thesis work for eight months at Woods Hole Oceanographic Institution in Massachusetts. In April, he’s leaving for Germany to spend three years continuing his education toward a PhD. in marine organic geochemistry. Julio has been kind enough to further explain the work they’ve been doing onboard the RONALD H. BROWN. The Chilean group of scientists include Pamela Rossel, Sergio Contreras, Rodrigo Castro, Alejandro Avila, and Luis Bravo. He says that their work has two parts: the water column process and the sedimentary record. The water samples and the sediment traps give a “picture of the moment”. They conducted the transect of samples starting at the shallow coastal waters and moving into the deeper offshore waters. These samples will provide a gradient of the nutrient concentrations at the Bay of Concepción which is part of an active upwelling location. To put it simply, they are looking at how the phytoplankton (plant-like microscopic organisms) uses the nutrients in the water. In particular they are looking at the nitrogen stable isotopes (nitrogen atoms with different masses) and their concentrations. They are trying to see how this is related to El Niño which greatly affects Chile and many places around the world. Julio explained that normally the upwelling brings cooler water containing nutrient-rich materials up to the surface. During El Niño events, the upwelling brings warmer, less nutrient-rich waters to the surface. This changes many things including the weather. The causes of El Niño are multi-varied air-sea fluxes that are not fully understood. In the last ten years the scientific community has been especially interested in knowing the possible influence of global warming in the El Niño variability. It seems that its frequency is changing and several articles indicate that El Niño is occurring more often. So their research provides a few “pixels” for capturing the entire “picture” of El Niño.

The second part of their research involves the core samples. The purpose of the core sampling is to collect the layers of sediments on the ocean floor. Julio described the layers to be like pages in a history book. Each layer tells the “story” of what was going on in the water at that location during that time. They are also looking at the degradation of the organic matter in the core samples. So, Julio says the water samples tell us about the present and the core samples tell us about the past. Using these methods of research, it is their intention to better understand the history of El Niño and better predict future El Niño events.

Personal Log

This morning we entered the fjords! Several of us were up and outside on the deck at 0630, “ooohing” and “aaahing”, taking pictures even though it’s very cold and windy out there. It is an irresistible attraction. We’re passing by the peninsula Tres Montes and we’re headed for the Bay of Tarn. All morning we’ve been sailing by emerald forest-covered mountains and black craggy rocks that have been eroded into peculiar shapes by the waves relentlessly smashing against them. The clouds are ominous and hanging low. The albatross are soaring with wings spread wide. An occasional whale sends a plume of spray into the air. I want these scenes to be indelibly saturated into my mind’s eye. I never want to forget this. No dwellings. No other ships. It’s just us. Just us and the birds and the whales. It’s good. It’s all good.

Until tomorrow,


Nancy Lewis, September 27, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 27, 2003

Transit to Honolulu, HI

Sunday night arrival at Hotel pier, Pearl Harbor

Monday morning:  clear Customs/Immigrations/Agriculture

Refuel, then depart approximately 1500 for Snug Harbor

Weather Observation Log:  0100

Latitude:  17 degrees, 18.4’ N
Longitude:  153 degrees, 17.5’ W
Visibility:  12 nautical miles
Wind direction:  080 degrees
Wind speed:  14 knots
Sea wave height:  3-4 feet
Swell wave height:  5-7 feet
Sea water temperature:  26.8 degrees C
Sea level pressure:  1013.5 mb
Dry bulb pressure:  27.2 degrees C
Wet bulb pressure:  25.0 degrees C
Cloud cover:  1/8 Cumulus, alto-cumulus

Science and Technology Log

Today I will try and summarize for you the “El Nino Southern Oscillation Diagnostic Discussion” that was forwarded to me by Captain Ablondi of the KA’IMIMOANA.  This report was issued by the Climate Prediction Center.

Current atmospheric and oceanic conditions are near normal and do not favor either the development of El Nino or La Nina. Sea surface temperature anomalies of +0.5 degrees Celcius were noted west of the International Dateline, but there were near-zero anomalies in the equatorial Pacific east of 150 degrees West longitude.  During August, very little SST anomalies were observed in the El Nino regions.

In May there were gains in upper-ocean temperature which spread eastward into the central and eastern Pacific.  This was associated with an eastward Kelvin wave, that resulted from weaker than average easterly tradewinds that occurred in May and June.  SST (Sea Surface Temperatures) anomalies increased during June and July, but then subsided during August.

The Tahiti-Darwin SOI (Southern Oscillation Index)  showed a great deal of month to month variability, but shows no trend towards the development of either El Nino or La Nina.

Most of the statistical forecasts display near neutral conditions for the remainder of 2003 and 2004. This forecast is consistent with the trends revealed by all other oceanic and atmospheric measurements and data.

I have copies of the graphs associated with the above report, and would be happy to make them available to any classes, students or teachers upon request.

Personal Log

Today everyone is readying for our arrival tomorrow night into Pearl Harbor.  Accounts with the ship’s store are being squared up, and some of the computers are having operating systems reinstalled.  Most of us are starting to pack.  I am still answering e-mails, cataloguing photos and catching up with my daily logs.

The real treat came just at sunset after dinner.  The Big Island was visible from our position of 100 miles away.  Mauna Loa showed clearly on the horizon, and I thought I could even see Kilauea off to the east.  It was an exceptionally clear evening, but in spite of that, we saw no “green flash”.  I was really excited to get my first glimpse of land in so many days, and be able to see my much loved mountain.  One other crew member, Curt, also lives on the Big Island, and we joked that we could probably jump ship and swim home.

The prediction is that we will pass by South Point around 2 in the morning.  I plan to be on the bow!

Question of the Day:  What is phytoplankton?

Land Ho!

Nancy Lewis

Nancy Lewis, September 24, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 24, 2003

Sunrise:  0613
Sunset:  1828

0600:  All wogs on bow

Transit to Honolulu

Time Change:  Set your clocks back one hour to Hawaii time

Weather Observation Log:  0100

Latitude:  9 degrees, 57.8; N
Longitude:  141 degrees, 41.6’ W
Visibility:  12 nautical miles (nm)
Wind direction:  130 degrees
Wind speed:  7 knots
Sea wave height:  2-3 feet
Swell wave height:  4-6 feet
Sea water temperature:  27.8 degrees C
Sea level pressure:  1012.2 mb
Dry bulb pressure:  27.0 degrees C
Wet bulb pressure:  26.0 degrees C
Cloud cover:  7/8 Altocumulus, cumulus, altostrattus
Air temperature:  27.0 degrees  C

Science and Technology Log

The phenomenon known as El Nino will be the subject of our discussion today.  El Nino is a recurrent weather phenomenon that has been known for years by fisherman along the coasts of South America.  During an El Nino, the normally strong easterly tradewinds weaken, bringing warmer than normal currents eastward to the the coasts of Peru and Ecuador.  Fishing drops off, and there can be catastrophic effects in weather all the way from Australia and Indonesia to both American continents.

During the unpredicted El Nino of 1982-83,  the effects began to be felt in May.  West of the dateline, strong westerly winds set in.  Sea levels in the mid-Pacific rose several inches, and by October,  sea level rises of up to one foot had spread 6000 miles east to Ecuador. As the sea levels rose in the east, it simultaneously dropped in the western Pacific, destroying many fragile coral reefs.  Sea temperatures in the Galapagos Islands rose from the low 70 degrees Fahrenheit to well into the 80s.  Torrential rains on the coast of Peru changed a dry coastal desert into a grassland.  Areas from Ecuador, Chile and Peru suffered from flooding as well as fishing losses, and that winter there were heavy storms pounding the California coast, the rains that normally fall in Indonesia. The effects of this El Nino to the world economy were estimated to be over $8 billion.

During the 1920s, a British scientist, Sir Gilbert Walker, pioneered work in what he called the Southern Oscillation Index. Using data from barometric readings taken on the eastern and the western sides of the Pacific Ocean, Gilbert discovered that when the pressure rises in the east, it falls to the west, and vice-versa.  When the pressure is in its high-index, pressure is high on the eastern side.  The pressure contrast along the equator is what drives surface winds from east to west.  When the pressure is in the low index,  the opposite condition occurs.  Easterly winds usually disappear completely west of the dateline, and weaken east of that point.

The TAO/Triton array is part of an international effort to be understand, in order to be able to predict and prepare for such events as El Nino and its counterpart, La Nina.  Formerly, data was collected from historical records, instruments at tide gauging stations, and also the observations made by ships transiting the ocean.  The data that is being collected will be able to help scientists hone their understanding of the complex relationship between the atmosphere and the oceans.  We have only recently become aware of the profound effects that climate changes in far flung points on the globe have for many parts of the inhabited world.  It is a sobering fact to realize that oceans cover 71% of our planet, and that, next to the sun, the oceans are the biggest determinant of climate and weather.

Personal Log

The buoy operations are over and we are now steaming our way back to the KA’s home port of Honolulu.  The ship is basically moving at approximately 10 miles an hour, so in 10 hours, we only travel 100 miles.  Our estimated time back is sometime Sunday evening.

Fishing lines have been set out off the fantail, and the crew is beginning to clean up the gear, power washing the deck and acid cleaning the sides for our grand entry back in Hawaii.  Tonight in the mess lounge, we had the “wog Olympics”  where we competed in such races as rolling olives on the floor with our noses.

My usual routine has calmed down a bit, but we are still making videos.  Some of them have to be tossed and redone if  I flub my lines too much.  It was raining today, the sky a mass of almost evil-looking clouds.

We also had periods of rain and drizzle.  I paid a visit to the bridge asking for any old navigation charts, and came away with a bundle.

I am also busy rehearsing my “act” for tomorrow night’s performance on the fantail after a barbecue dinner.  We wogs are expected to provide the evening entertainment for the honorable shellbacks.

Tonight for the first time,  I watched some television.  We have programming provided by the Armed Forces Network.  I’d like to take this opportunity to send my best wishes for a safe return to all those men and women serving in the current conflict in the Middle East, and most especially to PFC Noel Lewis and all those in his unit.
Question of the Day:   What is the difference between weather and climate?

Aloha from the KA!

Nancy Lewis

Nancy Lewis, September 19, 2003

NOAA Teacher at Sea
Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 19, 2003

Plan of the Day:

0700:    Recover /Deploy Equatorial ADCP
Recover CO2 Buoy (if there)  OR
Deploy CO2 Buoy ( if Buoy is missing)

Weather Observation Log:  0100

Latitude:  0 degrees,  0.7′ N
Longitude:  140 degrees., 2.3′ W
Visibility:  12 nautical miles (nm)
Wind direction:  120 degrees
Wind speed:  21 knots
Sea wave height:  3-5 feet
Swell wave height:  5-7 feet
Sea water temperature:  26.0 degrees C
Sea level pressure:  1011.2 mb
Dry bulb pressure:  26.0 degrees C
Wet bulb pressure:  23.8 degrees C
Cloud cover:  3/8 Cumulus, altocumulus

Science and Technology Log

The equator!  For me as for most people, it has always just been “that line around the globe,”  but now that I am out here on this project,  I realize that the equator defines more than just the northern and southern hemispheres of the earth.  It is here that the ocean currents are being intensively studied in order for us to understand the relationship between the oceans and climate.  The 1982-83 El Nino was not predicted by scientists, and it had far-reaching, damaging effects on such diverse places as South America and Australia.  It was then that NOAA funded the Tropical Ocean Global Atmosphere project that is the TAO/Triton array.  Approximately 50 of the buoys are maintained by the U.S. and the other 20 are maintained by Japan.  It took 10 years to complete and in essence, it is a 6,000 mile antennae for scientists to monitor conditions in the equatorial Pacific.

Normally,  the trade winds blow from east to west, but in an El Nino event,  the situation is reversed.

The phenomenon has long been observed by South American fisherman,  and usually occurs around the time of Christmas, hence its name which means “Christ child.”  The great ocean currents are moved by the wind, but around the equator, there are counter, below-sea currents.  Instruments in the TAO/Triton array are involved in collecting important data on these below surface currents.

Each TAO buoy is moored to the bottom of the ocean using steel cable surrounded in plastic and railroad wheels are the anchor.  At various depths on the Nilspin, temperature sensors called thermistors are strapped to the cable.  The cable conducts a signal to the surface of the buoy.  These cables can become damaged (by sharks biting them!) or otherwise degraded, and then the signal will be corrupted. Thus, there is the need for the periodic maintenance which is the main mission of the KA’IMIMOANA.

In addition, some of the buoys are equipped with CO2 sensors, which measure the amount of dissolved CO2 in the water, and which can then be used in studies of global warming.  The buoy which we retrieved today stopped working shortly after it was deployed, and it was not known if it had broken free or what had happened.  As it turned out, the buoy was there, and has been replaced with a fully functioning buoy. Right now, I am looking at innards of that CO2 sensor, which is in the computer lab and is being analyzed by the Chief Scientist.

Personal Log

Early this morning, we recovered the ADCP, which is a subsurface buoy.  Shortly thereafter, we deployed a new ADCP.  ADCP stands for Acoustic Dopplar Current Profiler, and this instrument is used to record data on the below surface currents. I will spend time later discussing this buoy, which looks like a giant orange ball.

I spent much of the day catching up on my daily logs, downloading photos and making several video clips to send to the website.  It appears that the hurricane did a number on the East Coast, and we probably will not have email communication until at least tomorrow.  I have been very happy to get some good questions from the students at Na’alehu School on the Big Island, and I am looking forward to hearing from many more of you next week.

I also spent time today chatting with the Chief Boatswain, Kamaka, a very hard working Hawaiian young man who spreads a lot of aloha wherever he goes.  I have invited Kamaka to come to my school when we get back to Hawaii since he is planning to visit the Big Island.  His girlfriend is Marquesan and lives on Nuku Hiva.

The sunset this evening at the equator was stunningly beautiful,  and there was a rainbow under some misty clouds in the east.  I am hoping my photo was able to capture it for you all.  We shall remain here at the equator overnight, and I am looking forward to the gentle rocking of the ship once I tumble into my berth later this evening.

Question of the Day:   What is the Coriolis effect and how does it relate to winds and ocean currents?

Aloha from the KA’IMIMOANA!

Nancy Lewis

Diane Stanitski: Day 11, August 21, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 11: August 21, 2002

Weather log:
I awoke and went out on the buoy deck this morning to find rain falling from overcast skies! Here are our observations at 0800 this morning:
Latitude: 13°28’N
Longitude: 143°28’W
Visibility: 12 nautical miles (nm)
Wind direction: 100° (direction from which the wind is blowing)
Wind speed: 15 kts
Sea wave height: 4-5′
Swell wave height: 5-7′
Sea water temperature: 27.4°C
Sea level pressure: 1012.2 mb
Dry bulb temperature: 25.0°C
Wet bulb temperature: 24.0°C
Cloud cover: 8/8, rain from altostratus clouds

If you’ve been mapping out our course on a “chart” of the Pacific Ocean (as I’m sure you all are!), you may have noticed that we’ve made a sudden shift to the south! Why? To divert away from a tropical depression forming to our east! The Commanding Officer, CDR Mark Ablondi, made the decision late last night, after French class, to reverse the order of our trip. Instead of visiting the buoys from north to south along 125°W and then cruising west toward the 140°W line, we’ll first head south along the 140°W meridian and then toward 125°W. Flexibility is key to the success of the trip, especially when considering the safety of the crew. A tropical wave is heading our way with a tropical depression behind it. To our north there are a series of subtropical high pressure cells which will cause the tropical depression to slide due west, very close to our original path, thus the reason for the change. We’re hoping to avoid all signs of the storm. However, we currently have overcast skies and rain falling from beautiful altostratus clouds. The only thing constant about the weather is change – gotta love it!

Science log:
Our most exciting part of the morning so far has been a live test broadcast with Jennifer Hammond at NOAA’s Silver Spring office and others who will enable a future broadcast to come live to you. We had to attempt it three times because we kept getting disconnected. Larry, our very important computer technician on board, is looking into the cause of the problem. We’ll try another live broadcast test tomorrow morning before our first general broadcast, hopefully later this week (stay tuned on the web site for further information).

The constructed buoy that was going to replace the one to be removed at 8°N, 125°W, will now be used for the 2°N, 140°W replacement. Because ocean currents are much stronger near the equator, the buoys require more flotation. This means that two extra fiberglass inserts are placed inside the buoy (sort of like adding the donut hole to the donut). This will enable the buoy to float more effectively.

We tested the CTD profiler early this afternoon. CTD stands for conductivity, temperature, and depth. This instrument continuously records data as it is lowered through the water column to nearly the bottom of the ocean. It also collects water samples at preselected depths. Water is then brought to the surface from these depths and analyzed for salt and nutrient content. I have been asked to take some of the CTD measurements since we’ll be doing them a few times every day and I’m told it takes 1-2 hours. I’m very interested to see what it entails. I think that Jason will train four of us tomorrow.

Well, I reread my logs and decided that I need to provide some context as to why we’re all on the Ka’imimoana in the first place. El Niño! You’ve all heard the term, I’m sure, but what does it mean, and should it concern us?

Here is the story…
El Niño, Spanish for “the boy” or “the Christ Child”, is a phenomenon that refers to a warm ocean current that typically occurs around December (Christmas-time) off the west coast of Peru and lasts for many months. This appears to be related to a warming of the entire tropical Pacific Ocean.

Let’s go back even further… Under normal ocean and atmosphere conditions (during non-El Niño years), the trade winds in the Pacific blow from east to west across the tropical Pacific Ocean, dragging the ocean water beneath with them (due to friction). Because the water is being moved toward the western Pacific, it piles up such that the actual surface of the water near Indonesia can be up to approximately ½ meter (~1.5′) higher than off the west coast of South America – amazing! The sea surface temperature near Indonesia is also about 8°C (how many °F?) warmer than near South America because it has been warmed by the sun as it crossed the Pacific near the equator. Near South America, cold subsurface water then emerges at the ocean surface to take the place of the water that moved westward. This process is known as “upwelling” and brings cold, nutrient-rich water to the surface, which is attractive to many fish species, including the anchovy.

Warm ocean water is important for many reasons, primarily because it has a direct relationship with the atmosphere above it. Above warm water, evaporation increases, winds at the surface flow together, and clouds form. Thunderstorms form much more easily under these conditions causing rain. Heat is transferred from the ocean to the atmosphere in this process, known as “convection”. This shows why there is such a direct and important link between the ocean’s temperature and the winds in the atmosphere. Convection usually occurs over the warmest water and winds blow toward the warm rising air from all directions. Energy is transferred and this is one of the important flows across earth. I always tell my students that the earth constantly tries to maintain a balance and this is why there is movement. Earth is dissatisfied with excess heat near the equator and cold air hovering around the poles. In a move toward equilibrium, the wind flows and the ocean currents move…energy is being transferred! Okay, I could go on for days about this because I love it so much. Let’s move on to El Niño. During El Niño events, which typically occurred every 3-7 years in the past, but may be happening more often now, large-scale winds that normally blow from east to west across the Pacific Ocean diminish, and occasionally even reverse direction. Now, the warm water that is typically found in the western Pacific moves toward the eastern Pacific and, voila!, little upwelling occurs along the coast of South America resulting in fewer nutrients for the phytoplankton and other marine life that survive on the nutrients brought from below. With warmer water in the eastern Pacific, the process of convection shifts eastward with the warm water so the rising air and ensuing storms are found closer to the central Pacific.

Why is this important? El Niño results in changes to temperature and rainfall on a GLOBAL basis. For instance, because convection shifts eastward, parts of northeastern Australia often experience a major drought while the coast of Chile can receive severe floods. The 1997 El Niño event, one of the strongest ever experienced and recorded, resulted in heavy rains over the southern U.S., record rains in California, and a mild winter in the mid-western states of the U.S. At times, the monsoon that affects Southeast Asia arrives much later than normal. We are on the Ka’imimoana to help predict upcoming El Niño events . This is done with the help of 70 buoys that are located on the tropical ocean surface between 8°N and 8°S latitude. Sensors on these buoys measure atmospheric conditions like wind speed, wind direction, air temperature, relative humidity, radiation, and ocean temperature data from the surface to 500 meters below, to help determine if an El Niño event is occurring, or not. We do know that an El Niño is currently forming in the Pacific. Now, we need to ensure that all possible data are available by checking to make sure the sensors are functioning properly and that data are being sent via satellite to researchers who are using models to predict the severity of this event.

With early prediction of an El Niño, countries can adjust the types of crops that they grow, and plan in areas such as water resources, fisheries, and reserves of grain and fuel. Countries that have experienced the effects of El Niño in the past can also effectively plan in advance for drought, floods, and extreme weather, a consequence of the phenomenon, El Niño.

If you are a teacher, I’m writing a lesson plan related to the current El Niño conditions in the Pacific that you can use in your classroom. I will provide optional assignments so that you can use it from the middle school to college level. Please check my lesson plans in the next week to find this activity. Paul Freitag, Chief Scientist on board, is assisting with the exercise by providing current ocean temperature data and informed ideas.

Personal log:
I have remarked a few times today how helpful everyone is on the ship regarding questions that the new people have (that includes me!) or things that we need. This is a tremendous group of people. The Doc helped lower my bunk bed on the first day, after I spent 15 minutes trying every possible hole, button, lever, etc., until she discovered it was actually screwed into the wall. Doug McKay is helping me practice my knot tying which I started learning with my husband in Honolulu; I hope to be of some use on the RHIB or on the decks in the future when things need to be tied down.

John Kermond has answered every imaginable question, many times more than once. He has been very patient. The Chief Scientist endures my many inquiries about the TAO buoys and manages to come up with appropriate manuscripts and manuals whenever I need extra information. The Captain took the time to provide an overview of Pacific Ocean weather this morning before our test broadcast. It’s amazing how many questions I have each day. I even had to learn how to open the doors to go out on the deck. There is a lever that you lift to a certain point which allows you to exit; you then need to lower the lever again once you leave. This keeps the doors from flying open on their own and also keeps them water tight. I ended up sleeping with my stateroom door open the entire first night on the ship because I didn’t realize that it clicks shut only after much force. I woke up and the door was wide open. Taking a shower is always interesting. I’ve learned to stand with my feet wide apart to brace myself and I often use the walls for stability. Fortunately, I don’t even need to think about many of these details anymore. It’s remarkable how we all adjust to our surroundings.

Spiderman is the movie of choice tonight. I’m writing to you from my corner computer and peering out at a group of about 8 people sitting in the main lounge watching the movie. I haven’t watched any movies so far, but I am signed up for the game tournaments to start sometime later this week. In the first round I’m competing against the Commanding Officer (CO) in Scrabble (Yikes!), against the Chief Scientist in Yahtzee (Yikes again!), and am partners with our Cadet on board when we play Sequence. This is an evening program initiated by the Doc to keep morale high on the ship. Sounds good to me!

Well, I’m off to fold laundry before going to bed. Another outstanding day on the ship…I could really get used to this!

Hope all is well with you. Keep in touch!

Diane Stanitski: Days 1-5 (Pre-Trip Log), August 11-15, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Date: August 11-15, 2002

Pre-Trip Log

Two years ago, I took my Shippensburg University Climatology class on a field trip to the National Headquarters of the National Oceanic and Atmospheric Administration (NOAA) in Silver Spring, MD. It was then that I learned about an amazing opportunity sponsored by NOAA known as the Teacher at Sea Program, and was immediately interested. I always keep my eyes open for new opportunities to learn up-to-date information about the atmosphere and to conduct exciting field research. This would also be a perfect chance for my students to learn more about current research which would help inspire them to pursue careers in the atmospheric and physical sciences.

During spring 2001, I was invited to attend a reception for Susan Carty, the first fully sponsored Teacher at Sea. She was inspiring, especially as I read her logs and learned about the kinds of research that she became involved with on the ship. I then attended the reception for Jennifer Richards and Jane Temoshok, the 2nd and 3rd sponsored Teachers at Sea. I then applied for an upcoming 24-day voyage from Honolulu to Nuku Hiva (where?!?) after reviewing my atlas to see where the ship would travel. I couldn’t believe it when I heard from the NOAA Teacher at Sea program that I’d been accepted! I immediately spoke with my husband who thought that I should jump at the opportunity (thanks, Jonathan!). Upon receipt of this dream position I followed Dana Tomlinson via the Teacher at Sea web site (this one!) as she set sail on the Ka’imimoana, the same ship that I am on today, experiencing the exciting research that she shared with her elementary school students. All previous teachers were excellent communicators and great sports. I hope that I can follow their exemplary performance.

Here is my story…

During the past week in Waikiki, I met with Cindy Hunter and other educators at the Waikiki Aquarium, to describe NOAA’s Teacher at Sea (TAS) Program so that they could more easily plan their own upcoming educator at sea program to the northwest Hawaiian Islands. It was exciting to learn that their teacher’s adventure would follow mine by a few days in mid-September. I will definitely plan to follow their voyage at the web site http://www.hawaiianatolls.org. Dr. John Kermond (the director, producer, videographer, etc. of all TAS webcasts) and I shot video footage at the Aquarium and interviewed their volunteers and educators.

Dr. Kermond was interviewed all day on Sunday, August 11, by the director of a Discovery (Canada) documentary about global warming, specifically El Niño’s link to global processes. The film crew asked me to walk beside Dr. Kermond along a gorgeous stretch of Waikiki Beach while they filmed us discussing El Niño together. We had to shoot the scene many times due to interruptions by planes flying overhead, dogs and people entering the picture, or clouds muting the light. It’s amazing what goes into a few minutes of tape during film production…very interesting overall.

We also met Delores Clark, of NOAA’s Public Affairs Office. I learned more about what their office does and she organized a meeting for us with the morning meteorologist from KHNL, a local Honolulu TV station. The broadcaster was most interested in the new tsunami buoy that is replacing an older one in the mid-Pacific. It will assist with the warning of tsunamis for the Hawaiian coastline. He also interviewed me about the Teacher at Sea Program.

It was an exciting couple days of new experiences.

Dana Tomlinson: Day 22, March 22, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Friday, March 22, 2002

Lat: 1°S
Long: 91°W
Seas: 2-4 ft.
Visibility: unrestricted
Weather: partly cloudy
Sea Surface Temp: 82-86°F
Winds: light airs
Air Temp: 86-79°F

Today makes exactly three weeks on the Ka’imimoana. And this will be my last Daily Log from it. What a day it was. It was truly a perfect day. The weather was crystal clear and warm with very little breeze. The waters are so flat it’s hard to believe you’re on an ocean. Since we are closing in on the Galapagos, we are seeing more animal life: two hugs pods of porpoises and a few different kinds of birds. Seeing the birds is nice. We have seen very few on this trip. Dr. McPhaden feels this could also be an indicator of El Niño since the waters are warmer, the fish may be fewer and, therefore, the birds have less to eat.

Everyone is very excited about reaching the Galapagos first thing tomorrow morning. The scientists have prepped and are ready for the buoy recoveries/deployments back on the 95°W line north of Galapagos. The crew was busy getting their work done so they can have some well-deserved time off (Ian and Dane were welding at sunset down on the fantail – it looked beautiful with the setting sun behind them). All hands worked very diligently on the leg down here and the CO is very glad to be able to give them some quality time in a port most have never seen before.

As for me, this is a farewell to the KA. Dr. Kermond, Dr. McPhaden and I will be leaving the ship here to spend a couple of days on Santa Cruz. I will continue to write my logs, but won’t have access to a computer until I get back to San Diego. So, in about a week, please check the website again for the finale to my trip. I thank Cmdr. Tisch and his wonderful crew of dedicated, professional workers for making me feel just like one of them, and giving me the opportunity to bring the valuable work they do to the world, as well as experience what it is like to be a scientist for a while. This experience can only help to make me a better teacher with what I can bring to my students. Thanks to NOAA for a win-win situation. And now I’m off to pack as much into two days in the Galapagos as I can! Stay tuned……………

Question of the Day: 

Here’s a no-brainer: did I have fun and learn a lot on the KA? You’re darn right I did. It was truly the experience of a lifetime.

Answer(s) of the Day: 

From Wednesday: Amy has 6 hours between CTD’s if she’s doing them every degree. It’s about 60 miles to a degree. And the ship goes about 10mph. From Thursday: Once again, knowing that 1 degree is about 60 miles, when you count up the degrees, you get almost forty. That would be 2400 miles and Mrs. Mackay’s class in San Diego got it almost right on the money. Super job, you all!

Til I return from the Galapagos,
🙂 Dana

Dana Tomlinson: Day 17, March 17, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Sunday, March 17, 2002

Lat: 8°S
Long: 105°W
Seas: 4-7 ft
Visibility: unrestricted
Weather: mostly cloudy with isolated rainshowers
Sea Surface Temp:
Winds: E 10-15 knots
Air Temp: 87-74°F

Happy Saint Patrick’s Day! Clem cooked up quite the corned beef and cabbage feast today. Hope all of you had fun too. We are presently transiting from the 110°W line to the 95°W line, so there are no scientific experiments going on now. Rather, there is a lot of preparation going on by the scientists for the work once we get to 95°W. Let me sum up for you what was done on the 110°W line.

Between Amy, Nuria and I (mostly Amy), 27 CTD’s were performed, 5 of them at almost the depth of the ocean (we stop 200m above the floor). 4 buoys were recovered and 4 new buoys were deployed. 2 buoys were visited and found to be fine. 1 buoy was visited and needed repairs, which were provided. The scientists saw the signatures of El Niño: warmer than normal sea surface temperatures by 1 degree, and a rainfall pattern that has shifted southward and south of the equator.

While the scientists are prepping for future work, the crew was getting their regular work done. And, in the further interest of safety (always #1 out here), we had a man overboard drill. We all mustered in our respective locations and watched out the window as a crew of four rescuers went out in the RHIB to retrieve the unfortunate soul adrift (a stuffed evacuation suit!). After bringing him/her aboard, they promptly took him/her to the Medical room where s/he was treated and released. All of this practice is great for honing the skills if they’re ever necessary. Let’s hope they never are.

Question of the Day: 

When was the first NOAA buoy deployed in the Pacific Ocean?

Answer of the Day: 

I will wait until I get emails again after the weekend. Keep writing!

Dana Tomlinson: Day 8, March 8, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Friday, March 8, 2002

Lat: 6.5°N
Long: 110°W
Seas: E/NE 2-5 ft.
Visibility: unrestricted
Weather: partly, occasionally mostly, cloudy
Sea Surface Temp: 78-82°F
Winds: E/NE 10-15 knots
Air Temp: 83-74°F

Do you remember when I said yesterday that today was all about barnacles? Well, as my beloved husband (I miss you honey!) likes to say during a disagreement, “I wasn’t exactly correct.” Actually, tomorrow is barnacle day as we’ll be reaching the vicinity of our first buoy later this morning. The ship will do a deep CTD cast and then we’ll move into position at first light to start the buoy operations. That should be exciting.

So, today is all about weather balloons! Sergio Pezoa, an employee of Environmental Technology Laboratory working with NOAA, showed me the ins and outs of weather balloons. As of a few days ago, Sergio has been deploying the balloons every 6 hours starting at 0Z (zero Zulu or GMT time), five times a day. The purpose of the weather balloons is to collect data (air pressure, temperature, humidity and wind speed and direction) in this El Niño zone, as one more measure that, all together, scientists look at to try to predict the El Niño condition. The weather balloons have two parts: the actual balloon that is filled with helium (it is much bigger than I expected it would be – almost the diameter of a child’s swimming pool) and the radiosonde. The radiosonde is the transmitter portion that is the communication device that transmits the data from satellites to the ship’s computer. It is battery powered with a charge that lasts about 3 hours. The balloon will burst before that and fall to the sea, already having sent its important information to earth. And, believe it or not, the entire thing, from balloon to string to transmitter to battery is ALL biodegradable. Amazing. I really enjoyed deploying it, too. When I let go, the balloon and radiosonde burst out of my hands, when I expected them just to fly away. It was lovely watching them sail, literally, into the sunset.

Question of the Day: 

You knew this was coming, huh? Above, I mentioned Zulu time or GMT. What is GMT and if it’s 9:00pm here in Mountain Time, what time is that Zulu or GMT?

Answer of the Day: 

Congrats to the folks who realized I spelled thermocline incorrectly (once again, I wasn’t exactly right!). Alyzza V. of San Diego was the first to tell me that thermocline is the layer in the ocean that separates the warm upper layers that are oxygen-rich from the cold lower layers of the ocean that are oxygen-poor. Important to this ship’s research since warm waters are what El Niño is all about!

Til tomorrow
🙂 Dana

Dana Tomlinson: Day 7, March 7, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Thursday, March 7, 2002

Lat: 8°N
Long: 110°W
Seas: waves 4-6 ft., swells 8-10 ft
Visibility: unrestricted
Weather: cloudy, partly cloudy
Sea Surface Temp: 27.6°C
Winds: 15 knots
Air Temp: 27.2°C

I was asked by a student in Mr. Whitham’s class in San Diego what it feels like to be on a ship. Today, it feels like a roller coaster!! The seas are really rolling, but at the risk of jinxing myself, I might be past my queasy moments. Which is good, because at times today we’ve had 10 foot swells and winds of up to 24 knots. It’s been a wild one.

Today, I did my first CTD with Amy looking over my shoulder. Like I said yesterday, this is very important work which cumulatively helps to predict the El Niño condition (which can cause millions of dollars in damage and take thousands of lives with the bad weather and droughts it brings), so I take it very seriously. There are many steps to remember in the collection of the water samples as well as the data. I will be working with Amy again before I do this on my own, so I feel confident that I can perform it all correctly. See the photo album for shots of the CTD casting being done by Amy and I.

I want to take this opportunity to acknowledge Larry Wooten. He is the technical specialist on board – he’s the fix-it man. And on this trip, I’ve been calling him the “most overworked techie in history.” Keep in mind that we are hundreds of miles from the nearest shop like Home Depot or Fry’s so we’ve got to have someone to depend on to fix things, and Larry has stepped up to the plate, big-time. Today, he was trouble-shooting our live video broadcasts, he completely removed and re-installed a new triggering mechanism on the CTD (it wasn’t firing the bottles closed properly), and he had to install new software onto a computer so that I could send my photos to you. And that’s just three things I know about! Great job, Larry – the Ka’imimoana is lucky to have you.

Questions of the Day: 

You’ll notice that I listed the SST and Air Temp above in Centigrade today. How does one change a Centigrade reading into a Fahrenheit reading? What would the readings for SST and Air Temp be in degrees Fahrenheit?

Answer of the Day: 

The other day I asked what SST stood for and many of you said Sea Surface Temperature, but Angelique D. of San Diego was first! Great job. And did you know that just by going down a few feet, the water temp gets colder? The ship has sensors that tell us SST and water temp at 3 meters. And of course, the CTD can tell the temp at depths in the thousands of meters. And the buoys along the 110°W line that we’ll be visiting have temperature sensors down the cables that anchor them to the bottom. But that’s a story for another day. 🙂

Tomorrow, we pull up our first buoy – it’ll be all about barnacles for me.

Til then! 🙂 Dana