Susan Kaiser: Blue Planet Connections, August 5, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: August 5, 2012

Weather Data from the Bridge
Latitude:  24 deg 34 min N
Longitude:  81 deg 48 min W
Wind Speed:   2.5 kts
Surface Water Temperature: 32.1 C
Air Temperature:  29 C
Relative Humidity: 71 %

Science and Technology Log

Sunrise on the last day at sea.

Sunrise on the last day at sea.

It is easy to see why the Earth is nicknamed the Blue Planet. Its dominant physical feature is the sea water which covers approximately 70% of the surface making it appear blue even from space.   People have depended on the oceans for centuries not just for the obvious things such as food, transportation, jobs and recreation but also for the very oxygen we breathe and the fresh water we drink to survive.  Humans need the ocean for all these things and more. We are inextricably interconnected to the ocean; our survival depends on it.

The vastness of the ocean allows us to believe that human actions won’t have a major effect on it. For example, pollution that leaks into the ocean would be diluted by the huge amount of water so that no real harm would be done to the habitat or the organisms living in the ocean. This may have been true for a time when the human population was less than the 7 billion people now living on Earth. However, the fact is human actions do influence the ocean and in ways that matter. Often these impacts are unintended or accidental but they still lead to a change in the marine ecosystem.   Sadly, many times these effects are negative such as  the Deepwater Horizon/BP MC252 oil spill In 2010, an explosion on an oil drilling rig in the Gulf  of Mexico released almost 5 million barrels of oil into the ocean immediately changing the marine habitat and harming the organisms that lived there. Scientists are still determining the long term effects of this spill and helping to restore the area. In the past other spills have occurred such as the grounding of the oil tanker Exxon Valdez in 1989 that released 11 million gallons of crude oil along the Alaskan coast.

Not all ocean impacts are large events related to the petroleum industry. Even small individual human decisions can be significant. For example, if a pet owner no longer wants to keep his exotic species pet he might release it into the wild or an environment where that organism isn’t usually found.

Mrs. Kaiser holding a speared Lionfish. Photo by Jeff Renchen.

Mrs. Kaiser holding a speared Lionfish. Photo by Jeff Renchen.

This is probably how the Lionfish,  scientific name Pterois volitans, has become established in the coastal waters near the Carolinas and Florida, according to Paula Whitfield, a NOAA marine scientist. It may seem like a minor problem that the Lionfish is now living in Gulf Coast ocean water. What do you predict will happen to the number of Lionfish in this area knowing that they have everything they need to flourish: food, water, space but no predators to hunt them?  They will reproduce and increase their numbers quickly. Lionfish will out number native species of fish and beat them out for those resources displacing them in their ecosystem. Lionfish will out compete native species decreasing their numbers and the diversity of organisms. While on our cruise the science team encountered groups of Lionfish living under large rocks at depths of 100 feet. They speared a specimen and brought it aboard to examine it closely. Lionfish are invading this marine habitat taking it over from the native species. Any organism that is introduced into a new ecosystem where it can rapidly increase numbers taking over native habitat is called an invasive species. One solution to this problem is to start catching Lionfish to eat! I am told they are yummy. People just need to be taught how to safely remove their poisonous fins and taste them!

These tiny (15-20mm) fresh water bivalves are invasive species.

These tiny (15-20mm) fresh water bivalves are invasive species.

Both animal and plant organisms can be invasive species squeezing out more desirable native organisms. In Nevada, we are on the alert to an invasion of  Quagga Mussels (Dreissena bugensis) that have been detected in Lake Mead near Las Vegas. These fresh water mollusks are transported on boat exteriors or in bilge water to other fresh water lakes across the United States. It is important that boaters carefully inspect and maintain their equipment to halt the progress of this invasive species to other lakes in Nevada and elsewhere.

The Blue Planet is home to us all. Our decisions and actions make a

Roof of the Nancy Foster Complex in Key West, Florida. Note the native plants.

Roof of the Nancy Foster Complex in Key West, Florida. Note the native plants.

difference on both a small and large scale. Each of us has a responsibility to make informed choices about these actions. Realizing our reliance on the ocean and other aspects of the environment and working within in these systems really benefits all of us. For example, when architects designed the Dr. Nancy Foster Florida Keys Environment Complex in Key West, Florida they created a Green Building.  This means they made choices to  “recycle”  a neighboring building saving building materials and using it for a new purpose. Office furniture was re-purposed to fit in the new energy efficient building that is LEED Silver certified. Contributing to the ecosystem, the roof is planted with native species of grasses that provide habitat for insects and birds. The plants are watered by rain. Excess rain water is collected and stored for other uses in the building helping to conserve water. While the Dr. Nancy Foster Complex building design is indirectly related to ocean preservation it represents a human action that benefits our Blue Planet. As with the release of a hand full of Lionfish, so can many small actions together can create a big impact. Choose to be connected to our  ocean in a positive way. Through a small act you do each day we can preserve and even improve our environment and oceans. The Blue Planet is a great place to call home.  Let’s help keep it that way.

Personal Log

Science Team. Photo by Lt. Josh Slater.

Science Team. Photo by Lt. Josh Slater.

As I finish writing this last blog from my home in Reno Nevada, I am reflecting on the many people I have met and the experiences I have had as a  NOAA Teacher at Sea. It is through NOAA’s interest in connecting scientists, mariners and educators that I was able to participate in this amazing experience but also because I took a chance and applied.  I might not have been chosen but I didn’t let that stop me from taking the risk. If I had not made the time to apply and prepared my essays and sample lessons look what I would have missed. The chief scientist, Scott Donahue, also took a chance on me and accepted me as an active participant on his research cruise. He and the science team went out of their way to make sure that I stayed safe and got an outstanding experience as an observer of their research. Everyone took  time to answer my questions and describe their research to reach a larger audience, YOU!

On the last day we sailed into port at Key West, few people aboard knew that

Ensign Richard De Triquet  (right) maneuvers the ship. Executive Officer CM Donn Pratt (left) observes.

Ensign Richard De Triquet (right) maneuvers the ship. Executive Officer CM Donn Pratt (left) observes.

Ensign Richard de Triquet was given the task of bringing the NOAA Ship Nancy Foster into dock.  It was his first time to manage this procedure! Commanding Officer LCDR Holly Jablonski knew he had the skill and took a risk  assigning Ensign De Triquet to maneuver the ship into port. Working as a team, the other officers on the bridge used binoculars to spot potential obstacles in the channel. They discussed the best course for the ship and provided input to Ensign De Triquet who announced the orders.  By the way, the docking was was smoothly accomplished and I got to observe the entire process including the debriefing. Congratulations Ensign De Triquet, nice work!

My NOAA Teacher at Sea experience is one that I will never forget! It was a pleasure to be a part of this science research cruise and to

Mrs. Kaiser snorkeling Ft. Jefferson. Photo by Alejandro Acosta, PhD.

Mrs. Kaiser snorkeling Ft. Jefferson. Photo by Alejandro Acosta, PhD.

meet such a wonderful group of people. My blog would not be complete without acknowledging several individuals in the group who were especially helpful.  Danielle Morley who cheerfully provided me with an overview of the VR2 research including a power point presentation and got me involved in the data collection. Hatsue Bailey who acted as my photographer whenever needed.  Sarah Fangman who provided ground transportation. Alejandro Acosta, PhD who took me snorkeling after a tour of  Ft. Jefferson in the Dry Tortugas. He also was the underwater photographer of the organisms we saw that day. Thank you, everyone!

Just as people are interconnected to the ocean they are also interconnected to each other. All of the people I met on this adventure worked together toward a common purpose. Each one of them making their own contribution to reaching that goal. They did it by doing their best work and trusting that each member of the group would in turn do their part to their best ability. Effort and communication were key to their success. From what I witnessed it worked out perfectly.

These 2 sponges are over 100 years old. They are known as the "Redwoods of the Reef." Photo by Hatsue Bailey.

These 2 sponges are over 100 years old. They are known as the “Redwoods of the Reef.” Photo by Hatsue Bailey

Summer is quickly coming to an end and with it the excitement of a new school grows. My students and I  have the opportunity to make connections, to each other, to the Blue Planet and the organisms that live here. This year, if you are faced with a challenge, be brave and take it on. Assess an opportunity and take the risk to try something unfamiliar. Extend kindness to someone outside your existing circle of friends.  Put your toe in the water and get comfortable listening, observing, thinking and asking questions. You will be amazed what you will learn and the things you will experience. Take a chance. Reflect, communicate and work together.  Scientists and NOAA Ship Nancy Foster officers and crew showed how well this works to get the job done. Let’s follow their example so that your 7th grade year in science a memorable one too.

Mrs. Kaiser wearing the survival suit. Photo by Hatsue Bailey.

Mrs. Kaiser wearing the survival suit. Photo by Hatsue Bailey.

A crab exploring the ocean floor. Photo by Hatsue Bailey

A crab exploring the ocean floor. Photo by Hatsue Bailey

Scientist Danielle Morley changing out a VR2. Photo by Sean Morton.

Scientist Danielle Morley changing out a VR2. Photo by Sean Morton.

Elizabeth Bullock: Day 5, December 15, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: December 15, 2011

Weather Data from the Bridge
Time: 3:15pm
Air Temperature: 23.6 degrees C
Wind Speed: 15.8 knots
Relative Humidity: 56%

Science and Technology Log

Liz takes a water sample

Here I am taking a water sample from the CTD.

Let’s talk about the flurometer!  The flurometer is  a piece of equipment attached to the CTD which is being used on this cruise to measure the amount of chlorophyll (specifically chlorophyll_a) in the water being sampled.  It works by emitting different wavelengths of light into a water sample.  The phytoplankton in the sample absorb some of this light and reemit some of it.  The flurometer measures the fluorescence (or light that is emitted by the phytoplankton) and the computer attached to the CTD records the voltage of the fluorescence.

The flurometer can be used to measure other characteristics of water, but for this research cruise, we are measuring chlorophyll.  As you know, chlorophyll is an indicator of how much phytoplankton is in the water.  Phytoplankton makes up the base of the marine food web and it is an important indicator of the health of the surrounding ecosystem.

At the same time that our cruise is collecting this information, satellites are also examining these components of water quality.  The measurements taken by the scientific party can be compared to the measurements being taken by the satellite.  By making this comparison, the scientists can check their work.  They can also calibrate the satellite, constantly improving the data they receive.

Combined with all the other research I’ve written about in previous blogs, the scientists can make a comprehensive picture of the ecosystem with the flurometer.  They can ask: Is the water quality improving?  Degrading?  Are the organisms that live in this area thriving?  Suffering?

Nelson records data from the CTD

Nelson records data from the CTD.

Collecting data can help us make decisions about how better to protect our environment.  For example, this particular scientific party, led by Nelson Melo, was able to inform the government of Florida to allow more freshwater to flow into Florida Bay.  Nelson and his team observed extremely high salinity in Florida Bay, and they used the data they collected to inform policy makers.

Personal Log

Today is my last full day on the Walton Smith.  The week went by so fast!  I had an amazing time and I want to say thank you to the crew and scientific party on board.  They welcomed me and taught me so much in such a short time!

Thank you also to everyone who read my blog.  I hope you enjoyed catching a glimpse of science in action!

Answers to Poll Questions:

1)      In order to apply to the Teacher at Sea program, you must be currently employed, full-time, and employed in the same or similar capacity next year as

a. a K-12 teacher or administrator

b. a community college, college, or university teacher

c. a museum or aquarium educator

d. an adult education teacher

2)      The R/V Walton Smith holds 10,000 gallons of fuel.  By the way, the ship also holds 3,000 gallons of water (although the ship desalinates an additional 20-40 gallons of water an hour).

Caitlin Fine: Introduction, July 26, 2011

NOAA Teacher at Sea
Caitlin Fine
Onboard University of Miami Ship R/V Walton Smith
August 2 – 6, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida
Date: July 26, 2011

Personal Log

Hola! My name is Caitlin Fine and I teach science at Escuela Key (Francis Scott Key School), a dual-language immersion elementary school in Arlington, VA. I am a Virginia native and my heart is constantly torn between the lively activities of the Washington, D.C. area and the peaceful beauty of the Shenandoah Valley. I left Virginia for college and graduate school, but returned 4 years ago to begin my teaching career for Arlington County Public Schools.

Caitlin Fine

On top of Aspen Mountain during a recent trip to Colorado

Although I majored in Political Science and Spanish Literature and I have graduate degrees in Spanish Literature and Multicultural Education, I have always been interested in science. During college, I worked on an organic farm in Andalucia, Spain that practiced permaculture (this is a way of using the land that is sustainable so that the soil does not use-up all of its nutrients). I also traveled around the Southern Cone of South America (Chile, Argentina, Peru, Bolivia, Brazil) studying the geology of the region. As you can see, I have some experience with farming and the mountains. But I have never really spent an extended time at sea — I have never slept on a boat or studied the marine ecosystems up close and personal over a period of time. I hope that I am not seasick!

My interest in science mixed with my love of cooking has created a current obsession — the health of our national and global food and water supplies. Did you know that every time we take medicine or use pesticides on our plants, a small amount of it enters the water supply and some of it ends up in the rivers and oceans nearby where fish and water plants are trying to live?

The science program at Key is a bit different from traditional elementary schools in that there are three science teachers who teach all 630 students. For the past two years, I have taught the Kindergarteners, the 2nd graders and half of the 5th graders. Key kids are amazing scientists — they are full of questions about how the world works and they are not afraid to get busy trying to figure things out on their own through hands-on inquiry and cooperative learning. I cannot wait to return to Key with new knowledge of oceanography, ocean-related careers and ways to monitor the health of the ocean to share with my students and colleagues!

I am so excited to be a Teacher at Sea for the National Oceanic and Atmospheric Administration‘s 2011 Field Season! Teacher at Sea is a program that provides allows Kindergarten through college-level teachers to live and work alongside scientists on research and survey ships. The goal of the program is to help teachers understand our ocean planet, environmental literacy, and maritime work so that they can return to the classroom and share information with their students about what it is like to be a real scientist who studies the ocean.

I will be on a 5-day cruise on the R/V Walton Smith in south Florida.

R/V Walton Smith

This is the R/V Walton Smith

From what I understand, we will be taking measurements across the south Florida coastal marine ecosystem (the southwest Florida shelf, Biscayne and Florida Bays, and the Florida Keys reef tract). The program is important because the research has helped scientists keep an eye on the sensitive marine habitats, especially when the ecosystem has had to deal with extreme events, such as hurricanes, harmful algal blooms or potential oil spill contaminants. We will test the circulation, salinity, water quality and biology of the ecosystem.

Drainage Basin

The currents might move some of the Mississippi River water toward south Florida

During this cruise, I have been told that we might be able to measure Mississippi River water because it might enter our survey track.

Scientists are also going to be trying out new optical measurement tools! It sounds as though I will have a lot to report back to you about!

Please leave me a comment or any questions you have about the cruise.

Please take a moment to take my poll:

Becky Moylan: Preliminary Results, July 13, 2011

NOAA Teacher at Sea
Becky Moylan
Onboard NOAA Ship Oscar Elton Sette
July 1 — 14, 2011


Mission: IEA (Integrated Ecosystem Assessment)
Geographical Area: Kona Region of Hawaii
Captain: Kurt Dreflak
Science Director: Samuel G. Pooley, Ph.D.
Chief Scientist: Evan A. Howell
Date: July 13, 2011

Ship Data

Latitude 1940.29N
Longitude 15602.84W
Speed 5 knots
Course 228.2
Wind Speed 9.5 knots
Wind Dir. 180.30
Surf. Water Temp. 25.5C
Surf. Water Sal. 34.85
Air Temperature 24.8 C
Relative Humidity 76.00 %
Barometric Pres. 1013.73 mb
Water Depth 791.50 Meters

Science and Technology Log

Results of Research

Myctophid fish and non-Myctophid fish, Crustaceans, and gelatinous (jelly-like) zooplankton

Crustaceans

Chief Scientist guiding the CTD into the ocean

Chief Scientist guiding the CTD into the ocean

Beginning on July 1st, the NOAA Integrated Ecosystem Assessment project (IEA) in the Kona region has performed scientific Oceanography operations at eight stations.  These stations form two transects (areas) with one being offshore and one being close to shore. As of July 5th, there have been 9 CTD (temperature, depth and salinity) readings, 7 mid-water trawls (fish catches), over 15 acoustics (sound waves) recordings, and 30 hours of marine mammal (dolphins and whales) observations.

The University of Hawaii Ocean Sea Glider has been recording its data also.The acoustics data matches the trawl data to tell us there was more mass (fish) in the close to shore area than the offshore area. And more mass in the northern area than the south. This is evidence that the acoustics system is accurate because what it showed on the computer matched what was actually caught in the net. The fish were separated by hand into categories: Myctophid fish and non-Myctophid fish, Crustaceans, and gelatinous (jelly-like) zooplankton.

Variety of Non-Myctophid Fish caught in the trawl

Variety of Non-Myctophid Fish caught in the trawl

The CTD data also shows that there are changes as you go north and closer to shore. One of the CTD water sample tests being done tells us the amount of phytoplankton (plant) in different areas. Phytoplankton creates energy by making chlorophyll and this chlorophyll is the base of the food chain. It is measured by looking at its fluorescence level. Myctophids eat phytoplankton, therefore, counting the amount of myctophids helps create a picture of how the ecosystem is working.

The data showed us more Chlorophyll levels in the closer to shore northern areas . Phytoplankton creates energy using photosynthesis (Photo = light, synthesis  = put together) and is the base of the food chain. Chlorophyll-a is an important pigment in photosynthesis and is common to all phytoplankton. If we can measure the amount of chlorophyll-a in the water we can understand how much phytoplankton is there. We measure chlorophyll-a by using fluorescence, which sends out light of one “color” to phytoplankton, which then send back light of a different color to our fluorometer (sensor used to measure fluorescence). Myctophids eat zooplankton, which in turn eat phytoplankton. Therefore, counting the amount of myctophids helps create a picture of how the ecosystem is working.   The data showed us more chlorophyll-a levels in the closer to shore northern areas.

Bringing in the catch

The Sea Glider SG513 has transmitted data for 27 dives so far, and will continue to take samples until October when it will be picked up and returned to UH.

Overall the mammal observations spotted 3 Striped dolphins, 1 Bottlenose dolphin, and 3 Pigmy killer whales.  Two biopsy “skin” samples were collected from the Bottlenose dolphins. A main part of their research, however, is done with photos. They have so far collected over 900 pictures.

Looking at all the results so far, we see that there is an area close to shore in the northern region of Kona that has a higher concentration of marine life.  The question now is why?

We are now heading south to evaluate another region so that we can get a picture of the whole Eastern coastline.

Personal Log

In the driver's seat

In the driver's seat

Krill

Krill

And on deck the next morning we found all kinds of krill, a type of crustacean. Krill are an important part of the food chain that feed directly on phytoplankton. Larger marine animals feed on krill including whales. It was a fun process finding new types of fish and trying to identify them.Last night I found a beautiful orange and white trumpet fish. We also saw many transparent (see-through) fish with some having bright silver and gold sections. There were transparent crabs, all sizes of squid, and small clear eels. One fish I saw looked like it had a zipper along the bottom of it, so I called it a “zipperfish”. A live Pigmy shark was in the net, so they put it in a bucket of water for everyone to see. These types don’t ever get very big, less than a foot long.

I have really enjoyed living on this ship, and it will be sad to leave. Everyone treated me like I was part of the group. I have learned so much about NOAA and the ecosystem of the Kona coastline which will make my lessons more interesting this year. Maybe the students won’t be bored!

Sunrise over Kona Region

Sunrise

Sunrise

Kimberly Lewis, July 13, 2010

NOAA Teacher at Sea Kimberly Lewis
NOAA Ship: Oregon II
July 1 -July  16 2010

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, July 13, 2010

Ecosystem Conservation and some of the people who monitor it

Me holding a skate.

Me holding a skate.

Weather Data from the Bridge 
Time: 1130 (11:30 AM)
Position: Latitude = 28.57.59 N;
Longitude = 94.49.73 W
Present Weather: Clear
Visibility: 8-10 nautical miles
Wind Speed: 14.97 knots
Wave Height: 4 feet
Sea Water Temp: 29.1 C
Air Temperature: Dry bulb = 31.4 C; Wet bulb = 27.0 C
Barometric Pressure: 1013.77 mb

Science and Technology Log

“IT’S ALL CONNECTED.” Everything in an ecosystem is connected to everything else. This is a guiding principle of studying and managing ecosystems. This past spring in one of my online communities we were discussing whole ecosystem monitoring for conservation rather than the traditional ‘save one species at a time”.

I’m seeing it now in the Gulf of Mexico. Obviously, the ocean environment is connected to human activities – the BP-Deepwater Horizon oil spill makes that abundantly clear. But there are also countless natural connections, and much less obvious human impacts, that must be understood and assessed if the Gulf ecosystem is to be protected. Commercial fish and shrimp stocks can only be sustained through a careful understanding of the human impact and natural connections in the Gulf.

That’s why we identify and count every organism we bring up in a trawl. Sometimes we get 50 or more different species in one catch, and we don’t just count the commercially important ones like red snapper and shrimp. We count the catfish, eel, sea stars, sea squirts and even jellyfish we haul in. Why? Because even though these organisms might seem “unimportant” to us, they might be important to the red snapper and shrimp. They also might be important to the organisms the red snapper and shrimp depend on. And even if they’re not directly important, studying them might tell us important things about the health of the Gulf.

Brittany

Brittany on the deck

Bruce and I are learning a lot about this from the incredibly knowledgeable marine biologists in the science party. Brittany Palm is a Research Fishery Biologist from NOAA’s Southeast Fishery Science Center (SEFSC) in Pascagoula, MS, and leader of the day watch on this leg of the Oregon II’s Summer Groundfish Survey. Brittany is working on her M.S. on a fish called croaker, Micropogonias undulatus, studying its stomach contents to better understand its position in the food web. Croaker is not an economically important species, but it lives in the same shallow sea floor habitat as shrimp so shrimpers end up hauling in a huge amount of croaker as bycatch. So, when the shrimping industry declined in 2003-2004, the croaker population exploded. Since croaker are closely associated with shrimp habitat and the shrimp fishery, we might gain important insights by studying croaker population and understanding what they eat, and what eats them.

Alonzo

Alonzo helping to dissect a fish

Alonzo Hamilton is another NOAA Fishery Biologist from the SEFSC. Alonzo explained that there’s a lot to be learned by looking at the whole ecosystem, not just the 23 commercial species that are managed in the Gulf. For example, many of the crabs we commonly catch in our trawls are in the genus Portunas, known as “swimming crabs.”

Portunas spinicarpus

Portunas spinicarpus

Portunas species normally live on the sea floor, but when severe hypoxia sets in, Portunas crabs can be found at the surface, trying to escape the more severe oxygen depletion that typically takes place at the bottom of the water column.

Sean

Sean on the deck

Geoff on the deck

Geoff on the deck

Sean Lucey and Geoff Schook are Research Fishery Biologists from NOAA’s Northeast Fishery Science Center in Woods Hole, Massachusetts. They are working on the Oregon II right now to support the SEFSC because of huge manpower effort demanded by the oil spill. The NEFSC has been conducting their groundfish survey annually since 1963, making it the longest-running study of its kind. Originally the survey only looked at groundfish population, but as our understanding of ecosystem dynamics increased over time, more and more factors were analyzed. Now NEFSC looks at sex, age, stomach contents and many other species besides groundfish to obtain a more complete picture of the food web and the abiotic factors that affect groundfish. NEFSC even measures primary production in the marine ecosystem as one tool to estimate the potential biomass of groundfish and other species at higher trophic levels.

Fisheries biologist Andre DeBose
Andre DeBose is a NOAA Fishery Biologist from the SEFSC and the Field Party Chief for the Summer Groundfish Survey. In addition to leading the science team on the Oregon II, Andre is conducting research on Rough Scad, Trachurus lathami, an important food species for red snapper and important bait fish for red snapper fisherman. By gaining a better understanding of the relationship between Red Snapper and its prey we can better understand, and better manage, the ecosystem as a whole.

There’s a lot of information to be learned beyond just counting fish. By taking a wide look at the marine environment we can better understand how the whole ecosystem functions. This enables us not only to be more informed in setting sustainable catch levels, but also enables us to identify and respond to things that contribute to hypoxia and other problems that degrade habitat and reduce populations. It’s all connected.

Personal Log

Everyone in the scientific party has been working very hard to gather data. A 12 hour shift can be long at times, and other times fly by. Today Andre told us we will start cleaning up Thursday morning. It doesn’t seem possible that my 17 days with the Oregon II will soon be over. Part of me is excited to get back home to see my family and sleep in a bed that isn’t affected by the Gulf waves. The other part of me is sad due to the fact I will not longer be working with some remarkable people and worked with ongoing scientific research. It is very hard work, but very exciting to see what goes on at sea. I am sure I will call on some of them in the future for collaboration.

Chef Walter made some great meals over the past few days. Crab cakes, roasted buffalo, chicken curry, and quail, not to mention those great breakfasts. Based on my first two days of sea not able to keep anything down and not wanting to eat, I thought for sure I would go back to Ohio 15 pounds lighter. But the sea sickness wore off and I am enjoying food and adjusting to boat life.

Justin Czarka, August 15, 2009

NOAA Teacher at Sea
Justin Czarka
Onboard NOAA Ship McArthur II (tracker)
August 10 – 19, 2009 

Mission: Hydrographic and Plankton Survey
Geographical area of cruise: North Pacific Ocean from San Francisco, CA to Seattle, WA
Date: August 15, 2009

Weather data from the Bridge

This picture shows what happens to an 8 fluid ounce Styrofoam cup after experience water pressure at 1000 meters down. The colorful cup was sent down attached to the CTD

This picture shows what happens to an 8 fluid ounce Styrofoam cup after experience water pressure at 1000 meters down. The colorful cup was sent down attached to the CTD

Sunrise: 6:29 a.m.
Sunset: 20:33 (8:33 p.m.)
Weather: patchy mist
Sky: partly to mostly cloudy
Wind direction and speed: north-northwest 15-20 knots (kt), gust to 25 kt
Visibility: unrestricted to 1-3 nautical miles in mist
Waves: northwest 6-9 feet
Air Temperature: 18°C high, 12°C low
Water Temperature: 17.5°C

Science and Technology Log 

Today we made it out to 200 miles off the Oregon Coast; the farthest out we will go. The depth of the ocean is 2867 meters (9,406 feet).  It is pretty interesting to imagine that we are on the summit of a nearly 10,000-foot mountain right now!  Last night the CTD was deployed 1,000 meters (3,281 feet).  Even at this depth, the pressure is immense (see photo, page one). When taking the CTD down to this depth, certain sensors are removed from the rosette (the white frame to which the CTD instruments are attached) to prevent them from being damaged.

Justin Czarka taking observational notes while aboard the McArthur II.  These notes preserve the knowledge gained from the NOAA officers and crew, as well as the researchers

Justin Czarka taking observational notes while aboard the McArthur II. These notes preserve the knowledge gained from the NOAA officers and crew, as well as the researchers

The crew aboard the McArthur II is such an informative group. Many possess a strong insight into NOAA’s research mission.  Today I spoke with Kevin Lackey, Deck Utility man.  He spoke to me about the cruises he has been on with NOAA, particularly about the effects of bioaccumulation that have been studied.  Bioaccumulation is when an organism intakes a substance, oftentimes from a food source, that deposits in the organism at increasing levels over time.  While sometimes an intentional response from an organism, with regards to toxins, this bioaccumulation can lead to detrimental effects.  For example, an organism (animal or plant) A on the food web experiences bioaccumulation of a toxin over time.  Imagine organism B targeting organism A as a food source. Organism B will accumulate concentrated levels of the toxin. Then, when organism B becomes a food source for organism C, the effects of the toxins are further magnified.  This has serious effects on the ocean ecosystem, and consequently on the human population, who rely on the ocean as a food source.

While aboard the McArthur II, Morgaine McKibben, a graduate student at Oregon State University (OSU), shared with me her research into harmful algal blooms (HABs), which potentially lead to bioaccumulation.  Certain algae (small plants) accumulate toxins that can be harmful, especially during a “bloom.” She is collecting water samples from the CTD, as well as deploying a HAB net, which skims the ocean surface while the ship is moving to collect algae samples.  She is utilizing the data in order to create a model to solve the problem of what underlying conditions cause the algae blooms to become toxic, since they are not always as such.

Personal Log 

Sunset over the Pacific Ocean from the flying bridge off the coast of Heceta Head, Oregon (N 43°59, W 124°35) a half hour later than two nights ago!

Sunset over the Pacific Ocean from the flying bridge off the coast of Heceta Head, Oregon (N 43°59, W 124°35) a half hour later than two nights ago!

The weather has cleared up allowing grand ocean vistas—a 360° panorama of various blues depending on depth, nutrients, clouds overhead, and so forth.  At first glance, it just looks blue.  But as you gaze out, you see variance. A little green here, some whitecaps over there. As the ship moves on, the colors change. Wildlife appears, whether it is a flock of birds, kelp floating by, or an escort of pacific white-sided dolphins. I wondered if the ocean would become monotonous over the course of the eleven days at sea.  Yet the opposite has happened. I have become more fascinated with this blue water.

It was interesting today to notice how we went back in time.  Two nights ago the sun had set at 20:03 (8:03 p.m.)  But because we went so far out to sea, last night the sunset had changed to 20:33 (8:33 p.m.).  While this happens on land as well, it never occurred to me in such striking details until out to see.

Animals Seen from the Flying Bridge (highest deck on the ship) 

  • Rhinoceros Auklet – closely related to puffins
  • Whale (breaching)
  • Common Murres
  • Western Gull
  • Hybrid Gull – We are at a location off the coast of Oregon where different species interbreed
  • Leech’s Storm Petrel – Mike Force, the cruise’s bird and marine mammal observer, found the bird aboard the ship by in an overflow tank.  It will be rereleased.

Did You Know? 

NOAA has a web page with information especially for students?

Justin Czarka, August 14, 2009

NOAA Teacher at Sea
Justin Czarka
Onboard NOAA Ship McArthur II (tracker)
August 10 – 19, 2009 

Mission: Hydrographic and Plankton Survey
Geographical area of cruise: North Pacific Ocean from San Francisco, CA to Seattle, WA
Date: August 14, 2009

Weather Data from the Bridge 

Sunrise: 6:29 a.m.
Sunset: 2033 (8:33 p.m.)
Weather: patchy mist
Sky: partly to mostly cloudy
Wind direction and speed: Northwest 10-15 knots (kt)
Visibility: unrestricted, reduced to 1-3 nautical miles (nm) in mist
Waves: northwest 3-6 feet
Air Temperature: 17.50°C
Water Temperature: 17.63°C

Science and Technology Log 

Today I rotated to a new job assignment. I have been working with the CTD water samples, storing nutrient samples, and preparing chlorophyll samples.  Now I work with Jay Peterson, researcher from Oregon State University, Hatfield Marine Science Center, Newport, Oregon, deploying, retrieving, and preparing live samples from the vertical net and bongo net on a cable.

The vertical net gets rinsed off after the tow.

The vertical net gets rinsed off after the tow.

The nets collect all types of plankton, both plants and animals.  As with all the sample collections occurring aboard the McArthur II, communication is the backbone of the operations, or “ops.” For the vertical net and bongo net, two people manually place the nets over the ship’s starboard side, while a winch operator deploys and retrieves the nets from the ocean, and the bridge navigates the ship. For vertical nets, the goal is to take the net to 100 meters (m) depth and then hauled up vertically. The purpose is to catch organisms from the entire water column up to the surface.  It is the same depth for the bongo net, but the goal is to have the cable at a 45° angle with the ship moving at a steady 2 knots (kt). Both nets have flowmeters to determine the volume of water that goes through the net. Once back on the deck, the nets are rinsed from the top to the bottom so that everything in the net can be analyzed. The samples are placed in jars or buckets to observe under microscope.  We find euphausiids (krill), copepods, Tomopteris, Chaetognatha (arrow worms), fish larvae, Phronima, and even bird feathers!  You have to check out these animals online, as they all have fascinating features. More importantly, while small in size, they are an essential part of the food web. Without them, many species would struggle to find food.

Personal Log 

Today we a day of plenty in terms of sighting marine mammals and other species as well!  The day started out near shore at Newport, Oregon and the Yaquina Head Lighthouse.  The McArthur II travels roughly in a zigzag approach near shore to off shore and back for this mission.  Getting ready for the day watch, I saw some whales off the port (left side facing forward on a ship). That was just the beginning. As we headed due west on the Newport transect line (44 39.1′ N latitude) we spotted brownish and reddish jelly fish, albatross following along the starboard side during bongo tows, sea lions skirting by the stern, and a shark fiddling with driftwood presumably looking for small fish that were utilizing the log as a habitat. Later in the day, we navigated near breaching humpback whales on the starboard side. Towards evening, a group of 5-6 pacific white-sided dolphins followed along for 10 minutes or so.

A Doliolid, which feeds on plankton, was caught in the vertical net before being released into the ocean.  Note the pinkish lines, the muscle bands, and blimp-like shape.

A Doliolid, which feeds on plankton, was caught in the vertical net before being released into the ocean. Note the pinkish lines, the muscle bands, and blimp-like shape.

Being out here witnessing the wildlife in their environment is fascinating.  You start to internalize the ocean planet as more than a vast emptiness.  There exists a tremendous amount of species diversity living above and below the surface. Yet sadly, since few of us spend regular time away from our land habitats, we tend to neglect the essential nature of the ocean.  The ocean truly sustains us, whether providing the majority of our freshwater (through evaporation and, consequently, rain), supporting our nutritional diets, and driving the weather we experience daily.  Teacher at Sea really reinforces this revelation since I get to spend an extended amount of time away from my terrestrial existence learning to appreciate the ocean’s influence on our lives.  May we gain enough understanding to ensure the sustainability of the ocean ecosystem.

Animals Seen 

Humpback whales
Shark
Jellyfish
Doliolid
Albatross
Albacore tuna
Sea lion
Pacific white-sided dolphin