Terry Maxwell: An Advanced Operation, June 11, 2016

NOAA Teacher at Sea

Terry Maxwell

Aboard RV Hugh R. Sharp

June 6 – June 21, 2017

Mission: Sea Scallop Survey

Geographic Area of Cruise: Northeast Atlantic Ocean

Date: June 11, 2016

Weather Data from the Bridge
Latitude: 42 06.73
Longitude: 67 18.80
Wind Speed 20.9 Knots (24 miles per hour)
Air Temperature 13.3° Celsius (55.9 Fahrenheit)

Science and Technology Log

Upon my first entry into the Hugh R. Sharp, the one thing that really stuck out to me was the amount of visible technology.  In the dry lab alone, there are over 20 computer screens, close to as many hard drives, and Ethernet cords crossing and spanning the entire dry lab area.  In the laboratory van, where much of our species counting and data collection takes place there are three more touchscreen monitors, motion compensated electronic scales (a scale that measures accurately regardless of boat movement), and electronic meter sticks.  It is overwhelming at first, but as I have settled in now for four days it becomes commonplace.

before and after

What is more impressive than the amount of technology in the dry lab, is that the NOAA crew hooks up all the equipment before the mission starts.  The before picture of the room is on the right.

On the 9th we were delayed due to some rough water, and the need to fix some of our equipment.  Specifically, the ramp, which launches our underwater camera, was broken due to some strong waves.  The engineers and technicians of the boat reinforced the ramp quickly on the morning of the 9th and we were headed back out to our location in Georges Bank in short order.  The science crew I am a part of has the noon to midnight shift, so this gave me a chance to talk with one of the NOAA Fisheries experts Nancy McHugh about the technological advancements she has seen in recent years on the NOAA surveys.

nancy

Nancy McHugh sorts and identifies fish from a recent dredge station catch.

Nancy has been with NOAA for 26 years, and has been on many survey missions.  In my last blog, I gave an overview of our dredge missions, and how the data were collected during those missions.  During this blog entry I would like to tell you about the technology that makes all this data easier to collect, analyze, and organize than it once was.  This technology has made all the collection of data more accurate, reliable, and accountable.  I have seen first-hand now how serious NOAA Fisheries is about collecting data that is accurate as possible, down to the last and smallest scallop.

In the 1990’s and early 2000’s, the NOAA Fisheries staff used waterproof paper forms and pencil to collect the information from their surveys.  Separate forms were used for each species collected.  To give you an idea of how many different species are collected during a survey, our survey has collected over 50 different species of organisms, and we still have 11 days left.  That means that during this survey would have had 50 different paper charts about the organisms collected.  Each organism collected would be hand tallied onto a chart about the specimen’s length, weight, gender, and if a stomach content examination was performed. Each species was given a code number so that code number could be entered into a database for retrieval at a later date.

old form

Old fisheries survey data form used in the late 90’s.  Much has changed since then.

Once the data for each species was recorded on its own form, the summary of the information about each species was transferred onto a main master form.  All the scallops were hand measured, and length tallies made for the scallop at each millimeter mark.  Once the dredge station survey was complete, someone would hand total all of those numbers to get a total amount.  The total data sets would be sent out to a prison in Kansas, which would be responsible for key punching (entering on a computer).  This data would take around 3 months to get back.  Once the keypunched data was sent back to NOAA Fisheries, it would then have to go through an intensive audit process before it was considered clean and ready for the stock analysts use.

Today NOAA Fisheries relies on a program called Fisheries Scientific Computer System, or FSCS for short (sounds like Fiscus).  NOAA scientists and programmers created this computer program to replace the tedious method of pencil and paper data recording.  My crewmember Nancy was one of the scientist involved in the creation of FSCS.  The FSCS program has helped to create not only a faster more efficient data collection system, but also one that is more accurate and reliable than the old paper and pencil model.  First, the FSCS system is an offshoot of the Scientific Computer System (SCS), which is able to store information about ship board sensors, ship positioning, latitude and longitude, winch data, and depth.  When we are about to start a dredge station, the NOAA scientists start “an event” in the FSCS computer program.  The program then begins to collect a snapshot of information from the SCS system while the dredge is fishing.

lab van

The laboratory van is set up with three touch screen monitors that all run the FSCS program, ichthysticks (electronic measuring sticks), motion compensated scales, and barcode readers to enter data into the FSCS program.  This was a empty room before the mission.  NOAA Fisheries workers set up this room before the start of the Scallop Survey.

Once the process of pulling up the dredge, and collecting of species, and sorting of species has happened the efficiency of FSCS is revealed. There are three stations in the laboratory van; each station containing an “ichthystick,” a small motion compensated scale, a touch screen monitor, a bar code scanner, and a printer.  Each station has science crew members working in teams of two.  At station one in the laboratory van, our watch-chief begins to enter in data from the different species that are collected.  The bucket the specimen is in is scanned; this bucket’s weight has been pre-programmed into a computer.  By having the bucket weight already in the program’s database, that weight is automatically deducted on the digital scale when the specimen bucket is set on the scale.  This tare process once was done manually, by pressing the tare button on the scale.   Once the specimen buckets have been scanned and weighed, many of the specimens are measured for length.  Again, the new technological advancements help with efficiency and accuracy.  NOAA scientists have developed their own “ichthystick” which essentially is an electronic meter stick.  These “ichthysticks” are at each of the three stations in the laboratory van.

icthy board

Measurements made using the icthysticks go straight into the FSCS program. There is no hand transferring of the data. This allows for fast and efficient data collection.

Before a measurement is taken, a scientist selects a specimen from a list in FSCS of possible collected specimens and scans the barcoded bucket tag to ensure the correct species has been chosen.  For this example, if a scientist was examining sea scallops the user simply places a sea scallop on the board up against a block that is at zero mm, and then places a magnet on the other side of the specimen.  The computer will make a sound to indicate the length is acknowledged, and the data is collected in the program.  Here is the cool part: the computer program knows the general ranges of the specimen’s size.  That means if someone accidentally put the magnet down at 350 mm while measuring a sea scallop, the computer would automatically put up a warning message (visually and audibly) noting that the measurement is beyond the known range of expected sea scallop lengths.  This cuts down on accidental measuring errors.

At station 3 where scallops are shucked and examined, all of the information which I discussed in the last blog goes into the FSCS database as it is recorded.  Again, the program checks for errors.  For example, if a meat weight is entered that is too light for the size of the sea scallop being examined, the computer will alert the user that the meat weight is too small for the examined sea scallop.  Then the cutter can ensure that he removed all of the meat properly.

Once all this data is recorded, it is merged with the SCS data for a complete picture of the survey.  The merged data can then be accessed by NOAA Fisheries scientist to analyze the data and create predictive models.  Essentially the NOAA Fisheries survey crew can leave the boat with data that used to take over three months to finalize after a survey had ended.

Personal Log

I don’t want to jinx it, but I think I finally have my “sea legs.”  The waves are pretty rough today, but I’m not really fazed by the motion.  Yesterday we spent a lot of time on the computers, annotating images from the underwater camera, HabCam.  During that time working, I almost forgot I was on a boat.  Part of that is that the water was calmer yesterday.  But today we have much more chop in the water and I still feel okay.

The 9th was a hard day for me, as I missed my son Zebadiah’s birthday.  Happy Birthday Z!  It’s hard to be away from my family, but as I talk to some of the NOAA Fisheries people or the crew that runs this ship I realize how short my time is away from my family.  Some of the NOAA Fisheries crew is out 120 days at sea each year!  The ship crew will work this mission and then head to another mission right after ours is done.  There are some very hard working people that work for NOAA Fisheries, and the crews that run NOAA’s fleet of ships.

It has only been six days since I arrived at Woods Hole, but I’ve seen some amazing sites.  Even though some of the crew is out so often at sea each year, I’m realizing the amazing sunsets never get old to them.  It is an awesome site each night, as is the moon over the water at night.

sun set

Amazing sunsets every night when you are over 100 miles from the coast.  Being aboard the Hugh R Sharp has been a great experience so far.

Did You Know?

Sea Stars are one of the main predators of scallops.  It’s an interesting correlation.  When we have done dredge station surveys there is definitely an inverse relationship between the number of sea stars caught and the number of scallops caught.  Meaning the more star fish that are in a dredge tow, the less scallops and vice versa.  When using the underwater camera (HabCam) to take pictures of the ocean floor, there are sections with sea stars that litter the ocean floor.  Not surprisingly, there are very little scallops in those sections.  Sea stars have suction cup like structures on their arms, which help them latch onto a scallop.  When that happens, the sea star then slowly attempts to pry the shell open.  Some sea stars are then able to push their stomachs out of their body, and digest the externally.  Another interesting ability of the sea stars is their ability to regenerate arms if they are lost.

star eating clam

Sea stars attacking a razor clam shell.  This picture was taken by the underwater camera on board called the HabCam.

star regen

Sea star with two arms regenerating.

huge star

A gigantic sea star out of our dredge collection.  The normal size one is on the right.

Terry Maxwell: Scallop Pails and Humpback Whales, June 7, 2017

NOAA Teacher at Sea

Terry Maxwell

Aboard R/V Hugh R. Sharp

June 6 – 21, 2017

Mission: Sea Scallop Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: June 7, 2017

Weather Data from the Bridge
Latitude: 41 30.90 N
Longitude: 69 18.76 W
Air Temp 14.1° Celsius ( 57.3° Fahrenheit)
Wind speed 4.7 Knots (5.4 mph)

Science and Technology Log

Due to the poor weather delay on the 6th, June 7th was our first day out for the crew I am working with. Our ship is divided into two crews so we can work our operations around the clock.  The crew I am working with works from noon to midnight, while the other crew works midnight to noon.  On the 7th, were able to drop the dredge and attempt to collect scallops to assess the health, size, and population of those organisms.

img_02302.jpg

Sometimes the dredge brings up more than scallops!  This goosefish uses it’s illicium which act like fishing lures to attract fish close enough to be gulped by its large mouth.

We work those hours mainly using the collection process of dredging the ocean floor for scallops, but along the way, several other bottom dwelling ocean creatures are caught in the dredge.

A crane operator with the help of two deck workers lowers the dredge into the water.  Once the dredge is in place to go into the water the crane operator releases cable until the dredge reaches the ocean floor.  Depth readouts are calculated beforehand to determine how deep the dredge will need to drop.  With this information the dredge cable is let out at a 3.5:1 ratio, meaning for every meter of ocean depth we are in, 3.5 meter of cable is let out.  With this ratio the dredge is dropped with an angle that keeps it flat to the ocean floor.  The crane operator is also reading a line tension readout in the crane booth to determine when the dredge has hit the ocean floor.  We are typically in 200–350 ft of water when these dredges occur.  The dredge travels behind the boat for 15 minutes, and is then pulled in.

On the dredge is a sensor called the “Star-Oddi.” This sensor detects the pitch and roll to make sure it was lying flat on the bottom of the ocean.  The Star-Oddi also collects temperature and depth information as the dredge is traveling.  The sensor is taken out of the dredge once it is brought up so watch-chief can see if the dredge was functioning properly throughout the tow.

img_02111.jpg

University of Maine student Dylan Benoit is taking out the Star-Oddi after a dredge.

Once the dredge is hauled up, it is dumped onto a large metal table that the science crew stands around.  Two of the Hugh R Sharp’s vessel technicians then scoop the collected haul to an awaiting science crew.

IMG_0215

The dredge is unloaded with a good haul of scallops.

The science crew will then divide the haul into several different collection pails.  The main objective of this crew is to collect scallops.  Scallops collected are organized into different sizes.  Fish are also collected and organized by a NOAA scientist who can properly identify the fish.  At some of the dredge stations we collect numbers of crabs, waved whelks, and sea stars as well.

img_0169.jpg

This dredge was especially sandy.  In a typical day we reach around 6-8 dredge stations during our twelve hour shift.  Here I am sorting through the sand looking for scallops, fish, crabs, and wave whelks.

Once the haul is collected and sorted, our science team takes the haul into a lab station area.  In the lab, several pieces of data are collected.  If we are at a station where crabs and whelks are collected, then the number of those are recorded as well.  Fish taken from the dredge are sorted by species, some species are weighed and measured for length. Some of the species of fish are measured and some are counted by NOAA scientists.

IMG_0198

In the dry lab the midnight to noon science crew takes measurements and records data.

 

Also in this lab station, all of the collected scallops are measured for their shell height.  A small sample of scallops are shucked (opened) to expose the meat and gonads, which are individually weighed and recorded.  Once opened we also identify if a scallop is diseased, specifically looking for shell blisters, nematodes, Orange-nodules, or gray meats.

img_02421.jpg

Scallop disease guide posted in the dry lab.

Also at this station, the gender of the scallop is identified.  You can identify the gender by the color of the gonad.  Males have a white gonad, while a female’s looks red or pink. Finally at this station, commensal organisms are checked for.  A common relationship we have seen during this trip is that of the scallop and red hake.  The red hake is a small fish that is believed to use the scallop shell as shelter while it is young.  As they get older, red hake have been identified to be in the depression around the scallop, still trying to use the scallop for shelter, even though it can no longer fit inside.

IMG_0241[1]

A shucked clam that had a red hake living inside of it when it was collected in the dredge.


After that has happened the shells are cleaned and given an ID number.  These scallop shells are bagged up, to be further examined in NOAA labs by a scientist that specializes in scallop aging.

IMG_0232

These scallops have been shucked, and now their shells will be researched by a scallop aging expert at NOAA.  My job is to be the recorder for the cutter.  I do the final cleaning on the scallop shells, tag them, and bag them.

If you’d like to know how this process works, watch the video below.   The watch-chief, Nicole Charriere, of the science crew members I work with, explains the process in this short clip.

 

Transcript:

(0:00) Nichole Charriere. I’m the watch chief on the day watch, so working with Terry. I’ve been working at the Northeast Fisheries Science Center for about 6 ½ years. When we’re out here on deck, basically, we put a small sensor on the dredge that helps monitor the pitch, the roll, and kind of whether the dredge is fishing right side up or upside down. And we offload that sensor after every tow, put a new one on, and that sensor will tell us basically how that dredge is fishing, because we always want the dredge to be in contact with the bottom, fishing for the entire 15 minutes if we can.

(0:45) The dredge is deployed 15 minutes for the bottom and then it comes back up and then the catch is dumped on the table. Then depending on how far away the next station is, sometimes we take out crabs and whelks, and we account for the amount of starfish that are in each tow because those are predators of scallops. So we want to make sure that we’re kind of tracking the amount of predation that’s in the area. And you usually find if you have sometimes a lot of starfish, a lot of crabs of certain sizes, you’ll find less starfish. I mean you’ll find less scallops. 

(1:22) After the entire catch is sorted, we’re bringing it to the lab. We have scallops, we have scallops “clappers,” which are dead scallops that still have the hinge attached, and that’s important for us because we can track mortality. Once the hinge kind of goes away, the shell halves separate. Can’t really tell how recently it’s died. But while that hinge is intact, you can tell it’s basically dead recently. So you kind of get a decent idea of scallop mortality in that area like that.

(1:52) Scallop, scallop clappers, we kind of count fish, we kind of measure usually commercially important ones as well. Then we take scallop meat weights, so we open up the scallop– Terry’s been doing a lot of that too– open up the scallop, we kind of blot the meat weight so it’s like a dry meat weight, and we measure, we weigh the gonad as well, and that kind of tracks the health of the scallop.

(2:21) And then the rest of us are doing lengths of the scallop, and that’s so that we get a length frequency of the scallops that are in the area. Usually we’re looking for about… if you look at the graph it’s like a bell curve, so you kind of get an average, and then you get a few smaller scallops and a few larger scallops. And that’s pretty much it. We’re taking length frequencies and we’re looking at the health of the scallops. 

 

Personal Log

From the time I woke up on Tuesday till about the time I went to bed that night, sea-sickness was getting the best of me.  I listened to the advice of the experienced sailors on board, and kept working through the sickness.  Even though I felt sick most of the day, and I just wanted the day to end at that point.  However, I was rewarded by sticking it out, and not going to my room to lay down, by one of the most incredible sites I’ve ever seen.  From about 4pm til about 8pm, many humpback whales were all around our boat.  We had a little down time waiting to get to the next dredge spot, so I was watching the horizon just trying to get my sea-sickness in check.  As I was sitting by the side of the boat, I saw a whale towards the bow of the ship.  I got out my camera and was in the right place at the right time to get a video of it.   It was one of the most amazing sites I’ve ever seen.

 

Video of a humpback whale diving near R/V Hugh R. Sharp

IMG_0190

Fluke of a humpback whale diving next to R/V Hugh R. Sharp

Did You Know?

The typical bleached white sand dollars that most people are accustomed to seeing as decorations are not the actual look of living sand dollars.  In one of our dredge catches, we collected thousands of sand dollars, and only a couple were bleach white in color.   Sand dollars are part of the echinoderm family.  They move around on the ocean floor, and bury themselves in the sand.  The sand dollars use the hairs (cillia) on their body to catch plankton and move it towards their mouth.  The bleached white sand dollars that most people think of when they think of a sand dollar is just their exoskeleton remains.

IMG_0171

Sand dollars brought up in the dredge

 

Donna Knutson: Last Leg of Leg III Atlantic Sea Scallop Survey 2016, June 24, 2016

NOAA Teacher at Sea Donna Knutson
Aboard the Research Vessel Sharp
June 8 – June 24, 2016

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 24, 2016

Last Leg of Leg III Atlantic Sea Scallop Survey 2016

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:DSCN7770 (2)me best

Latitude:  41 29.84 N

Longitude:  070 38.54 W

Clouds:  partly cloudy

Visibility: 5-6 nautical miles

Wind: 3.58 knots

Wave Height: 6 in.

Water Temperature:  53  F

Air Temperature:  67 F

Sea Level Pressure:  30.0 in of Hg

Water Depth: 26 m

 

It has been an action packed two weeks.  The men and women who dedicate themselves to the scallop survey are extremely hard working scientists.  It is not an easy job.  The sorting of the dredged material is fast and furious, and it needs to be in order to document everything within the catch before the next one comes in.  The baskets are heavy and it takes a strong person to move them around so quickly.

DSCN8159 (2) dredge team

Han, Jill, Mike, Vic, Me and Ango

In small catches every scallop is measured.  In dredges with many baskets of scallops, a percentage is measured.  It is a random sampling system, taking some scallops from each of the baskets to get a general random sample of the whole.  Mike led an efficient team, he told us what to look for and oversaw the measuring.

DSCN7780 (2)mike and nicki

Mike and Nikki

He often set samples aside to show me later, when we were not as busy. A few examples were how to tell the difference between the red and silver hake or the difference between the Icelandic and Atlantic sea scallop.  He showed me how the little longhorn sculpin fish, “buzz bombs” known to fisherman, vibrate when you told it in your hand.

DSCN8008 (2)buzz

Longhorn sculpin

Mike even took the time to dissect some hake and to show me the differences in gonads, what they were feeding on by opening their stomach, and the otolith within the upper skull.  The otolith is a small bone in the inner ear that can be used to identify and age the fish when in a lab looking through a microscope.  Mike answered my many questions and was always eager to teach me more.

Another helpful team member was Vic.  Vic taught me how to run the HabCam.  He has been involved in the HabCam setup since it started being used four years ago.  There is a lot of work to do to set up the multiple monitors and computers with servers to store all the images collected by the HabCam.  Vic overlooks it all from the initial set-up to the take down.  I admire Vic’s work-ethic, he is always going 100% until the job is completed.  Sometimes I just needed to get out of his way, because I knew he was on a mission, and I didn’t want to slow him down.

DSCN8132 (2) monitors

Control center for Habcam and Dredging

When we weren’t dredging, but rather using the HabCam, there was a pilot and copilot watching the monitors.  The HabCam, when towed behind the ship, needs to be approximately 1.7 m off the ocean floor for good resolution of the pictures, and keeping it at that elevation can be a challenge with the sloping bottom or debris.  There is also sand waves to watch out for, which are like sand bars in a river, but not exposed to the surface.

When not driving HabCam there are millions of pictures taken by the HabCam to oversee.  When you view a picture of a scallop you annotate it by using a measuring bar.  Fish, skates and crabs are also annotated, but not measured.  It takes a person a while to adjust to the rolling seas and be able to look at monitors for a long period of time.  It is actually harder than anticipated.

DSCN7768 (2)skate

HabCam Picture of a skate.

Han was making sure the data was collected from the correct sites.  She works for the Population Dynamics branch of NOAA and was often checking the routes for the right dredges or the right time to use the HabCam.  Between the chief scientist Tasha and Han, they made sure the survey covered the entire area of the study as efficiently as possible.

DSCN7839 (2)tash han mike

Tasha, Han and Mike discussing the next move.

Dr. Scott Gallager was with us for the first week and taught me so much about his research which I mentioned in the previous blogs.  Kat was with us initially, but she left after the first week.  She was a bubbly, happy student who volunteered to be on the ship, just to learn more in hopes of joining the crew someday.  Both vacancies were replaced by “Ango” whose real name in Tien Chen, a grad student from Maine who is working on his doctoral thesis, and Jill who works in Age and Growth, part of the Population Biology branch of NOAA.  Both were fun to have around because of their interesting personalities.  They were always smiling and happy, with a quick laugh and easy conversation.

DSCN8131 (2)the three

Jill, Ango and Han after dredging.

The Chief Scientist, Tasha, was extremely helpful to me.  Not only does she need to take care of her crew and manage all the logistics of the trip, plus make the last minute decisions, because of weather or dredges etc, but she made me feel welcome and encouraged me to chat with those she felt would be a good resource for me.  On top of it all, she helped me make sure all my blogs were factual.  She was very professional and dedicated to her work, as expected from a lead scientist leading a scientific survey.

DSCN8146 (2)tash and jim

Evan, Tasha and Jimmy discussing route.

I spent as much time as possible getting to know the rest of the crew as well.  The Master, Captain James Warrington “Jimmy” always welcomed me on the bridge.  I enjoyed sitting up there with him and his mates.  He is quick witted and we passed the time with stories and many laughs.  He tolerated me using his binoculars and searching for whales and dolphins.  There were a few times we saw both.

He showed me how he can be leader, responsible for a ship, which is no small feat, but do so with a great sense of humor, which he credits he inherited from his grandmother.  The other captains, Chris and Evan, were just as friendly.  I am sure all who have been lucky enough to travel with them would agree that the RV Sharp is a good ship to on because of the friendly, helpful crew and staff.

DSCN7785 (2)KG

KG, oceanic specialist, helped with dredges.

Because this was my second experience on a survey, the first was a mammal survey, I have really come to appreciate the science behind the study.  It is called a survey, but in order to do a survey correctly, it takes months of planning and preparation before anyone actually gets on a ship.

There is always the studying of previous surveys to rely on to set the parameters for the new survey.  Looking for what is expected and finding, just that, or surprising results not predicted but no less valued, is all in a scientist’s daily job.  I admire the work of the scientist. It is not an easy one, and maybe that is why it is so much fun.  You never know exactly what will happen, and therein lies the mystery or maybe a discovery to acquire more information.

DSCN8127 (2)big goose

I had to hold the largest goose fish we caught!

It was a challenging two weeks, but a time I’m so glad I had the opportunity to have with the members of Leg III of the 2016 Atlantic Sea Scallop Survey.

Trevor Hance: Life, As You (Already) Know It… June 21, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 21, 2015

Teacher at Sea?

Teacher at Sea?

Science and Technology Log

The rhythm of a ship rocking and rolling through varied wave heights while catching some zzzz’s in a small, curtain-enclosed bunk provides an opportunity to get some really amazing deep sleep.  Last night I had a dream that one of my childhood friends married Dan Marino.  It seemed completely bizarre until I remembered we saw lots of dolphins yesterday.

Dan? Mrs. Marino? Is that you?

Dan? Mrs. Marino? Is that you?

Seas have calmed substantially from the ride we had a couple of days ago, and for the past few days the ride has been so smooth I feel more like a “Teacher at Pond” than “Teacher at Sea.”  Unfortunately, it looks like that awful weather system my friends and family have been dealing back home in Texas is about to make its way to us here off the coast of New England (what many Texans consider “the southern edge of Santa-land”) and there’s even a chance today might be our last full day at sea.

At the helm: Estoy El Jefe!

At the helm: Estoy El Jefe!

Operations

Operationally, we’ve shifted back and forth from dredge to HabCam work and it is a decidedly different experience, and as with everything, there are pros and cons.

HabCam

As mentioned in an earlier blog, the HabCam requires two people to monitor two different stations as pilot and co-pilot, each with several monitors to help keep the system running smoothly and providing updates on things like salinity, depth and water temperature (currently 4.59 degrees Celsius – yikes!!!).

Views of the screens we monitor: from 6 o’clock, moving clockwise:  the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel

Views of the screens we monitor: from 6 o’clock, moving clockwise: the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel

The pilot gets to drive the HabCam with a joystick that pays-out or pulls in the tow-wire, trying to keep the HabCam “flying” about 2 meters off the sea floor.  Changes in topography, currents, and motion of the vessel all contribute to the challenge. The co-pilot primarily monitors and annotates the photographs that are continually taken and fed into one of the computers in our dry-lab.  I’ll share more about annotating in the next blog-post, but essentially, you have to review, categorize and sort photos based on the information each contains.

The winch has its own monitor

The winch has its own monitor

Driving the HabCam gives you a feeling of adventure – I find myself imagining I am driving The Nautilus and Curiosity, but, after about an hour, things get bleary, and it’s time to switch and let one of the other crew members take over.  My rule is to tap-out when I start feeling a little too much like Steve Zissou.

Dredge

Dredge work involves dropping a weighted ring bag that is lined with net-like material to the sea floor and towing it behind the vessel, where it acts as a sieve and filters out the smallest things and catches the larger things, which are sorted, weighed and measured in the wet lab on the back deck.

Close up of the dredge material

Close up of the dredge material; HabCam in the background

Dredge work is a little like the “waves-crashing-across-the-deck” stuff that you see on overly dramatized TV shows like “Deadliest Catch.”  As my students know, I like getting my hands dirty, so I tend to very much enjoy the wind, water and salty experience associated with a dredge.

Yours truly, sporting my homemade jolly roger t-shirt after a successful dredge

Yours truly, after a successful dredge, sporting my homemade Jolly Roger t-shirt

While the dredge is fun, my students and I use motion-triggered wildlife cameras to study the life and systems in the Preserve behind our school, and I fully realize the value those cameras provide — especially in helping us understand when we have too much human traffic in the Preserve. The non-invasive aspects of HabCam work provide a similar window, and a remarkable, reliable data source when you consider that the data pertaining to one particular photograph could potentially be reviewed thousands of times for various purposes.  The sheer quantity of data we collect on a HabCam run is overwhelming in real-time, and there are thousands of photos that need to be annotated (i.e. – reviewed and organized) after each cruise.

More Science

Anyway, enough of the operational stuff we are doing on this trip for now, let’s talk about some science behind this trip… I’m going to present this section as though I’m having a conversation with a student (student’s voice italicized).

Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain't no party like a dead skate party...

Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain’t no party like a dead skate party…

Mr. Hance, can’t we look at pictures instead of having class?  I mean, even your Mom commented on your blog and said this marine science seems a little thick.

We’ll look at pictures in a minute, but before we do, I need you to realize what you already know.

The National Wildlife Federation gives folks a chance to support biodiversity by developing a “Certified Wildlife Habitat” right in their own backyard.  We used NWF’s plan in our class as a guideline as we learned that the mammals, amphibians, reptiles and birds we study in our Preserve need four basic things for survival:  water, food, shelter and space (note:  while not clearly stated in NWF’s guidelines, “air” is built in.)

This same guide is largely true for marine life, and because we are starting small and building the story, we should probably look at some physics and geology to see some of the tools we are working with to draw a parallel.

Ugh, more water and rocks?  I want to see DOLPHINS, Mr. Hance!

Sorry, kid, but we’re doing water and rocks before more dolphins.

Keep in mind the flow of currents around Georges Bank and the important role they play in distributing water and transporting things, big and small.  Remember what happened to Nemo when he was hanging out with Crush? You’ll see why that sort of stuff loosely plays in to today’s lesson.

Let There Be Light! And Heat!

Let There Be Light! And Heat!

As I mentioned in an earlier post, Georges Bank is a shallow shoal, which means the sea floor has a lot more access to sunlight than the deeper areas around it, which is important for two big reasons. First, students will recall that “light travels in a straight line until it strikes an object, at which point it….” (yada, yada, yada).  In this case, the water refracts as it hits the water (“passes through a medium”) and where the water is really shallow, the sunlight can actually reflect off of the sea floor (as was apparent in that NASA photo I posted in my last blog.)

Also important is the role the sun plays as the massive energy driver behind pretty much everything on earth.  So, just like in our edible garden back at school, the sun provides energy (heat and light), which we know are necessary for plant growth.

Okay, so we have energy, Mr. Hance, but what do fish do for homes?

The substrate, or the sediment(s) that make-up the sea floor on Georges Bank consists of material favorable for marine habitat and shelter.  The shallowest areas of Georges Bank are made mostly of sand or shell hash (“bits and pieces”) that can be moved around by currents, often forming sand waves.  Sand waves are sort of the underwater equivalent of what we consider sand dunes on the beach.  In addition to the largely sandy areas, the northern areas of the Bank include lots of gravel left behind as glaciers retreated (i.e. – when Georges Bank was still land.)

Moving currents and the size of the sediment on the sea floor are important factors in scallop population, and they play a particularly significant role relating to larval transportation and settlement.  Revisiting our understanding of Newton’s three laws of motion, you’ll recognize that the finer sediment (i.e. – small and light) are easily moved by currents in areas of high energy (i.e. – frequent or strong currents), while larger sediment like large grains of sand, gravel and boulders get increasingly tough to push around.

Importantly, not all of Georges Bank is a “high energy” area, and the more stable areas provide a better opportunity for both flora and fauna habitat.  In perhaps simpler terms, the harder, more immobile substrates provide solid surfaces as well as “nooks and crannies” for plants to attach and grow, as well as a place for larvae (such as very young scallop) to attach or hide from predators until they are large enough to start swimming, perhaps in search of food or a better habitat.

With something to hold on to, you might even see what scientists call “biogenic” habitat, or places where the plants and animals themselves make up the shelter.

Substrate samples from one of our dredges; sand, rocks/gravel/pebbles,

Substrate samples from one of our dredges; shells, sand, rocks/gravel/pebbles, “bio-trash” and a very young crab

There is one strand of a plant growing off of this rock we pulled up.  Not much, but it's something to hold on to!

There is one strand of a plant growing off of this rock we pulled up. Not much, but it’s something to hold on to!

Hmmmmmmmmmmmmm, rocks and one weed, huh… I wonder what’s happening at the pool…

Whoa, hold on, don’t quit — you’re half way there!

Before you mind drifts off thinking that there are coral reefs or something similar here, it is probably important that I remind you that the sea floor of Georges Bank doesn’t include a whole lot of rapid topography changes – remember, we are towing a very expensive, 3500 lb. steel framed camera at about 6 knots, and it wouldn’t make sense to do that in an area where we might smash it into a bunch of reefs or boulders.  Here, things are pretty flat and relatively smooth, sand waves and the occasional boulder being the exceptions.

Okay, our scallops now have a place to start their life, but, what about breathing and eating, and why do they need “space” to survive?  Isn’t the ocean huge?

As always, remember that we are trying to find a balance, or equilibrium in the system we are studying.

One example of a simple system can be found in the aquaponics systems we built in our classroom last year. Aquaponics is soil-less gardening, where fish live in a tank below a grow bed and the water they “pollute” through natural bodily functions (aka – “poop”) is circulated to the grow bed where the plants get the nutrients they need, filter out the waste and return good, healthy water back to the fish, full of the micronutrients the fish need to survive.  I say our system is simple because we are “simply” trying to balance ammonia, nitrates and phosphates and not the vast number of variables that exist in the oceans that cover most of our Earth’s surface.  Although the ocean is much larger on the spatial scale, the concept isn’t really that much different, the physical properties of matter are what they are, and waste needs to be processed in order for a healthy system to stay balanced.

Our simple classroom system

Our simple classroom system

Another aspect of our aquaponics system that provides a parallel to Georges Bank lies in our “current,” which for us is the pump-driven movement of water from the fish to the plants, and the natural, gravity-driven return of that water to the fish.  While the transportation of nutrients necessary to both parties is directionally the exact opposite of what happens here on Georges Bank (i.e. – the currents push the nutrients up from the depths here), the idea is the same and again, it is moving water that supports life.

But, Mr. Hance, where do those “nutrients” come from in the first place, and what are they feeding?

Remember, systems run in repetitive cycles; ideally, they are completely predictable.  In a very basic sense where plants and animals are concerned, that repetitive cycle is “life to death to life to death, etc…”  This is another one of those “here, look at what you already know” moments.

When marine life dies, that carbon-based organic material sinks towards the bottom of the ocean and continues to break down while being pushed around at depth along the oceans currents. Students will recognize a parallel in “The Audit” Legacy Project from this spring when they think about what is happening in those three compost bins in our edible garden; our turning that compost pile is pretty much what is happening to all of those important nutrients getting rolled around in the moving water out here – microscopic plants and animals are using those as building blocks for their life.

Our new compost system

Our new compost system

Oh wait, so, this is all about the relationship between decomposers, producers and consumers?  But, Mr. Hance, I thought that was just in the garden?

Yes, “nutrient rich” water is the equivalent of “good soil,” but, we have to get it to a depth appropriate for marine life to really start to flourish.  Using your knowledge of the properties of matter, you figured out how and why the currents behave the way they do here.  You now know that when those currents reach Georges Bank, they are pushed to the surface and during the warm summer months, they get trapped in this shallow(ish), warm(ish) sunlit water, providing a wonderful opportunity for the oceans’ primary producers, phytoplankton, to use those nutrients much like we see in our garden.

Ohhhhhhhhhhhh, I think I’m starting to see what you mean. Can you tell me a little more about plankton?

The term plankton encompasses all of the lowest members of the food chain (web), and can be further divided into “phytoplankton” and “zooplankton.”  Yes, “phyto” does indeed resemble “photo,” as in “photosynthesis”, and does indeed relate to microscopic plant-like plankton, like algae.  Zooplankton pertains to microscopic animal-like plankton, and can include copepods and krill.

Plankton are tiny and although they might try to swim against the current, they aren’t really strong enough, so they get carried along, providing valuable nutrients to bigger sea creatures they encounter.  Just like on land, there are good growing seasons and bad growing seasons for these phytoplankton, and on Georges Bank, the better times for growing coincide with the spring-summer currents.

Dude, Mr. Hance, I didn’t know I already knew that…. Mind…. Blown.

Yeah little dude, I saw the whole thing. First, you were like, whoa! And then you were like, WHOA! And then you were like, whoa…  Sorry, I got carried away; another Nemo flashback. While I get back in teacher-mode, why don’t you build the food web. Next stop, knowledge…

You've got some serious thrill issues, dude

You’ve got some serious thrill issues, dude

But, Mr. Hance, you are on a scallop survey.  How do they fit into the food web? You told us that you, crabs and starfish are their primary natural predators, but, what are they eating, and how?

Scallops are animals, complete with muscles (well, one big, strong one), a digestive system, reproductive system, and nervous system.  They don’t really have a brain (like ours), but, they do have light-sensing eyes on their mantle, which is a ring that sits on the outer edge of their organ system housed under their protective shell.  Acting in concert, those eyes help scallops sense nearby danger, including predators like those creepy starfish.

Predators

Predators

Scallops are filter feeders who live off of plankton, and they process lots of water.  With their shells open, water moves over a filtering structure, which you can imagine as a sort of sieve made of mucus that traps food.  Hair-like cilia transport the food to the scallop’s mouth, where it is digested, processed, and the waste excreted.

DSCN0154

The text is small, but, it describes some of the anatomy of the scallop. Click to zoom.

DSCN0158

But, Mr. Hance, do they hunt? How do they find their food?

Remember, scallops, unlike most other bivalves such as oysters, are free-living, mobile animals; in other words, they can swim to dinner if necessary.  Of course, they’d prefer to just be lazy and hang out in lounge chairs while the food is brought to them (kind of like the big-bellied humans in my favorite Disney film, Wall-E), so can you guess what they look for?

Gee, Mr. Hance…. Let me guess, water that moves the food to them?

Yep, see, I told you this was stuff you already knew.

I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.

I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.

While plankton can (and do!) live everywhere in the shallow(ish) ocean, because they are helpless against the force of the current, they get trapped in downwellings, which is a unique “vertical eddy,” caused by competing currents, or “fronts.”  Think of a downwelling as sort of the opposite of a tug-o-war where instead of pulling apart, the two currents run head-on into one another.  Eventually, something’s gotta give, and gravity is there to lend a hand, pushing the water down towards the sea floor and away, where it joins another current and continues on.

Those of you who have fished offshore will recognize these spots as a “slick” on the top of the water, and there is often a lot of sea-foam (“bubbles”) associated with a downwelling because of the accumulation of protein and “trash” that gets stuck on top as the water drops off underneath it.

Those

Those “smooth as glass” spots are where currents are hitting and downwellings are occurring

This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)

This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)

Because plankton aren’t strong enough to swim against the current, they move into these downwellings in great numbers.  You can wind up with an underwater cloud of plankton in those instances, and it doesn’t take long for fish and whales to figure out that nature is setting the table for them.  Like our human friends in Wall-E, scallops pull up a chair, put on their bibs and settle at the base of these competing fronts, salivating like a Pavlovian pup as they wait on their venti-sized planko-latte (okay, I’m exaggerating; scallops live in salt water, so they don’t salivate, but because I’m not there to sing and dance to hold your attention while you read, I have to keep you interested somehow.)

If you become a marine scientist at Woods Hole, you’ll probably spend some time looking for the “magic” 60m isobaths, which is where you see scallop and other things congregate at these convergent fronts.

Before you ask, an isobaths is a depth line.  Depth lines are important when you consider appropriate marine life habitat, just like altitude would be when you ask why there aren’t more trees when you get off the ski lift at the top of the mountain.

Um, Mr. Hance, why didn’t you just tell us this is just like the garden!  I’m immediately bored.  What else ya got?

Well, in the next class, we’ll spend some time talking about (over-)fishing and fisheries management, but for now, how about I introduce you to another one of my new friends and then show you some pictures?

I don’t know, Mr. Hance, all of this talk about water makes me want to go swimming.  I’ll stick around for a few minutes, but this dude better be cool.

Lagniappe: Dr. Burton Shank

Today, I’ll introduce another important member of the science crew aboard the vessel, Dr. Burton Shank.  As I was preparing for the voyage, I received several introductory emails, and I regret that I didn’t respond to the one I received from Burton asking for more information.  He’s a box of knowledge.

That's Burton, on the right, sorting through a dredge with lots and lots of sand dollars.

That’s Burton, on the right, sorting through a dredge with lots and lots of sand dollars.

Burton is a Research Fishery Biologist at National Marine Fisheries Service in Woods Hole working in the populations dynamic group, which involves lots of statistical analysis (aka – Mental Abuse To Humans, or “MATH”).  Burton’s group looks at data to determine how many scallops or lobsters are in the area, and how well they are doing using the data collected through these field surveys.  One of my students last year did a pretty similar study last year, dissecting owl pellets and setting (humane) rat traps to determine how many Great Horned Owls our Preserve could support.  Good stuff.

Burton is an Aggie (Whoop! Gig ‘Em!), having received his undergraduate degree from Texas A&M at Galveston before receiving his master’s in oceanography from the University of Puerto Rico and heading off as a travelling technical specialist on gigs in Florida, Alaska and at the Biosphere in Arizona.  For those unfamiliar, the biosphere was a project intended to help start human colonies on other planets, and after a couple of unsuccessful starts, the research portion was taken over by Columbia University and Burton was hired to do ocean climate manipulations.  Unlike most science experiments where you try to maintain balance, Burton’s job was to design ways that might “wreck” the system to determine potential climate situations that could occur in different environments.

As seems to be the case with several of the folks out here, Burton didn’t really grow up in a coastal, marine environment, and in fact, his childhood years were spent in quite the opposite environment:  Nebraska, where his dad was involved in agricultural research.  He did, however, have a small river and oxbow like near his home and spent some summers in Hawaii.

It was on during a summer visit to Hawaii at about 9 years old that Burton realized that “life in a mask and fins” was the life for him.  On return to Nebraska, home of the (then!) mighty Cornhusker football team, many of his fellow fourth grade students proclaimed that they would be the quarterback at Nebraska when they grew up.  Burton said his teacher seemed to think being the Cornhusker QB was a completely reasonable career path, but audibly scoffed when he was asked what he wanted to be and said he would be a marine biologist when he grew up.  I welcome any of you young Burton’s in my class, anytime – “12th Man” or not!

Photoblog:

RSCN0090

Sheerwater, I loved the reflection on this one

Such a nice day

Such a nice day

You'll never look at them the same, will you?

You’ll never look at them the same, will you?

Cleaning up after a dredge

Cleaning up after a dredge; shot from vestibule where wet-gear is housed.  We spent lots of time changing.

So fun to see lobsters and crabs when

So fun to see lobsters and crabs when “HabCam’ing.” They rear back and raise their claws as if to dare you to get any closer.

Good night!

Good night!

Playlist:  Matisyahu, Seu Jorge, Gotan Project, George Jones

Okay, that’s it, class dismissed.  Get outta here…

Mr. Hance

Trevor Hance: Day 4 Aboard The Beagle, June 14, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 14, 2015

Deck selfie

Yours truly (note:  quite fun to break out the overalls!)

Science and Technology Log

It’s Day 4 aboard the Beagle, and the crew has full confidence in Captain Fitz Roy… Okay, I’m not Charles Darwin, but, I am reading two very inspiring books while on this cruise.  First, as this is my first scientific voyage, I am revisiting Darwin’s trip aboard the Beagle to channel some of the wonder and “magic” of that extended journey.  The other book I’m reading is the sequel to my favorite book, The Evolution of Calpurnia Tate.  If you teach G4-G8, I highly recommend you get to know “Callie Vee.” The book is a wonderful bit of historical fiction that details the life of a young woman/girl in central Texas in 1899 who wrestles with her interest in science and the conventions of “proper” society.

Life Aboard Ship and the Science Behind the Voyage

Thus far aboard the R/V Hugh R. Sharp we have enjoyed favorable seas, good food and very welcoming company.  Shifts for the science-crew last 12 hours and run 12-to-12, and there are about six people assigned to each shift (note:  the captain and ship’s operational crew keep a different schedule.)  I am on the day shift, so I work from noon to midnight — which I imagine would fit quite nicely with the schedule many of my students are currently keeping now that they are on their summer break!  Our mission is primarily to perform a scallop survey, moving from point to point while making observations related to population densities and spatial distribution.  Late in the cruise we will be doing some exploratory work in an effort to better understand the lobster populations in this area of the Atlantic Ocean.  Our work centers on two primary observation methods:  habitat camera (aka – “HabCam”) and dredge.

Scallop shell

An Atlantic Sea Scallop shell. They have different patterns, and are beautiful shells

Atlantic sea scallops are a bivalve, along with clams, mussels, oysters, etc. that can get up to about 200 mm (about 8 inches) across, and most three year olds are in the 80-90 mm range.  Commercially, they are targeted between 4 ½ – 5 years old.  Scallops feed by filter-feeding through their mantle, which is housed inside the beautiful orange and white outer shell.  Scallops move using a form of jet propulsion that makes it look like they are swimming (they “bite” at the water as they propel themselves up from the seafloor, pushing the water out of the openings near the umbo at the back of the scallop shell).  The physics changes as they get bigger, so it gets more difficult to push themselves off of the sea floor, but the little ones can get up to about 10 feet off the bottom of the sea floor.

Natural predators of scallops include various species of starfish, such as Astropecten and Asterias.  These starfish use distinct predatory tools.  The larger starfish, the Asterias, has a hydrologic musculature that allows it to essentially pull apart the shell of the scallop, inject digestive enzymes (aka – “putting its stomach inside the scallop”) and enjoy! The Astropecten is quite different because they completely engulf the scallop and digest it internally.  The two types of starfish target different-aged scallops: Astropecten eat them when they are small enough to be fully engulfed, and Asterias when the scallops are older and the shells are larger and harder, making it too difficult for digestive fluids to assist with the process.  Other predators of the scallop include humans and Cancer crabs.

Starfish Comparison

Astropecten vs Sclerasterias (same family as Asterias, different genus):  the size makes the feeding distinction pretty obvious

 

NOAA has been conducting these surveys for approximately 40 years.  Before the mid-1990s, scallop fishing was largely unregulated, meaning that commercial and private fishers could operate anywhere at any time.  In the 90’s, the government started to use various management tools to support population sustainability through efforts such as limiting the number of people allowed aboard a commercial vessel, limiting the number of days available in a season, changing the ring-size used on the dredges to catch the scallops and closing fishing areas on a rotational basis.  The commercial fisheries have also set aside funds that are used to support research that will help keep the scallop populations healthy.

After the regulations went into place, scientists observed a strong, positive development in size and overall population of scallops.  With strong data that covers a forty year period, policy makers are sufficiently informed to manage scallops on finer and finer spatial scales, including things like small scale, temporary closures and altering the timing for re-opening temporary closures.  (note:  Over the next few blogs, I will show how this science and these relationship relate to our state learning standards, but for now, let’s just set the table.)

Operations

The first day of the cruise was spent steaming out to the first observation point while getting the HabCam system running on all cylinders.  The HabCam (pictured below) is a 3,400 pound, steel-framed “camera cage” that is towed behind the vessel as it moves (we’ve been traveling at about 6 knots) through a determined course in areas that have been observed using the camera for the past four years (note:  dredge surveys in this area have been conducted for the entire 40ish year period).  We moved towards the south for the first two days along the Great South Channel and are now heading east along the southern edge of Georges Bank.

HabCam is towed and controlled from the ship by a winch with fiber-optic wire connected to the dry lab where all pictures are received and can be assessed while in motion

HabCam is towed and controlled from the ship by a winch with fiber-optic wire connected to the dry lab where all pictures are received and can be assessed while in motion

The science crew uses three primary areas aboard the vessel:  the back deck, where all dredge-related operations are conducted; the wet lab, where samples are weighed and measured; and a dry lab, which houses about 25 computers that run various programs relating to everything from weather to analyzing the positioning of the dredge underwater.

A dredge in action.  Fish, scallops, crabs, starfish and "trash" are sorted into baskets and buckets, then taken into the wet lab where they are measured and weighed

A dredge in action. Fish, scallops, crabs, starfish and “trash” are sorted into baskets and buckets, then taken into the wet lab where they are measured and weighed

Dr. Scott Gallager and me taking measurements of scallops we caught on a dredge

Dr. Scott Gallager and me taking measurements of scallops we caught on a dredge

NORAD… I mean, the scientific dry lab

NORAD… I mean, the scientific dry lab

Over the first two days, I (tried to!) learn how to drive the HabCam, keeping it about 2 meters off the bottom of the seafloor.  The seafloor in this area has been a relatively smooth mix of sand and shell hash, but, there are naturally occurring topographical changes that require the HabCam driver to remain constantly vigilant and adjust as appropriate.

Katie, seated next to me, is a PhD candidate at Cornell.  I’ll share her research in a future blog

Katie, seated next to me, is a PhD candidate at Cornell.  I’ll share her research in a future blog

There are two cameras on the HabCam and they are set to take 6 photographs per second (standard sample rate).  The two cameras give a scientist the chance to view images in 3-D.  This point is important when you remember that scallops swim, which means scientists can use the 3-D imagery to tell whether the scallops are in motion or stationary when photographed (as well as how far up in the water column those scallops are swimming).  At 6 shots per second, there can be millions of photos taken over the course of a season (likely 8,000,000 pairs of photos over 4,000 km of track this year!), and NOAA scientists are recruiting YOU, dear Citizen Scientists, to help filter through the photographs through websites like projectfishhunter.org (set to launch this fall) or seafloorexplorer.org, which is a project started by one of the scientists on this mission, who is a researcher and professor at MIT/Woods Hole Oceanographic Institute.

My students will find a parallel between the HabCam and the six game cameras we have set up in our Preserve that take 3 shots in succession when triggered.  We monitor those cameras weekly and depending on traffic and false hits due to wind-noise, we could have as many as 2,000-3,000 photos on a camera in a given week.

Can you loan me five (sand) dollars?

Can you loan me five (sand) dollars?

Belly-side of a yellow-tail flounder

Belly-side of a yellow-tail flounder

Dr. Gallagher using a 3-D handheld camera (wow!) to take pictures of male and female scallop.  The ones with the bright pink are the females and the white and grey are males.

Dr. Gallagher using a 3-D handheld camera (wow!) to take pictures of male and female scallop.  The ones with the bright pink are the females and the white and grey are males.

Big mouth monkfish

Big mouth monkfish

At Mother’s Café in New Orleans, they’d call this the makings of a debris sandwich.

At Mother’s Café in New Orleans, they’d call this the makings of a debris sandwich.

We caught this little seahorse and I know my daughters will have a million questions about it!

We caught this little seahorse and I know my daughters will have a million questions about it!

Fair winds, my friend

Fair winds, my friend

Lagniappe

In Cajun parlance, “lagniappe” means a little something extra.  In my classroom blog I include a “lagniappe” section at the end to help extend lessons, give folks a chance to plug in to what we’re studying from a different perspective, or just include a “little something” that I find interesting.  Because I can’t really do additional research while aboard this vessel due to limited internet availability, I’ve decided that my Lagniappe section will be more like a “People In Your Neighborhood,” which we all remember from watching Sesame Street as kids.

One of the challenges we face as teachers is capacity building, meaning we have to work to inspire and encourage all students to pursue any areas of learning that interest them, paying particular attention to defeating stereotypes regarding barriers to entry in certain industries.  Our cruise has a pretty broad group of people aboard, so I’ll use my blog to introduce you to “the people behind the science” in this section.  The first “person in my neighborhood” you’ll meet is our Chief Scientist, Nicole Charriere.

Nicole’s early interests in marine studies stemmed from her experiences scuba diving and snorkeling while visiting her mother’s family in Belize.  Her love for the ocean did not waiver as she grew, and she received her undergraduate degree in Marine Biology from the University of Rhode Island.  Prior to graduation, she did an internship at URI’s Graduate School of Oceanography and one of her advisors invited her to crew aboard a 29-day scientific mission to the Pacific side of Panama/Costa Rica aboard a Woods Hole Oceanographic Institute research vessel.  During that experience, Nicole realized that sea-life was the life for her because it gave her a chance to be on the front end of data collection and analysis for a broad spectrum of scientific missions, while simultaneously working with a diverse group of people from around the world who were passionate about their work.  She’s been working aboard vessels for several years, with her recent work centering primarily on scallop and shellfish surveys and other research experiences aboard the R/V Hugh R. Sharp, NOAA Ship Henry B. Bigelow, as well as on commercial vessels.  Her career keeps her at sea between 130-140 days per year.

Science Chief, Nicole Charriere

Science Chief, Nicole Charriere

As the Chief Scientist, she is in charge of the flow of scientific operations, meaning she oversees the scientific operations, helping to insure that the equipment needed to conduct the studies is available and in working order (obviously, the salt-water, constant-motion, marine environment requires you to be ready and resourceful!), makes sure that the relationship between the ship’s operational crew fits with that of the science party, and (where I’m concerned) helps to coordinate a fair transition to understanding your role as part of the working team aboard a vessel.  One very interesting point I learned is that there are many opportunities for people interested in research to volunteer to be part of a research team aboard a vessel, and Nicole said she rarely remembers being on a cruise where volunteers weren’t part of the crew.  I highly encourage any students who might read my blog that have an interest in marine science to explore this opportunity while an undergrad to see if sea-life really fits with your-life!

I’ll update about our dredge operations and another member of our science crew in the next blog post.

Current dry lab playlist:  Tom Petty, Bruno Mars, Abba

Carol Glor: Back from the Beyond, July 12, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey (Third Leg)

Geographical area of cruise: Northwest Atlantic Ocean

Date: July 12, 2014

Weather Data from the Bridge: Wind 12 knots, 005*, Seas 1-3 foot swells, Visibility – unlimited!!

Science and Technology Log:

Maritime meets Science

NOAA has a unique relationship with the shipping industry. Ships are traditionally built with specific uses in mind. The R/V Hugh R. Sharp is owned by the University of Delaware and was completed in 2006 as a state-of-the-art research vessel. Marine architects and engineers designed mechanical and electronic  systems to launch scallop dredges, the HabCam, and the CTD (conductivity, temperature, and depth) scanner. The ship can accommodate 9 crew members and 12 science staff members. The University leases the vessel to the NOAA scientific crew for specific missions or surveys. Each year NOAA sets up research surveys to collect data concerning many aspects of the fishing industry along with studies centered around conservation. The sea scallop survey is one such research project which has been a yearly event since 1977. It began as a bottom trawling event taking place for several legs (mission time periods) between May and July.

Sea scallops are a bivalve subgroup of mollusks. They take years to mature to a size that is sought after by fishermen. As with any species, overfishing is a major concern. Ideally, a species’ survival is dependent upon a consistent population. The Northeast Fisheries Association determines the scope and location of “open” fishing areas for all species of fish and shellfish. NOAA is called upon to collect data concerning the abundance or lack of scallops in a traditionally rich fishing locale or in a closed area. During our leg of the survey, we collected data using the HabCam as well as towing a scallop dredge. A map of the fishing locations is analyzed to determine the dredge or HabCam areas that are to be investigated.

Each dredge “catch” contained a variety of marine species with the inclusion or exclusion of scallops. At one event, we hauled in 16 baskets of baby scallops. These were an encouraging sign that the scallop population is prolific. At other times, no scallops were present but there was a bumper crop of sand dollars. This was because the area that they were collected is considered an “open” scallop fishing area. The range in size of the scallops that were brought in varied between 55 and 155 mm?

Fourspot Flounder

Fourspot Flounder

Carol on Sharp

Carol prepares to sort the dredge.

Silver and Red Hake

Silver and Red Hake

wet lab

Data collection inside the wet lab of the Sharp.

 

Personal Log:

Yesterday we completed our dredging events. A glorious sunset was the backdrop for this momentous occasion. Too bad there were no scallops in the dredge. We did, however collect many scallops of different sizes throughout our watch. The fog that was present for most of our dredging days finally burned off to reveal calm seas and a blue sky. The watch team that I was a member of worked like a well-oiled machine. Each member had a specific task to complete to carefully collect scientific data from each dredge event. Science is messy work and handling different species is not for sissies.

shucking scallops

The research team and crew members gather to shuck scallops.

sunset

Another spectacular sunset aboard the RV Sharp.

 

I look forward to returning home to be with my family and friends. The life of a sailor/scientist was an incredible experience and I am excited to share all that I have learned with my students at West Genesee.  Many thanks go out to the Captain and crew of the R/V Sharp and the NOAA science staff for making my journey unforgettable.

Final dredge

The final dredge for the third leg of the scallop survey 2014.

The following quote sums up my experience as part of the Teacher at Sea program.

“Twenty years from now you will be more disappointed by the things that you didn’t do than by the ones you did do. So throw off the bowlines. Sail away from the safe harbor. Catch the trade winds in your sails. Explore. Dream. Discover.”  Mark Twain

Carol Glor: Awe Shucks! The Mission Continues, July 9, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey, Third Leg

Geographical area of cruise: Northwest Atlantic Ocean

Date: July 9, 2014

Weather data from the bridge: Wind 204* 15 knots, Seas 4-6-10-12 ft. mixed directions, Visibility – overcast

Science and Technology Log:

Today we began dredging for scallops. The ship follows a predetermined path and the dredge is lowered to the ocean floor at specific locations along the path. These locations are chosen by the Scallop Assessment Biologist at NOAA because they are an accurate representation of the scallop population in the Northwest Atlantic Ocean. The area that we are focused on is known as Georges Bank. It is a broad, shallow submarine plateau forming the seaward boundary of the Gulf of Maine. The average depth is between 30 and 75 meters deep. It is home to an assortment of marine life including the Atlantic Sea Scallop. Several computers are employed to record all of the data that is pertinent to each dredge event. These include: ocean depth, air temperature, salinity, barometer, air speed, wind direction, fluorometer, and wind direction. The lab is in constant communication with both the bridge and the engineer who operates the winch system. Depending upon the ocean depth at the dredge station location, a specific amount of dredging cable (called line) to which the dredge net is attached, is released in order to create the best angle for the dredging operation.

 

map of Georges Bank

3D map of Georges Bank at the Woods Hole Aquarium.

map

Map of dredge stations.

offloading the dredge

The dredge is offloaded onto the sorting table.

After 15 minutes the dredge is hauled up to the surface and the net is emptied out onto the sorting table. All members of the science team are poised and ready to sort the catch. Each sorter is outfitted with foul weather gear. This consists of rubberized jacket, coveralls and rubber boots. Also required is a life vest, heavy duty gloves, and a hard hat (if the winch is in use). Several baskets and buckets are arranged around the sorting table. One is reserved for scallops, one for assorted fish and skate, one for crabs and whelk, and the last is for items that are not part of the study. This is known as trash.

When everyone has completed their preliminary sorting, it is time to count and sort each species that was collected. Trash is also accounted for. Each basket that is returned to the ocean is counted and data is recorded. The sorting and trash data is entered into the computer system inside the wet lab (also known as the van). At the three stations inside the van, a measuring tray is utilized to quickly measure and record the length of certain fish, scallops and skate. The first large scallop from each dredge event is photographed as a representation of that event. All large scallops are then weighed and shucked and the scallop is sexed (recorded as a male or female). The sex organ is weighed as well as the meat. The shells of the large scallops are cleaned, labeled, and placed into a muslin bag in order to be further analyzed at a NOAA laboratory back on shore. At the conclusion of the dredge event and sorting process, the lab is cleaned and prepped for the next event.

During our first watch, our team completed seven dredge events. Each event can take more than an hour from start to finish. Our catches included a variety of marine species: scallops, sand dollars, ocean pout, windowpane flounder, yellowtail flounder, four spot flounder, and gulfstream flounder, silver and red hake, quahogs, barn-door and winter skate, haddock, sand lance, cancer and hermit crab, sea mouse, sea sponge, fawn cusk eel, wave whelk, and monkfish (goosefish).

Sorting

Sorting the dredge.

skate

Carol measures a skate inside the lab

Baby Scallops

Baby Scallops to be counted, weighed, and measured.

 

Personal Log:

As an inexperienced sailor and scientist, the NOAA staff all worked hard to train me to complete many of the tasks required during our watch. Scientific method and protocol was followed to a “T”. It was an awesome and intense responsibility to fly the HabCam, annotate images recorded by the HabCam, monitor environmental data, set up the dredging event on the computer system, and record the sample data. Throughout the scheduled watch we witnessed whales spouting and breaching, and porpoise antics. During our down time we enjoyed the company of each other as well as the delicious meals prepared by Chef Paul.

Life at sea can be challenging. The weather is checked often in order to adjust the dredging route. High waves can make a dredge event difficult. They can also be a safety issue out on deck. For this reason, each person is required to wear a life vest and boots. Anyone on deck during a dredge drop or haul back is also required to wear a hard hat.

After a long, hard day, sleep is usually the best thing that you can do for yourself. The cabin area is quiet at all times because everyone is on a different shift. I am in a 4-person cabin but my roommates are all on the opposite shift. The rocking of the ship, and background engine noise makes it easy to fall asleep for long periods of time.

Did you know?

Scallops can be male or female. The simplest way to determine the sex is to open the scallop shell and examine the gonad. Female scallops have a pink gonad and males are cream-colored.

male and female scallops

Female scallop is on the left and a male scallop is on the right.

Photo Gallery

sea stars

An assortment of Sea Stars

Fin back whale

Fin Back Whale sighting

dolphins

Dolphins at play

Ocean Pout

Ocean Pout – eats sand dollars

Answer to last poll:

The R/V Hugh R. Sharp has at least 88 computer monitors on board. An equal number are part of the navigational  and monitoring systems as well as the scientific research components.