NOAA Teacher at Sea Dieuwertje “DJ” Kast Aboard NOAA Ship Henry B. Bigelow May 19 – June 3, 2015
Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: June 2, 2015
Chief Engineer Tour of Engine Room!
Selfie with the Chief Engineer! Photo by DJ KastJohn Hohmann, Chief Engineer on NOAA Ship Henry B. Bigelow. Photo by DJ Kast
SCHEMATICS- Drawn by John
The upper level of the engine room. Drawn out by John Hohmann and photographed by DJ KastThe lower level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast
Chief Engineer John Hohmann took me on a tour of the Engine room here on NOAA Ship Henry B. Bigelow. It was fascinating to learn all of the components that make this type of research vessel work. The electrical components, the seawater distillation apparatus, biological sewage treatment, etc. It was an amazing tour. The Bigelow has a diesel-electric drive system using four diesel generators to power to two electric motors. The motors turn one shaft which rotates the propeller. Overall rated horsepower for main propulsion is 3017hp.
The biological system utilizes bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment . The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com
The most fascinating part for me was the Evaporator.
The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com
Distillation is the production of pure water from sea water by evaporation and re-condensing. Distilled water is produced as a result of evaporating sea water either by a boiling or a flash process. This evaporation enables the reduction of the 32 parts per thousand of dissolved solids in sea water down to the one or two present in distilled water. The machine used is called an ‘evaporator’, although the word ‘distiller’ is also used.
Boiling process:
The vacuum in the evaporation machine reduces the pressure to 30 inches of Hg or Mercury to boil water at 180F instead of 212 F
The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.
The sea water from the ship’s services is first circulated through the condenser and then part of the outlet is provided as feed to the evaporation chamber. Hot diesel engine jacket water or steam is passed through the heater nest and, because of the reduced pressure in the chamber, the sea water boils. The steam produced rises and passes through a water separator, or demister, which prevents water droplets passing through. In the condensing section the steam becomes pure water, which is drawn off by a distillate pump. The sea water feed is regulated by a flow controller and about half the feed is evaporated. The remainder constantly overflows a weir and carries away the extra salty water or brine. A combined brine and air ejector draws out the air and brine from the evaporator.
Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast
They need to make their own electricity on board ranging from 110 Volts for phones and computers to 750 Volts for some of the ship propulsion motors. Each of those require various circuit breakers seen below.
480 Volt Circuit Breaker. Photo by DJ Kast600 Volt Circuit Breaker. Photo by DJ KastIts conducting 1000 amps. WOW. Photo by DJ KastAir Compressors. Photo by DJ KastThe air in the compressors is moist and hot so this machine cools it down and removes moisture. Photo by DJ KastAir pressure holding tanks. Photo by DJ KastElectric Motor Drives. Photo by DJ Kast
Engines and generators. Photo by DJ KastEvaporator controls. Photo by DJ KastFreshwater Generator. Photo by DJ KastShip Service Diesel Generator (SSDG)! Photo by DJ KastJacket Water Tanks on the SSDG. This water is used to cool the generators. Photo by DJ KastHydraulic pump that operates the cranes. Photo by DJ Kast.Maintenance Service Board. Photo by DJ Kast.
Motor Controls. Photo by DJ Kast.Power supply 1, 2D. Photo by Dj Kast.Oily water separator reduces the water mixed with oil to 115 ppm for overboard discharge. The oil is retained on board. Photo by DJ KastSmoke Stacks! Photo by DJ Kast.Trawling Winch line. Photo by DJ Kast.Two blue boxes are electric motors connected to the propeller. Photo by DJ Kast.Third Engineer John is all smiles while he works. Photo by DJ Kast
NOAA Teacher at Sea Theresa Paulsen Aboard NOAA Ship Okeanos Explorer March 16 – April 3, 2015
Mission: Caribbean Exploration (Mapping) Geographical Area of Cruise: Puerto Rico Trench Date: March 24, 2015
Weather Data from the Bridge: Scattered Clouds, 27.0˚C, waves 1-2ft, swells 3-4ft, wind 11kts from 100˚
Science and Technology Log
A ship like the Okeanos Explorer demonstrates the connection between science and engineering to the nth degree. Every room that I visit and every person I talk to can illustrate scientific applications.
NOAA Ship Okeanos Explorer. Image courtesy of NOAA Office of Ocean Exploration and Research.
Consider the galley I introduced you to in my second blog post. On a three-week cruise with no access to a grocery store, how are the cooks able to serve fresh fruits and vegetables? I assumed that they would have to serve canned or frozen foods as time went on but that is not the case. The Chief Steward, Dave Fare, tells me that he or a member of his crew, goes through the produce each morning to pick out anything that is past its prime so that the any ethylene emitted by the offending overripe items won’t affect the other fruits or vegetables. So far the food has been fabulous so it must be working!
Check out the salad bar available every day!
Then of course, you have the clean up where dishes are rinsed, washed, rinsed again, and then sanitized in a high temperature dishwasher to kill off any harmful bacteria. Biology in action. They occasionally add beneficial bacteria treatments to the drains to help break down any organic matter that makes its way into the drain pipes. This reduces the unpleasant smell of decaying matter and makes the water cleaner.
Where does that water go? I took a tour to find out.
Ready for an Engineering Tour!My tour guide, First Assistant Engineer, Ricardo Gabona
The water that goes down the drain or gets flushed goes through an onboard wastewater treatment process similar to one used by a city but in miniature form. It is macerated (ground up), filtered, and then treated with just enough chlorine to kill harmful bacteria before leaving the ship. The ship’s First Assistant Engineer, Ricardo Gabona, told me that the effluent (water leaving the ship) looks as clean as the seawater we are sailing on with less than 15 ppm total dissolved solids.
The Ship’s Wastewater Treatment Unit.
How do we survive without additional freshwater for drinking? We don’t have to! We are actually drinking seawater – after it has been distilled. It is a pretty cool process. The water used to cool the engines, absorbs enough heat to raise the temperature to about 180˚F. Using a vacuum, the pressure of the water from the engines is reduced so that it boils at temperatures as low as 150˚F. Next the vapor is condensed. There you have it – distilled water! That is great energy conservation in action! The water then has to be cooled, before heading to the faucets with a heat exchanger. No need for a water heater – the engines do the work! The distilled water is also filtered and run through an ultraviolet light tube twice just to be sure to kill off any remaining microbes. The distillers can make water at a rate of about a gallon per minute. There are two of them on the ship. So can you calculate how long it would take them to make enough water for the maximum 46 people on board, each using 50 or more gallons per day?
Vacuum distiller for the desalination of sea water
In order to draw in relatively clean sea water, the ship must be at least 20 miles from shore, according system’s manufacturer, to avoid contamination from erosion and runoff. For us this means we need to transit north periodically to make water, disrupting our planned mapping route. Water conservation is a priority on this cruise to avoid that as much as possible.
Check out our mapping progress! You see, the vertical paths were taken when we needed more water.
Our mapping path is represented by the red line in this window. The black outline is Puerto Rico.Our path looks much cooler with the bathymetry data added, doesn’t it?
What about fuel?
According to Ricardo, the ship was originally built as a submarine hunter during the cold war. It’s mission was to listen for and locate Russian submarines. It carried a crew of 24 sailors for 6-9 months at a time. NOAA took charge of the ship in 2004 and by 2008 had modified it to become the exploration vessel it is today. Some of the fuel tanks now serve other purposes. Currently the ship can hold 149,000 gallons of diesel fuel! The ship now has 26 crew members, but also now hosts teams of up to 20 scientists, which requires more power and energy. Still the fuel can last more than 2 months. The ship will need to be refueled before heading to the Panama canal en route to the Hawaiian Islands.
Why diesel? It is a very safe fuel for ships, since it won’t ignite at standard temperatures and pressures. But diesel can be dirty and can contain water, both can interfere with engine performance. You don’t want to have engine trouble when you are out at sea. So the fuel is cleaned with a fuel purifier and water separator that use a centrifuge to separate the fuel from the contaminants based on density. The fuel entering the engines goes through this process multiple times to ensure the engines are getting very clean diesel fuel. As a result, you don’t see or smell the exhaust from the combustion.
Of course all of this fuel is heavy, as it is used, the ship would get lighter and lighter making it float higher and higher. This would be a problem for stability. As any object’s center of gravity rises higher, the object becomes less stable and more likely to topple. You do not want your ship to topple! So you need to replace the fuel as you use it with ballast water. The fuel and ballast tanks are located all around the ship. As the fuel tanks are emptied and water tanks are filled, the engineers must consider the balance of the vessel, ensuring the mass is distributed properly for optimum performance and stability in the water.
Personal Log:
I am loving this adventure. I am mesmerized by the massiveness of the ocean. I love looking out at water as far as I can see with only a ship or two in the distance every now and then. I could watch the water for hours on end. You see interesting things when you are really looking, each one giving you cause to wonder. Consider the interesting birds that fly by. What are they? Where do they call home? Why do they like to fly by the ship? Why do flying fish fly? Are they finding insects that I can’t see, or are they evading predators? Where do all the seaweed patches floating on the water come from? What kind of seaweed is it? Is it edible? Do they grow there at the surface, or are they floating debris carried out to sea, or is it a combination of the two?
Let’s start with the birds. Lieutenant Emily Rose, Operations Officer, told me they are brown boobies. Take a look at these photos taken of the bow of the ship.
A Brown BoobyBrown boobies often maintain mating pairs for several seasonsBrown Booby in flight
Did You Know?
According to Wikipedia, brown boobies nest in large colonies in tropical areas like the Caribbean and the Gulf of Mexico. They very good fliers that can plunge for fish at very high speeds, but they are clumsy at take off and landings as we observed on the bow this morning. One of the birds tried to land on the railing and slipped. Junior Officer Bryan Pestone had to help him up and over. He flew away for a short time and then returned. My guess is they use the vantage point of the ship to watch for small fish and to preen themselves.
I’ll let you know what I find out about the seaweed and flying fish in future blogs. ¡Hasta Luego!
NOAA Teacher at Sea Susy Ellison Aboard NOAA Ship Rainier September 9-26, 2013
Mission: Hydrographic Survey Geographic Area: Cold Bay, Alaska Date: September 22, 2013
Weather: current conditions from the bridge GPS Location: 55o 15.190’ N 162o 38.035’ W
Temp: 8.6C
Wind Speed: 10 kts
Barometer: 1008.3mb
Visibility: 10 miles
You can also go to NOAA’s Shiptracker (http://shiptracker.noaa.gov/) to see where we are and what weather conditions we are experiencing.
What would you think if you saw someone bundled in warm clothing, sitting in an office chair on a pier with a pair of binoculars, a watch, and a clipboard? Are they counting waves? Counting birds? Keeping track of the clouds or the wind speed? In my case it was ‘none of the above’; I was watching a measuring stick, taking measurements every 6 minutes over a period of 3 hours. Why would anyone want to sit in a chair on a pier and stare at a stick for 3 hours?
The answer, of course, is science! Now, this wasn’t just any sort of stick. This tide staff was attached to an automatic tide gauge that the crew of the Rainier installed during their last visit to Cold Bay in August. That gauge has been recording tidal data that is used during their hydrographic survey work. But, as with any automatic data-gathering device, it is critical to field check its accuracy, both in measuring and reporting the data. The gauge measures the depth of the water column at 6-minute intervals, using the pressure of the water column as a proxy for that depth (deeper water exerts a greater pressure on the subsurface opening of the gauge—for a more in-depth explanation, you can check out my blog from September 13th). My job was to stare at the staff for a period of 1 minute every 6 minutes, and determine both the highest and lowest height of the water lapping at the markings on the stick.
This might sound easy, but it wasn’t quite so simple. The wind was howling and the waves were bouncing—it took a little practice to make what I hoped was an accurate estimate of both the high mark and the low. After each observation period I recorded these numbers on a spreadsheet and then spent the next few minutes watching the birds that were flying and landing on the water. Then—back to the stick! The tide was dropping with each observation and the winds died down enough to make it a little easier to read the high and low points on each successive 6 minute interval. By the 10th observation I had it figured out!
NOAA Corps ENS Clark demonstrates proper form for tide gauge observation.Picture trying to read this from far away as the water bounces up and down the staff.
The data I collected was matched against data from the tide gauge for that same time period. I was pleased to see that my observations matched those of the gauge. Apparently, both of ‘us’ are good observers of tidal changes. Now I have one more skill to add to my resume!!
This graph compares my observations with that of the tide gauge. What do we observe vs. what does a computer measure?
AAARGH, MATEY—HOW’S YOUR NUMBER SENSE? APPLIED MATH ON THE HIGH SEAS
It would be hard to find an aspect of life aboard the Rainier that doesn’t involve number sense or math. This ship’s daily operations run like clockwork; breakfast from 0700-0800, Safety Meeting and deployment of the launches at 0800, lunch from 1130 to 1230, launches return at 1630, dinner from 1700 to 1800, etc. Pretty simple numbers to deal with, but numbers, nonetheless.
That’s just the start of your applied math tour of the high seas. Maybe you have to figure out how much diesel fuel the ship has onboard. Since the Rainier uses 20,000-40,000 gallons for each leg of its cruise, it would be pretty horrible to run out before you reached port. The ship’s tanks can hold around 100,000 gallons of diesel and are usually filled to within 95% of that. Unlike your car, there’s no fuel gauge on this ship. So how do you figure out how much fuel is in the tank? It’s time for some simple, yet essential math. First, you need to know the volume of the fuel tank. Get out your math books and find that formula. Then, you take what is called a ‘sounding’—you bang on the tank to determine the level of fuel. Not too complicated, but certainly a skill that takes some practice. So, now you know the total volume of the tank as well as the actual height of your fuel; if you figure out the volumes for each and do some subtraction, you can find out what percentage of your total fuel is still in the tank.
We might all be better at determining volume and percent if we had images of a fuel tank on the dashboards of our cars instead of a linear gauge reading ‘E’ to ‘F’! What about drinking water? The Rainier uses a distillation system to create fresh water from seawater. There are tanks down in the engine room where seawater is heated to the boiling point. There’s a little more math and science in this process—the pressure in the distillation tank is lowered, to lower the boiling point (if you’ve ever camped at a high elevation you might notice that water boils at a lower temperature—your tea might not be quite as hot when it’s boiling) so the water doesn’t have to be heated quite so much to get it to boil. This steam is captured in the upper portion of the distiller and cooled using cold seawater that flows through pipes. The condensation from cooling is captured, filtered to remove any impurities, and distributed as fresh water to all onboard. The ship uses around 2500 gallons of water each day.
Here’s where all our fresh water is produced. This distiller takes in seawater and, through boiling and condensation, produces fresh water.
If you’re running the galley it’s essential to calculate how much food you’ll need for each leg of the trip. No one wants to do without their morning eggs if your multiplication is off and you ‘forget’ to buy a few dozen. Taking a recipe that is designed to feed 8 people and ‘upsizing’ it for 48 people takes a bit of mathematical manipulation. Just planning a menu for a three-week journey takes some mathematical thinking as you visualize the weeks, days, meals, and individual ingredients needed for those meals. You have to factor in a few variables; which foods have the longest shelf life, when do you have to switch from fresh to frozen or to canned foods, how much food does the ‘average’ person eat, and what about all those people with food allergies or preferences? While this might not sound quite as earth-shattering as using a detailed computer program to concatenate multiple data files, this is math that counts—especially when you’re feeding a boatload of hungry crew.
This is a glimpse of some of the supplies stored on the ship.Don’t forget to buy enough fruit and vegies!Hmmm, what’s in the freezer?
So now it’s time to consider the math used to pilot the ship. Think about degrees in a compass bearing and the need to do some rapid mental math as you’re steering a 231-foot ship through some very tight spaces. Quick—take a course of 340o, now look ahead and get ready to change your bearing to 28o. Rainier’s draft (how deep it sits in the water) is around 16’. Will the channel be deep enough? What if you’re traveling in a supertanker, one that might be over 400’ in diameter and have a draft up to 80’ deep? If your ship is that big, you need to scale up on your mental math calculations as you’re searching out appropriate harbors and routes! What about tying up the ship when we’re in harbor? Did you remember to learn something about vectors before you stopped taking math classes?
When we were at port in Cold Bay, the winds were expected to increase in strength and to shift so that they would be coming out of the west. Since the pier was oriented perpendicular to the predicted wind direction, our Chief Bo’ sun, Jim Kruger had to do some mental calculations of the angles needed to secure the ship to the pier and keep it from bouncing too much. He doubled and even tripled some of the lines, taking into account how the winds might move the ship as well as the strength of each line. It takes some stout lines to hold this ship; each 300 ft. line is 1” in diameter and has a tensile (breaking) strength of 164,000 lbs. Vector angles were equally important as we pulled away from the pier in a 50-knot wind. Just pulling up our gangway with a crane required some careful mental calculations of where to place lines to steady it as it rose through the air and was lifted onboard. If your mental math and visualization skills were wrong, you might be rewarded with a wildly swinging piece of metal.
Double (and triple) up the lines holding the ship to the pier. Make sure the angles are right.Hang tight to the gangway as it swings onboard. Make sure you’re holding it at the correct angle to compensate for the wind.Strong winds–this digital anemometer records current wind speed in knots as well as the highest gust.
How about all that hydrographic data collection; there’s plenty of opportunity there for some pretty extreme mathematical calculations. You might even wish you had taken a class in calculus—or a few classes! But there are also plenty of times that some basic number sense and arithmetic come in mighty handy. As I sat on the pier watching the tide gauge, one of the tasks I had to do was to calculate the average between high and low water marks on the tide staff. Not such hard math, but it’s a good skill to be able to do averages in your head while your hands are getting cold and the wind is howling. The tide gauge calculations were referenced to Coordinated Universal Time (UTC). This has been our world standard since 1972, and is referenced to the 0o meridian at Greenwich, England. It is precisely measured using an atomic clock. You might also hear it referred to as Zulu Time. Even airplanes use this time designation. This way, there is no ambiguity about whether you are in daylight savings or standard time, or your time zone. When measuring tides or collecting information about water chemistry using the CTD, or calculating the launch’s daily gyrations, it is important to reference everything to the same time standard. Since the Rainier is on RST (Rainier Standard Time), the calculation gets even more important because we are in the Alaska time zone, but have set our clocks back one more hour to give us more daylight working hours).
What’s your time zone? GMT stands for Greenwich Mean Time. It is also the UTC time standard we use.
Just in case your brain hasn’t been addled by all this talk of mathematics, there’s one more concept that might come in handy here on the high seas—a sine wave. Huh? Sine waves are a mathematical curve describing smooth repetitive oscillations. Like…tides, sonar pulses, sunrise/sunset observations, or the music booming out of your iPod.
Tide charts show a predictable, repeatable sine wave pattern.
I even use math to calculate how long I should run on the elliptical trainer down in the ship’s exercise space. If I set the resistance to 8, and use a cross training setting, it takes around 35 minutes to ‘run’ the equivalent of one slice of cake!
Here’s some of the exercise equipment on the ship.35 minutes or one slice of pie–whichever comes first!
Just in case you haven’t gotten the message—math is good. Number sense is critical—even if you want to run off to sea!
Personal Log
IT’S A FIELD TRIP!!
The entire Cold Bay School fits into this truck!
I love a field trip. There’s nothing like loading up in the bus and taking off in search of the great unknown. While we were parked at the Cold Bay pier, we had a visit from the Cold Bay School. The 8 students, plus their teacher and a classroom aide, came to check out the Rainier. CO Rick Brennan gave them a tour, starting at the bridge, and ending with lunch in the wardroom. Along the way, they learned about ships and ship life, NOAA, and the science of hydrography. Lunch was a real hit, since the kids all bring their own lunches to school. Who wouldn’t like halibut tacos with all the fixings from the galley, or a peanut butter and jelly sandwich handmade by Commander Rick Brennan with a fresh cookie for dessert?
Cold Bay students check out some of the ship’s BIG tools.
I tagged along on the tour to talk with some of the kids and their teacher and to compare notes about schools. While I always think of my school as small, with only 150 students, the school in Cold Bay is really small. There are 8 students and they represent grades 1 through 7. While the school is small, each student uses an iPad to access a wide variety of educational resources. It’s even better when that technology-based learning is supplemented by some hands-on field trip-based learning. This was their second field trip of the week; they had spent a day with a wildlife biologist helping install a motion-sensitive camera in the Izembek Wildlife Refuge (http://www.fws.gov/alaska/nwr/izembek/index.htm).
Future hydrographers head back to school.
SAFETY FIRST
Where I live, in Colorado, we occasionally get snow days, when the roads are too dangerous to transport children to school. Here at sea, we don’t worry too much about snow, but wind can create hazardous working conditions. Yesterday we had what I would call a ‘Wind Day’; none of the survey launches went out. The winds were gusting up to 50 knots, and were fairly steady at 30 knots. That’s windy. The surface of the bay was a froth of water, waves, and whitecaps. Even the Black-legged Kittiwakes were having trouble flying!
Whitecaps all across the bay. Definitely NOT a day to survey the sea floor.
Certainly not the sort of day where you want to send out teams of hydrographers in 28 foot long launches. While safety is paramount, data quality also suffers in such ‘bouncy’ seas. As the launch bounces from side to side or from front to back, the sonar sends its pings far afield. It becomes difficult or impossible to drive straight, overlapping lines as you ‘mow the lawn’ through your polygon (Wait, there’s another math term!) , and turning the craft requires timing and skill as you move through the rolling seas. As the Rainier nears the end of its time at sea and in Cold Bay, each day becomes critical to achieve its charting goals—but there’s plenty of work to do on board on a day like this.