Nicolle von der Heyde, June 21, 2010

NOAA Teacher at Sea
Nicolle Vonderheyde
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Nicolle von der Heyde
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Dates: Monday, June 21

Weather Data from the Bridge

Time: 0800 hours (8 am)
Position: Latitude: 28º 09.6 minutes N
Longitude: 094º 18.2 min. W
Visibility: 10 nautical miles
Wind Direction: variable
Water Temperature: 30.6 degrees Celsius
Air Temperature: 27.5 degrees Celsius
Ship’s Speed: 5 knots

Science Technology Log

Atlantic Spotted dolphins are the graceful ballerinas of the sea. They are just incredible! The Gulf of Mexico is one of the habitats of the dolphin because they live in warm tropical waters. The body of a spotted dolphin is covered with spots and as they get older their spots become greater in number.

Atlantic Spotted Dolphins

Atlantic Spotted Dolphins

Atlantic Spotted Dolphins

Atlantic Spotted Dolphins

Atlantic Spotted Dolphin

Atlantic Spotted Dolphin

Here you can see the spots on an older Atlantic Spotted Dolphin. To read more about dolphins go to http://www.dolphindreamteam.com/dolphins/dolphins.html

Because Dolphins are mammals they breathe air through a single blowhole much like whales. Dolphins live together in pods and can grow to be 8 feet long and weigh 200-255 pounds. Like whales, dolphins swim by moving their tails (flukes) up and down. The dolphin’s beak is long and slim and its lips and the tip of its beak are white. They eat a variety of fish and squid found at the surface of the water. Since dolphins like to swim with yellow fin tuna, some dolphins die by getting tangled in the nets of tuna fishermen.

Newborn calves are grey with white bellies. They do not have spots. Calves mature around the age of 6-8 years or when the dolphin reaches a length of 6.5 feet. Calving takes place every two years. Gestation (or pregnancy) lasts for 11 1/2 months and babies are nursed for 11 months.

While watching the dolphins ride the bow wave, Nicolle and I wondered, “How do dolphins sleep and not drown?” Actually, we found that there are two basic methods of sleeping: they float and rest vertically or horizontally at the surface of the water. The other method is sleeping while swimming slowly next to another dolphin. Dolphins shut down half of their brains and close the opposite eye. That lets the other half of the brain stay “awake.” This way they can rest and also watch for predators. After two hours they reverse this process. This pattern of sleep is called “cat-napping.”

Dolphins maintain a deeper sleep at night and usually only sleep for two hours at a time. This method is called “logging” because in this state dolphins look like a log floating in the ocean.

The 1972 Marine Mammal Protection Act (MMPA) prohibits the hunting, capturing, killing or collecting of marine mammals without a proper permit. Permits are granted for the Spotted Dolphins to be taken if it is for scientific research, public display, conservation, or in the case of a dolphin stranding. The maximum ffor violating the MMPA is $20,000 and one year in jail.

Atlantic Spotted Dolphin

Atlantic Spotted Dolphin

Personal Log

The best part of this trip is all the marine life I see in the Gulf. In the past few days, dolphins have been swimming up to the boat and riding the bow wave of the ship. They are so graceful and playful in the water. In addition to the Tiger Shark seen feasting on the dead Sperm Whale, I have seen quite a few sharks swimming in the water near our ship. One, called a Silky Shark, took the bait as some of the crew was fishing from the stern of the boat (shown to the left). It was hauled up so the hook could be taken out and released back into the water. The second was a baby shark swimming near the bow of the ship as I watched the dolphins in the distance. I also saw a shark swimming near the starboard side of our ship while the deckhands were hauling up one of the camera arrays.

The fourth shark was the most exciting. As the crew was working at the stern of the ship to release a line that was caught in the rudder, I looked over the stern to see a large shark very near the surface swimming toward the starboard (right) side of the ship. I hurried to look and to my surprise it was a giant Hammerhead! I never expected to see one of these in its natural habitat. Unfortunately, by the time I got my camera out, the Hammerhead was too far away and too deep to get a clear shot, but what a sight to see!

Hammerhead shark

Hammerhead shark

The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

I often mistake the fish shown on the left for sharks. Actually they are Cobia, also known as Lemonfish. Once in a while thefish approach the boat as we are hauling fishup on the bandit reel. I have also seen bojellyfish in the water as we are working on the starboard side of the ship and I spotted a brief glimpse of an Ocean Sunfish (Mola mola) from the bridge of the ship as I was talking to our Commanding Officer (CO). I wish I could have seen this fish up close. They are the largest bony fish in the oceans and as someone on the ship described, they resemble a giant Chiclet swimming in the water.

The smallest living things I have seen while at sea are the tiny creatures that live in the Sargassum, a type of seaweed that floats freely within and on the surface of the Gulf waters. The Sargassum provides a habitat for tiny creatures that are the foundation of the food web, even providing food for some of the largest animals in the sea like whales. The picture below on the left shows a giant patch of Sargassum, while the picture on the right shows some of the creatures that live within it including tiny shrimp, krill, and very small crabs.

Sargassum

Sargassum

Creatures that live within the sargassum including tiny shrimp, krill, and very small crabs

Creatures that live within the sargassum including tiny shrimp, krill, and very small crabs

Seeing all this life has been reassuring as the oil continues to gush into Gulf waters off the coast of Louisiana, however I can’t help but think what the overall impact of this spill will be for the future of the Gulf. Will we see the negative environmental impact spread to the Eastern Gulf? Are microscopic droplets of oil and chemical dispersants infecting the food chain beyond the area that we visibly see being impacted? These questions will be answered as NOAA scientists continue to collect and analyze the type of data that I am helping gather on this SEAMAP Reef Fish Survey. I feel so fortunate to be a part of this scientific endeavor.

Animals Seen

Silky Shark (Carcharhinus falciformis)

Hammerhead (Sphyrna mokarran)

Cobia (Rachycentron canadum)

Ocean Sunfish (Mola mola)

Krill, Shrimp, Crab (species unidentified)

Valerie Bogan: Introduction, May 20, 2012

NOAA Teacher at Sea
Valerie Bogan
Aboard NOAA ship Oregon II
June 7- 20, 2012

Mission: Southeast Fisheries Science Center Summer Groundfish (SEAMAP) Survey
Geographical area of cruise: Gulf of Mexico
Date: Sunday May 20, 2012

My name is Valerie Bogan and I am humbled that I have been chosen to be part of the National Oceanic and Atmospheric Administration (NOAA) Teacher At Sea program (TAS).  I learned about this program during a field trip when I was a college student at the University of South Carolina (USC) studying marine science. We had the honor of taking a tour of a NOAA vessel and the captain spoke of the programs offered by NOAA including TAS. At the time I did not intend to become a teacher but life sometimes takes unexpected turns, and here I am twelve years later a teacher in the Teacher at Sea program.

I teach 6th and 7th grade science to students at Maple Crest Middle School in Kokomo, Indiana. As you can see from the map, Kokomo is located nowhere near an ocean, but no matter where you live your actions affect the oceans. For example if one of my students releases a balloon, perhaps as a celebration of the end of the school year, that balloon does not magically disintegrate as it floats from view but is instead carried hundreds of miles by the wind. When the wind finally drops the balloon it is just a wad of latex, the air inside is gone, which often falls into a river, which transports the remains of the balloon to the ocean. Once in the ocean, discarded balloons are often eaten by sea turtles because they think it is a jellyfish. Unfortunately, sea turtles can’t digest latex and the mass becomes stuck in their digestive tract causing the animal to slowly starve to death. So you see the simple act of releasing a balloon in Kokomo Indiana, far from the ocean, can cause the death of a majestic animal. During the course of my trip I hope to gain knowledge of other ways Hoosiers are negatively impacting the ocean. Then next fall my students and I will sit down and try to find ways to improve our impact on the environment.

Kokomo Indiana

The location of Kokomo within the state of Indiana (photo courtesy of wikipedia)

I will be participating in the first leg of the SEAMAP summer groundfish survey aboard the NOAA ship Oregon II. I’m going to wait until future posts to get into the details of the research, but as I understand it, we will be collecting bottom dwelling creatures, such as shrimp, and studying them to determine the health of the population. This is important research because just two years ago the Gulf of Mexico experienced a devastating oil spill when the offshore oil rig, Deepwater Horizon, caught fire and starting leaking oil. This research will allow scientists to determine if there are any long lasting impacts of this oil spill.

Deepwater Horizon Oil Well

The Deepwater Horizon oil rig catching on fire led to a huge oil spill in the Gulf of Mexico (photo courtesy of The Guardian)

I am very excited about this trip and I look forward to sharing what I am learning with all of you. As you can see from the pictures below I’m not afraid of seeking out adventure and I have high hopes that this trip will be the best adventure so far.  

Rock climbing

Rock climbing, one of the things I do in my free time.

Sky diving

Here I am skydiving.

Stephen Bunker: Introduction, 11 October 2011

Photo of Stephen Bunker

NOAA Teacher at Sea Stephen Bunker

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

The time is quickly approaching for me to start on my NOAA Teacher at Sea voyage. Before I head off I should tell a little about myself. I’m a 3rd grade teacher at Northridge Elementary in Orem, Utah. In my previous 18 years of teaching, I’ve taught students ranging from kindergarten through 6th grade. Of all the subjects I teach, I think science is the most fun.

I’ve participated in many professional development opportunities, but I think this will be the most unique. Living at sea on a NOAA ship doing research with scientists and then sharing what I experience and learn with others will be  loads of fun.

In addition, I’ll be at sea when my students are in school. So, “Hello class!” I’m hoping they follow this blog. If you have a question for me, please post a comment below. I’ll make sure to respond either from ship or when I return.

RV Walton Smith

This will be my home for 5 days.

I’ll be aboard the R/V Walton Smith for a week. The RV Walton Smith is based in Miami, Florida and we will be doing a Hydrographic Survey. That’s science speak for measuring and collecting data about ocean features such as temperature, water clarity, microscopic plant and animal life and currents and tides. The scientists are interested in learning how the Deepwater Horizon oil platform accident is affecting the plant and animal life in the Florida Keys.

It takes a lot of planning to get ready for this type of voyage. Our lead scientist has made a map of the area where we will be.

A map showing where we will do our research.

Check back, because the next time you’ll hear from me will be from the Florida Keys.

Annmarie Babicki, August 13, 2010

NOAA Teacher at Sea: Annmarie Babicki
NOAA Ship Name: Oregon II
Mission: Sharks and Red Snapper Bottom Longlining Survey
Geographical area of cruise: Gulf of Mexico
Date: August 13, 2010

Calm seas in the Gulf off the coast of Florida

Weather Data from the Bridge                                

Latitude: 26.18 degrees North
Longitude: -84.07 degrees West
Winds: 5.25 knts.
Air Temperature: 30.5 C or 87 F
Barometric Pressure: 1013.84

Science and Technology:

Today we entered a fishing area that had once been closed to fishing due to the oil spill.  Since the spill, NOAA scientists have the added responsibility of collecting data on the fish they catch and preparing them for return to a lab. Scientists will to keep up to ten fish of each species for each station they fish.  There is a protocol that is followed in the handling of these fish. Basically, they are wrapped in a industrial strength aluminum foil, labeled, bagged, and placed in a freezer.  Upon returning to port, the Chief Scientist with sign over each individual fish to the National Seafood Inspection Laboratory (NSIL) at Pascagoula.  Toxicology testing will be performed on each fish to determine if chemicals from the oil have entered their body. The data will be analyzed and determinations will be made.  Many marine biologists have been out to sea for long periods of time since the spill.  They have been away from their family and friends, but feel that what they are doing is very important for marine life and the people along the Gulf.  Their passion and dedication is much like the passion and dedication I see in teachers.

Ready for Testing

On a lighter note, yesterday I was able to tag my first shark.  The sandbar shark was large enough to be  brought up in the cradle.  The Chief Scientist made the slit just below the dorsal fin, while two other assistants held the shark in place.  I did not get the tag in on the first try, but finally did get it into position.  The shark’s skin was so tough and full of razor-like scales.  If a shark’s tail slaps and hits you, it can leave a burn-like mark that is very painful.  Hopefully I will not have that experience while I’m here. Tagging the shark was amazing and frightening all at the same time.  I was very aware that I needed to get it done quickly before the shark became restless.  A shark’s movements are swift and powerful and you don’t want to be in their way.  Everyone out here has a great respect for these animals and appreciates the beautiful creatures that they are.  I, too, am learning what they already know.

Sandbar Shark in Cradle

Tagging the Sandbar Shark

Personal Log

I almost never know where to begin as I write a blog.  There is always so much going on, so much to see, learn, and write about,  it is sometimes overwhelming.  I always have questions for everyone here and they are willing to take the time to answer them with great detail.  Today the Chief Scientist was explaining to me about the swim bladder on a particular fish that we pulled out at one of the stations.  One of the lessons in the ocean unit is about swim bladders, so I was very curious to hear more about them.  After listening to him, I came away with a better understanding, which I will be able to share with my students.
Well, we all like to eat and if you like really good food and lots of variety, the Oregon II is the place to be.  Our chef served in the Navy as a Culinary Specialist and upon retiring joined NOAA.   You can tell he loves his job and that he’s not just cooking.  He creates meals that tickle all of your taste buds and some you never knew you had.  No one misses mealtime around here.  And if you think you may, he will put a plate aside for you so that you don’t miss his luscious meal. If you’re sitting in the mess hall you hear lots of “thank you’s” and if you look at the chef, you will see a wide, proud smile on his face.
When I can, I try to head up to the bridge to learn about all the complicated and sophisticated electronics that this ship is furnished with.  The equipment provides a staggering amount of information that the officers must analyze prior to making decisions about how to manuever their way from station to station.  I was told that it is very unlikely a NOAA ship can get lost at sea.  There are multiple systems in place, so that if one fails, there is at least one other to take its place.  Even though the ship has navigational and radar systems, the officers continue to use paper nautical charts as a backup.  The Captain and all of the officers who sail this ship love what they do and put safety for everyone above all else.

The Bridge on the Oregon II

“Answer to the Question of the Day”
The wet lab of the ship is where the scientists process marine life and store supplies they will need to work with while they are out to sea.  In the dry lab you will find computers that are used entering data and for general communications.
“Question of the Day”  Is there a fish that really flies?

Bruce Taterka, July 13, 2010

NOAA Teacher at Sea: Bruce Taterka
NOAA Ship: Oregon II 

Mission: SEAMAP Summer Groundfish Survey 
Geographical Area of Cruise: Gulf of Mexico 
Date: Tuesday, July 13, 2010 

It’s All Connected

Weather Data from the Bridge 
Time: 0015 (12:15 am)
Position: Latitude = 28.13.24 N; Longitude = 094.15.51 W
Present Weather: Cloud cover 20%
Visibility: 6-8 nautical miles
Wind Speed: 20 knots
Wave Height: 2-4 feet
Sea Water Temp: 29.4 C
Air Temperature: Dry bulb = 29.6 C; Wet bulb = 25.7 C
Barometric Pressure: 1011.96 mb

Science and Technology Log“IT’S ALL CONNECTED.” If you took my Environmental Science class I hope you know what I’m talking about. Everything in an ecosystem is connected to everything else. This is a guiding principle of studying and managing ecosystems. I saw this last summer when I helped investigate the relationship between plants, caterpillars, parasitic wasps and climate change in the cloud forest of Ecuador. I see it in the relationship between human development, deer, invasive plants and native plants at the Schiff Nature Preserve in New Jersey.

I’m seeing it now in the Gulf of Mexico. Obviously, the ocean environment is connected to human activities – the BP-Deepwater Horizon oil spill makes that abundantly clear. But there are also countless natural connections, and much less obvious human impacts, that must be understood and assessed if the Gulf ecosystem is to be protected. Commercial fish and shrimp stocks can only be sustained through a careful understanding of the human impact and natural connections in the Gulf.

Drilling platform off the coast of Texas.

That’s why we identify and count every organism we bring up in a trawl. Sometimes we get 50 or more different species in one catch, and we don’t just count the commercially important ones like red snapper and shrimp. We count the catfish, eel, starfish, sea squirts, hermit crabs and even jellyfish we haul in. Why? Because even though these organisms might seem “unimportant” to us, they might be important to the red snapper and shrimp. They also might be important to the organisms the red snapper and shrimp depend on. And even if they’re not directly important, studying them might tell us important things about the health of the Gulf.

Brittany Paul, Fisheries Biologist

Brittany Palm, Fisheries Biologist

I’m learning a lot about this from the incredibly knowledgeable marine biologists in the science party. Brittany Palm is a Research Fishery Biologist from NOAA’s Southeast Fishery Science Center (SEFSC) in Pascagoula, MS, and leader of the day watch on this leg of the Oregon II’s Summer Groundfish Survey. Brittany is working on her M.S. on a fish called croaker, Micropogonias undulatus, studying its stomach contents to better understand its position in the food web. Croaker is not an economically important species, but it lives in the same shallow sea floor habitat as shrimp so shrimpers end up hauling in a huge amount of croaker as bycatch. So, when the shrimping industry declined in 2003-2004, the croaker population exploded. Since croaker are closely associated with shrimp habitat and the shrimp fishery, we might gain important insights by studying croaker population and understanding what they eat, and what eats them.

Alonzo Hamilton, Fisheries Biologist

Alonzo Hamilton, Fisheries Biologist

Alonzo Hamilton is another NOAA Fishery Biologist from the SEFSC. Alonzo explained to me that there’s a lot to be learned by looking at the whole ecosystem, not just the 23 commercial species that are managed in the Gulf. For example, many of the crabs we commonly catch in our trawls are in the genus Portunas, known as “swimming crabs.” Portunas species normally live on the sea floor, but when severe hypoxia sets in, Portunas crabs can be found at the surface, trying to escape the sever oxygen depletion that typically takes place at the bottom of the water column.

Portunas spinicarpus

Sean Lucey is a Research Fishery

Biologist from NOAA’s Northeast Fishery Science Center in Woods Hole, Massachusetts. He’s working on the Oregon IIright now to support the SEFSC because of huge manpower effort demanded by the oil spill. Sean explained that the NEFSC has been conducting its groundfish survey annually since 1963, making it the longest-running study of its kind. Originally the survey only looked at groundfish population, but as our understanding of ecosystem dynamics increased over time, more and more factors were analyzed. Now NEFSC looks at sex, age, stomach contents and many other species besides groundfish to obtain a more complete picture of the food web and the abiotic factors that affect groundfish. NEFSC even measures primary production in the marine ecosystem as one tool to estimate the potential biomass of groundfish and other species at higher trophic levels.

Andre DeBose, Fisheries Biologist

Andre DeBose, Fisheries Biologist

Andre DeBose is a NOAA Fishery Biologist from the SEFSC and the Field Party Chief for the Summer Groundfish Survey. In addition to leading the science team on the Oregon II, Andre is conducting research on Rough Scad, Trachurus lathami, an important food species for red snapper and important bait fish for red snapper fisherman. By gaining a better understanding of the relationship between Red Snapper and its prey we can better understand, and better manage, the ecosystem as a whole.

There’s a lot of information to be learned beyond just counting fish. By taking a wide look at the marine environment we can better understand how the whole ecosystem functions. This enables us not only to be more informed in setting sustainable catch levels, but also enables us to identify and respond to things that contribute to hypoxia and other problems that degrade habitat and reduce populations. It’s all connected.

Sunset

Sunset

Kimberly Lewis, July 12, 2010

NOAA Teacher at Sea Kimberly Lewis
NOAA Ship: Oregon II
July 1 -July  16 2010

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, July 19, 2010

National Seafood Inspection Lab

doors up

doors up

Weather Data from the Bridge
Time: 0730 (7:30 am)
Position: Latitude 28.18.6 N; Longitude 95.19.4 W
Present Weather: party cloudy
Visibility: 10 nautical miles
Wind Speed: 12.35 knots
Wave Height: 2 feet
Sea Water Temp: 28.9 C
Air Temperature: Dry bulb = 29.1 degrees Celsius; Wet bulb = 25.4 C
Barometric Pressure: 1014.30 mb

Science and Technology Log

What is science technology? One simple definition can be ‘tools to help humans do science’. We have talked about some of the tools used aboard the Oregon II, like FSCS and CTD, but what are some other tools used that are not high tech?
Believe it or not, a shovel is an important tool on the ground fish survey. When a catch comes in, the net hovers over empty baskets and the catch is slowly released to fill the baskets. Once all of the catch has been emptied from the net, shovels are used to pick up the rest of the catch from the deck that fell out during emptying. In the wet lab we use scrappers to move the catch along the tray where we sort the organisms. When it comes to identification paperback field guides and laminated posters can help with ID.

So what do we do with the organisms we collect data on and identify?
It was mentioned that the SEAMAP survey collects data for many different agencies, but during the data collection we also save specimens for scientist from universities and other research groups. If a scientist is doing research on a particular species of batfish for example, once we collect data on the batfish we print a label for that scientist, bag the fish in zip loc baggies, and then put the specimens in the freezer below deck.

Station Board

Station Board

Station board – stations with a star beside them are NSIL stations. Stations with a “B” are stations where we drop the bongo nets (mentioned in an earlier log).

For commercial seafood we bag specimens to go to NSIL (National Seafood Inspection Lab). Not every station we drop the nets for is a NSIL station, but when we do have a NSIL station we follow a similar sample saving protocol to the one used for research scientists. These samples get labeled, placed in zip-loc baggies, and then they’re sent on to the freezer. However, because of the Deep Water Horizon oil spill in the gulf, the way we saved some of the samples for NSIL was different, because these samples are going to be sensory tested. In other words ‘sniff’ tested. For this test, the specimens had to be wrapped in foil to help contain any scents so that the ‘sniff testers’ (people trained to pick up petroleum scent at an amazing 100 ppm) can identify if petroleum products are present. For leg II the focus is on chemical sampling for petroleum. However, protocols can change daily when you are sampling during a disaster.

Foiling

Wrapping brown ship in foil to go to NSIL

Packed for NSIL

Packed for NSIL

Wrapped in foil, tagged, and ready for the freezer.

A few days ago our new protocol called for storing NSIL samples first to ensure we have enough freezer space, then other requesters samples may be saved if time permits.

Here is a CNN video clip about seafood safety.

We have a long list of the scientific names of seafood that need to be collected for NSIL but here is a list of more popular common names of seafood that you may recognize.

Some Common Commercial seafood for the Gulf Region for our groundfish survey 5-60 fathoms: Brown, White, and Pink Shrimp, Red Snapper, Gray triggerfish, crevalle jack, sand seatrout, silver seatrout, yellowedge grouper, snowy grouper, lane snapper, butterfish, wenchman, cobia, vermillion snapper, amberjack, shoal flounder, dusky flounder, and swimming crab.

Snapper on deck

Snapper on deck

Red Snapper freshly caught

Red Snapper in a fish taco, mmmm.

Personal Log:

Well the seas have been calm which is allowing me to get in a good 8-9 hrs of sleep each day. That is much better than the rockin’ and rollin’ I had been experiencing in bed. It is hard to sleep when you are sliding a few inches from head to foot of the bed, and side to side. It also creates an uneasy stomach as all of your stomach contents get mixed around.

Yesterday was a beautiful day as we could see for 10 miles (as mentioned above). One thing about night shift is that we only have 5 hours of daylight. This can be good or bad. Good part is that we have a cooler working environment and I don’t need as much sunscreen. (But believe me we still get stinky from all of the shrimp and fish juice!). The bad part about night shift is we can’t see into the sea as well. So 12 hours of collecting organisms we probably miss a lot of the other interesting things that are swimming near our boat when we haul up a catch.

4 days of fishing to go, then we will be cleaning the lab and heading to Mississippi.

Melinda Storey, June 28, 2010

NOAA Teacher at Sea
Melinda Storey
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: June 28, 2010

Weather Data from the Bridge
Time: 0700 hours (7 am)
Position: latitude = 28° N longitude = 089º W
Present Weather: storm clouds, thunder, lightning, rain
Visibility: 10 nautical miles
Wind Direction: E Wind Speed: 29 knots
Wave Height: 3-5 foot
Sea Water Temp: 30.6°C
Air Temperature: dry bulb = 27°C, wet bulb = 26°C

Science and Technology Log

Stormtrack of Tropical Storm Alex

Stormtrack of Tropical Storm Alex

Tropical Storm Alex, which is a very strong tropical storm, has moved over the Yucatan Peninsula and continues to show signs of strengthening and organization. It was headed straight for us before we started steaming eastward to get out of its path. Our CO has monitored this progression carefully so he can make the decision to go into home port or not. Yesterday evening we started steaming east at 13 knots so we could be closer to Pascagoula if indeed he decided it was unsafe to stay at sea. When we woke this morning we found that Tropical Storm Alex had intensified overnight maintaining wind speed of 50-60 mph. An Air Force Reserve reconnaissance plane found that the atmospheric pressure was decreasing thus creating a very dangerous situation for the Pisces. The CO said that 12 foot waves crashing over the bow would not be fun so he made the decision to head back to Pascagoula today.

We’ve been traveling at 14 knots all night long. Since that is as fast as we can go, we know that the CO is anxious to get us safely in port. He told us that he has to make a decision to return to home port early enough to get a berth at the dock. With all ships in the area heading to shore, he needs to make a decision within 72 hours of the storm hitting so we can get a berth. If you do not get back before the port closes, you have to ride out the storm on water.

The swells have gotten much larger and deeper causing the ship to rock and roll. Walking down the halls is like being a ping pong ball bouncing everywhere. Taking a shower this morning and cleaning up was quite a challenge. When we came down to the lab, they were packing it in. The ship’s crew is busy cleaning the rooms, deck, and ladders (stairs). No more science.

Deepwater Horizon

Deepwater Horizon

Deepwater Horizon

Deepwater Horizon

On our way back to Pascagoula, we passed within 6 miles of the Deepwater Horizon/BP disaster site. We saw 40 ships – pipeline boats, supply boats, a research vessel, tugs and barges that collect the oil, and the Stemstar, which is the ship that injects mud, steam, and concrete into damaged wells. On board the Stemstar are geologists and engineers who are working on solutions to stop the oil leakage of the well. We also saw a fire boat sending water toward a flame that was burning off oil from a rig. The CO thought this might be to keep the heat from damaging the rigs and ships. When oil is burned off the surface of the water, oil crystallizes and hardens much like obsidian rock. It then sinks to the bottom of the ocean and is much easier to collect and dispose of.

Personal Log

Me driving the ship

Me driving the ship

I am saddened that our cruise is over. I enjoyed the crew, scientists, and officers so much. They made our stay so enjoyable, but I am looking forward to bringing back to my students all that I’ve learned. As we watched Deepwater Horizon, I was stuck by the thought that you can’t connect the classroom to the real world better than this! To think that we were within 6 miles of Deepwater Horizon taking pictures to show my students, I thought, “We are watching one of the greatest disasters of our time.” It is incredibly sad to think how this oil is going to damage our pristine coast and affect so many lives. It is remarkable to think that I am one of the few people who get to see this up close and personal!

Me on the binoculars

Me on the binoculars

On a happier note, not every student gets to say his/her teacher has piloted a 208-foot NOAA research vessel! One night our Commanding Officer let me steer the ship – for REAL! I couldn’t believe the CO let me do that! He kept saying how easy it was to turn the ship. He said that the steering is very sensitive so if I made a sharp angled turn I could knock people right out of their berths, or beds! I sure didn’t want the crew mad at me so I wanted to be really careful. When he took the ship off automatic pilot and handed the ship off to me I was nervous as a tick, but I got the hang of it and really had fun. Nicolle, the other teacher, drove straight lines, and I steered in circles. She obviously was the better pilot! They printed off the “track line” so you can see my “donuts” in the sea! Pretty cool watching the bow of the ship swing right and then left. Although I enjoyed steering the ship, I was relieved to turn the helm back over to the CO.

It’s also very important to watch where you’re going. I was very surprised at how many obstacles there are out here – oil rigs, oil tankers, recreational boats, and the ever-present fish. So far, people on the bridge have sighted a dead whale, dolphins, and a sunfish. The CO told me that once he almost ran over a humpback whale. So you do have to watch where you’re going. Last night while we were in our rooms we heard, “Teachers at sea, report to the bridge. Teachers at sea, report to the bridge.” I felt like we were being sent to the Principal’s office! But it was a good thing. The XO had spotted dolphins and wanted us to see them.

One afternoon we saw a beautiful double rainbow, but THIS rainbow was like nothing I’ve ever seen before. They both were circular rainbows and they circled the sun. It was really strange seeing an upside-down, round rainbow. Our Chief Scientist researched this phenomenon and found that circular rainbows are formed in very high cirrus clouds. These clouds have ice crystals formed in them that act like a prism. When lighttravels through these ice crystals they bend the light and that is what causes the circular rainbow

Rainbows in cirrus clouds

Rainbows in cirrus clouds

I’ve wanted to see a shark on board the whole trip, and when it happened, I was asleep! Nicolle was watching the deck hands fish off the stern when one of them caught, not one, but TWO sharks! The sharks were both dogfish sharks and had to be brought aboard with a net. I was surprised to learn that dogfish sharks don’t have teeth. I thought all sharks had teeth, but that’s just an example of the types of things I’ve learned on this trip.

Shark on board!

Shark on board!

Chris Gledhill, one of our scientists, told us that last night we would have a rare opportunity to view the Space Station as it passed overhead. So, at 9:00 pm I went to the bow and stared up at the sky. The stars were brilliant against the dark night sky and I had such a peace to come over me (even though at 14 knots the waves were splashing over the bow). Suddenly, I saw a light streaking across the sky! It was amazing! As it sped past, I thought of all the wonderful “firsts” that I’ve experienced while aboard the Pisces. It has been truly a remarkable trip.

New Term/Vocabulary

Muster – to gather

Berth – bed on a ship

“Something to Think About”

While on the bridge last night, I heard on the radio another ship broadcast they were “taking on water.” What would you do if you were on a boat in the Gulf and it suddenly started taking on water?