Jessie Soder: Drag It Along, Dump It Out, Count ‘Em Up, August 14, 2011

NOAA Teacher at Sea
Jessie Soder
Aboard NOAA Ship Delaware II
August 8 – 19, 2011 

Mission: Atlantic Surfclam and Ocean Quahog Survey
Geographical Area of Cruise:  Northern Atlantic
Date: Wednesday, August 14, 2011 

Weather Data
Time:  16:00
Location:  41°47N, 67°47W
Air Temp:  18°C  (64°F)
Water Temp:  16.5°C  (62°F)
Wind Direction:  SE
Wind Speed:  6 knots
Sea Wave height:  0
Sea Swell:  0

Science and Technology Log

A fellow volunteer, Rebecca, and myself measuring clams

When I found out that the Teacher at Sea trip that I would be on was a clam survey, I thought, “Oh, clams.  I see those on the beach all the time.  No problem.”  I learned that the clams are collected using a hydraulic dredge.  I knew  that a dredge was something that you dragged along the bottom of the ocean.  That seemed simple enough.  Drag it along, dump it out, count ‘em up, and you’re done.

Quickly, I learned that this project is not that simple!  A few questions came to mind after we had done a couple of tows:  How many people are needed to conduct one tow for clams and quahogs? (operate the machinery, the ship, sort through a tow, collect the data, etc.)  How many different jobs are there during one tow?

Sorting through contents of a dredge

Those questions are hard to answer, and I don’t have a precise answer.  What I have learned is that it takes a lot of people and everyone that is involved has a job that is important.  I asked the Chief Scientist, Victor Nordahl, how many people he preferred to have on a science team per watch.   He told me that it is ideal to have six people dedicated to working on sorting the contents of the dredge, processing the catch, and collecting data per watch.  Additionally, he likes to have one “floater,” who can be available to help during each watch.  This seems like a lot of people, but, when there is a big catch this number of people makes the work much more manageable.  There are six people, including myself, on my watch.  Four of us are volunteers.

Each time the dredge is lowered, pulled along the ocean floor, and then brought back onto the ship it is called an “event.”  In my last post I included a video of the dredge being hauled up onto the deck of the ship after it had been pulled along the bottom.  An entire tow, or “event,” is no small feat!  During my watch Rick operates the machinery that raises and lowers the dredge.  (Don’t forget the dredge weighs 2500 pounds!)

There are also two people working on deck that assist him.  (You can see them in the video from my last post.  They are wearing hard hats and life vests.)  Additionally, an officer on the bridge needs to be operating and navigating the ship during the entire event.  There are specific times where they must speed up, slow down, and stop the ship during a tow.  They also have to make sure that the ship is in the correct location because there are planned locations for each tow.  Throughout the entire event the science team, deck crew, and the bridge crew communicate by radio.

Rick, in front of the controls he uses to lower and raise the dredge

As I said, this project is not simple!  To make it more complicated, equipment often breaks, or is damaged, which means that the deck crew and the science team have to stop and fix it. On this trip we have stopped to fix equipment several times.  Various parts of the dredge get bent and broken from rocks on the ocean floor.  Before the dredge is lowered, the bottom is scouted with a depth sounder to try to avoid really rough terrain.  On the screen of the depth sounder different substrates are shown in different colors.  For example sand is shown in green and rocks are shown in red.  We try to avoid a lot of rocks.  However, all the rocks cannot be avoided and sometimes we hit them!

Personal Log

Vic getting a hair cut

Before coming on this trip I was told that the work can be strenuous and, sure enough, it is.  Sometimes a tow brings up hundreds of pounds of rocks (with some clams mixed in!) that we need to sort through and, as you know, rocks are heavy!  The work is also a bit, well, gross.  We have to measure all the clams, whole and broken and we also have to collect weights of “clam meat.”  That means that we have to open the shells and scrape the meat out.  I have a pretty high tolerance for gross things, but I am starting to grow weary of clam guts!

In between tows there is a little bit of down time to catch your breath, drink coffee and eat cookies, watch the ocean, and read a book.  During one of these breaks, the Chief Scientist Victor Nordahl, took the moment and had his hair cut!

Nathan Pierantoni, Tuesday 4.5.11

NOAA Teacher at Sea: Nathan Pierantoni

University of Miami Ship R/V Walton Smith

South Florida Bimonthly Hydrographic Survey

Florida Bay

Tuesday, April 5 2011

Weather Data from the Bridge

1400 hrs Local Time

Barometric pressure = 1014 Millibars

80 F

94% Humidity

Visibility = good

Wind S 14 knots

Science and Technology Log

Its Tuesday evening and I am finally taking the opportunity to organize my thoughts. The ship has been a whirlwind of activity since Sunday evening when scientists and crew began arriving and preparing for this 5-day research cruise to the Florida Keys and the Florida Bay. I have done my best to learn as much as I can in my time aboard the Walton Smith. The science that is being conducted on this cruise falls into three different areas of oceanography: physical oceanography, ocean chemistry, and marine biology. At all times there are scientists doing the fieldwork necessary to answer questions in these areas of science. In this log I will discuss the physical oceanography that is being conducted by Nelson Melo, a physical oceanographer, and our mission’s chief scientist.

Nelson is the leader when it comes to the organization and coordination of all of the work aboard the ship. Nelson is thoughtful and helpful, and has provided me with all of the information I need to make sense of the myriad of activities going on aboard our ship. Nelson Works for NOAA, and has multiple degrees in areas of physics ranging from nuclear physics to solid state transistors. He holds a PhD in Oceanography and is passionate about protecting and preserving the ocean. Originally from Cuba, he came to the United States 8 years ago.

Nelson’s work involves the synthesis of remote sensing data that is being shot from space via satellite with corollary data that he is working to collect from our ship as we pass through waters of the Florida Bay. For example, as the ship moves from one location to the next, the water might appear green or deep blue. These color changes are also visible from space and are being collected via satellite. The satellites used to collect this data are scanning the sea and creating multispectral images which, when processed and combined, appear like a color photograph of the ocean. These colors change as the conditions in the ocean change, and can be used to tell scientists about the health of the ocean. From the ship, we are moving throughout the Florida bay in order to sample many different parameters of water quality. One of them is chlorophyll. Nelson is most interested in the amount of chlorophyll in the water, because it serves as an indicator for the autotrophic life in the water column. Put simply, the presence or absence of chlorophyll in the water is valuable scientific information as it relates to many areas of study for ecologists, marine biologists and nearly every scientist who studies the ocean. As we collect water samples from different locations throughout the cruise, Nelson is using a sensor to measure the light as it appears at different depths of water. Today we were in about 7 m of water, and while the chemistry team sampled chlorophyll levels at different depths of water, Nelson put a photosensitive device over the side of the ship and slowly lowered it to the bottom. This device captured the intensity of light as it moved from the surface to the bottom, and all of the data was recorded on his computer. Then, he graphed his results. With the chlorophyll levels that the chemistry department has collected and the information from his submersible, as well as other parameters such as water current, salinity, and temperature he and many other scientists from the University of South Florida will work toward building an algorithm that will allow scientists in the future to use remote sensing from satellites to measure water parameters from space.

In fact, this work is already being done and oceanographers already have the tools to do this very accurately for offshore waters where there is less distortion from the reflection of the bottom or noise from particles in suspension due to shore currents or dissolved organic materials. Nelson is part of a team of scientists that is fine -tuning the algorithms used to measure water parameters from space that is more accurate for inshore waters.

Personal Log

Wow! Its been a busy couple of days!!! There is so much going on its kind of hard to know where to begin. The thing that I think I most appreciate right now is just how hard everyone is working. There hasn’t been much time to ‘mingle’, because everyone on the ship has a job to do, and it’s a full time operation. I think this is mostly due to the fact that this cruise it in relatively shallow waters, with many stops in close proximity to one another. And the ‘stops’ aren’t even really stops; they are simply the places where we slow down enough to do a CTD (which I’ll explain in a chemistry log tomorrow) or to do a net tow or to run the submersible photometer. Other than that, there is recording, chemistry, data analysis, and preparation for the next station to be done during transit times. The ship just keeps on following our prescribed cruise plan, from station to station, and if there is work to do during mealtime then everyone finishes their work before they get to eat. And the boat is divided into day shifts and night shifts for the science crew, and 6 hour on and off shifts for the ships crew. I appreciate that Nelson is packing in as much science as he can into this operation, because its obvious that great amounts of resources are going into these studies. I feel very lucky to get the opportunity to participate in this operation!

It is too bad that there are some other members of this cruise who I will not get to know as well, simply because they are asleep while I am awake. The ship is the most lively during the shift changes, when everyone is up for a meal of to catch each other up on the progress we had made during the day.

A special note to my classes:

Keep writing on the blog with questions, and I will keep catching opportunities to answer them, to upload pictures, and to go into more depth tomorrow about the chemistry and biology that are going on on the ship!

Here is the machine that Dr. Nelson uses to take his measurements, the PRR 2600.

PRR 2600

PRR 2600

Here is a shot off of Dr. Melo’s computer, it is recently acquired satellite data measuring the light specra from the earth. Notice the curvature at the left hand side of the screen, that is how the satellite sees the earth.

Dr Melo's computer

Dr Melo's computer

Here is the PRR 2600 at the surface of the water.

PRR 2600 in the water

PRR 2600 in the water

This is data from the ship. Notice duplicate measurements for parameters such as temp and salinity, and notice four sig figs. Those are real measurements, to a 10,000th of a degree!

data from the ship

Data from the Ship

Here is a shot of Dr Melo and with his submersible. He is slowly lowering the machine to the bottom while it takes accurate measurements of the light from the sun. At different depths the spectra of light change, and the amount that they change is related to the amounts of chlorophyll and other water parameters. This type of information from near-shore locations is what scientists will use to build accurate algorithms for interpreting future remote sensing data.

Dr. Melo lowering his Submersible

Dr. Melo lowering his Submersible

Caroline Singler, August 29-31, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 31 August 2010

Under the Seafloor

Location and Weather Data from the Bridge
Date: 29 August 2010
Time of Day: 23:15 (11:15 p.m. local time); 06:15 UTC
Latitude: 79º 40.2’ N Longitude: 130º 26.2’ W
Ship Speed: 9.4 knots Heading: 254º (SW)
Air Temperature: 0.6ºC / 33.0ºF
Barometric Pressure: 1008.2 mb Humidity: 92.8 %
Winds: 10.1 knots SSW Wind Chill: -6.3ºC/20.8ºF
Sea Temperature: -1.4ºC Salinity: 27.78 PSU
Water Depth: 3505.8 m
Date: 30 August 2010 Time of Day: 22:00 (10:00 p.m. local time); 05:00 UTC
Latitude: 76º 52.8’ N Longitude: 137º 35.8’ W
Ship Speed: 9.8 knots Heading: 200.9º (SW)
Air Temperature: -0.3ºC
Barometric Pressure: 1008.5 mb Humidity: 99%
Winds: 3.2 knots W
Sea Temperature: -0.5ºC Salinity: 25.8 PSU
Water Depth:3675 mDate: 31 August 2010 Time of Day: 22:25 (10:25 p.m. local time); 05:25 UTC
Latitude: 74º 43.9’ N Longitude: 137º 26.1’ W
Ship Speed: 8.5 knots Heading: 124.8º (SE)
Air Temperature: 1.35ºC / 34.42ºF
Barometric Pressure: 1009.2 mb Humidity: 91.7%
Winds: 10.8 knots NNW Wind Chill: -4.1ºC/25.1ºF
Sea Temperature: -0.5ºC Salinity: 24.33 PSU
Water Depth:3418.4 m
Me on the deck

Me on the deck

Science and Technology Log
Most of the geology on this cruise is geophysics – we employ remote sensing techniques to generate computer images of the seafloor without direct observation. Bathymetric tools like the multibeam sonar system are valuable for oceanographers because it removes the veneer of the ocean water and reveals the shape of the underlying seafloor. It also makes a seafloor map look like a game of Candy Land – except when we are mapping in ice and it looks more like Pick Up Sticks. (One night on watch, my partner and I talked about how after a while you start to think of the seafloor as if it were colored like a rainbow!) Subbottom seismic profiles go even deeper and provide clues about the sediment and rock below the seafloor, and a trained geophysicist can read the signature reflections of different materials and make strong inferences about the subsurface. But for geologists like me, the highlight is sampling — bringing pieces of the seafloor above sea level and directly observing what is there. One reason that I was excited to join this cruise was because I visited the core library at Woods Hole Oceanographic Institution (WHOI) with the Lincoln-Sudbury NOSB team two years ago. The realization of how important such samples are to our understanding of the geological and climatological history of the earth made me eager to be present when a core was taken from the seafloor.

On a bathymetric survey expedition like this, opportunities to stop the ship for an extended period of time are few and far between, but we have had a few windows of opportunity for seafloor sampling. USGS geologists Brian Edwards and Andy Stevenson, armed with bathymetric maps and subbottom profiles from previous surveys, came on the cruise with several potential sampling targets in mind. USGS engineering technicians Jenny White and Pete dal Ferro are ready at a moment’s notice to get to work assisted by Healy’s team of marine science technicians (MSTs).

Coring the seafloor is a lot different from coring on land. The work site is the fantail (stern) of ship in the Arctic Ocean. The target is a point on the seafloor thousands of meters below, guided only by bathymetry and the ship’s navigation system. It takes more than an hour on average to lower the coring equipment on cables to the seafloor, and the water around us is moving with the current, requiring great skill on the part of the Coast Guard crew to hold station – keep the ship in a steady position – for many hours during sampling operations. Add in some wind, cold temperatures, and sometimes ice floes moving around the ship, and it’s easy to see why everyone’s energy level is cranked up a notch when coring operations are the plan of the day.

Coring Equipment

Coring Equipment

So far, we have collected core samples at three locations. A core is a long cylindrical section of seafloor. A core provides a relatively undisturbed sample of a vertical section of seafloor, preserving sediments in their natural layers with internal structures more or less intact. This provides a vertical timeline of deposition on the seafloor – the sediment at the bottom of the core represents the oldest material and the sediment at the top is the youngest. Core samples provide “ground truth” that supports the findings of remote sensing techniques like subbottom profiling. They allow scientists to “read” the history of the area. Geologists analyze the size and composition of sediment and infer depositional processes and possible sediment sources. Oceanographers and climatologists use information from the sediment and the microfossils they may contain to learn how the ocean and atmosphere has changed over time with respect to physical parameters such as water temperature and salinity.

Gravity Core on the deck

Gravity Core on the deck

We have employed two coring techniques on this core – gravity coring and piston coring. A gravity core uses a 2,000 pound weight attached to a 10-foot section of pipe. The pipe is lowered by cables and winches to the seafloor and uses the force of gravity pulling on the weight to drive it into the subsurface. A piston core is a variation on the gravity core that allows for deeper sampling by stringing together multiple sections of pipe. The main core barrel is fitted with a retractable piston in the top of the tube and the same 2,000 pound weight attached. A separate smaller coring apparatus is connected to the top of the piston core barrel by cables and a trigger arm. It hangs beside the piston core barrel, and the entireapparatus is lowered together to the seafloor. The trigger core reaches the bottom first and penetrates the surface sediments. As it falls, it triggers the mechanism at the top of the piston core which freefalls into the sediment. As the piston retracts inside the core barrel, it creates suction inside the barrel that helps pull the sediment into the core barrel and allows for collection of a longer, deeper, and potentially less disturbed sample than a gravity core.

Piston Core Apparatus

Piston Core Apparatus

Attaching Trigger Core

Attaching Trigger Core

The steel pipes used for coring are lined with plastic liners. At the end of the core barrel is a core cutter and a core catcher with metal teeth that fits into the bottom of the core barrel and holds the core in the barrel. When the core is retrieved, grab samples are collected from the core cutter and core catcher. (In the photo on the right, USGS scientists Brian Edwards and Andy Stevenson collect samples from a gravity core.) The outside of the core barrel is scraped to provide a sample that can be examined for microfauna (remains of microscopic organisms) in the sediment. The plastic liner is removed from the core barrel, starting at the bottom of the core, and is cut into sections. In this case, the preferred section length is 150 centimeters because that is the size of the containers in which the core will be stored back in the laboratory. Each section is measured, capped, sealed, and carefully labeled to indicate the top of the section and the core location. (In the photo on the bottom right, USGS scientists Brian Edwards, Andy Stevenson, and Helen Gibbons measure and cut the core sleeve from a piston core.) All information is recorded on a log in the field. The core sections are then stored horizontally in a specially built box that is kept in a refrigerator on the ship. The cores will be transported back to the USGS laboratory in California after the cruise where they will be cut, examined and logged, and then carefully stored for future reference.

Gravity Core Sample

Core Catcher and Cutter

Core Catcher and Cutter

Measuring cutting core

Measuring cutting core

Sometimes a core contains a real surprise. When the piston core from our first locationcame up on deck, we saw a white crystalline substance in the core cutter and catcher. It was gas hydrate. (Photo courtesy of Helen Gibbons, USGS Scientist.) Water molecules under high pressure may start to solidify at temperatures above the normal freezing point of water, crystallizing into a solid form of water with an internal structure that contains larger open spaces than typical ice crystals. Normally, these crystals are very unstable and will continue to cool and form the more stable molecule we know as ice. However, gases present in the environment may become incorporated into the open spaces within the solid water molecules and form a gas hydrate. This is a physical combination – there is no chemical bonding between the two – but it allows the solid to remain stable as long as it remains in a high pressure and low temperature environment. Seafloor sediments on deep continental margins and buried continental sediments in polar regions (i.e. permafrost regions) are common places where these compounds form. They contain abundant organic matter. Over time, biogenic processes (bacterial action) or thermogenic processes (high pressure and temperature) act on the organic material and produce gases, most commonly methane. These may become trapped in the solid water and form gas hydrates.

Core in reefer

Core in reefer

Methane Hydrate

Methane Hydrate

There is a lot of scientific interest in gas hydrates. Some estimates suggest that methane hydrates in permafrost and marine sediments contain more organic carbon than all other known naturally occurring fossil fuel deposits combined. Thus, gas hydrates are considered to be a potential energy source. However, one concern is that hydrates are very unstable at conditions other than those under which they form – the solid water crystals dissociate (i.e. melt) and the gases escape. We saw this with the sample we brought up in the core which began fizzing and off-gassing as soon as it was exposed at the surface. Potential environmental changes that might destabilize naturally occurring hydrates could potentially result in the release of large quantities of methane, a greenhouse gas, to the atmosphere.

We have sampled at four locations to date, shown on the map below. One location was near the top of a small seamount that was first mapped during last year’s expedition. Another sample was from a submarine fan complex. All locations were selected based on some prior data followed by good inferences, a little luck and a lot of skill.

Coring Locations on map

Coring Locations on map

All coring attempts have been successful, with good core recovery each time. It is difficult to predict what we will get when aiming for a target that is so far beneath us. There is only so much that the monitors on the ship that track wire depth and tension can tell us. Given time constraints, there are no “do overs”, so we are happy whenever the core barrel comes up with something inside – it represents more information than we had before we sent it to the bottom. The moments before the barrel is back on deck are full of tense expectation, and one can tell from the look of satisfaction on a scientist’s face when there is a good sample inside. One person’s mud is another person’s treasure! Although I will not get to examine the cores myself, I look forward to hearing what they find when they cut and log the cores back in California. And I have a little bit of ocean floor mud of my own to take home as a souvenir.

Core Sample

Core Sample

Sources
National Energy Technology Laboratory: The National Methane Hydrates R&D Program – All about Hydrates
TDI-Brooks International: Piston Coring for Surface Geochemical Exploration.
USGS Fact Sheet: Gas (Methane) Hydrates – A New Frontier. 1992.
USGS Woods Hole Science Center
Woods Hole Ocean Instruments

Personal Log
This is the last week of the trip. After all the preparation that it took to get here, the time has passed rather quickly – even while I did not have a very clear perception of the passage of time. If I were home, I would have met my classes for the first time yesterday and today. I am sorry to miss school, but I am grateful to be among a relatively small group of people who have the opportunity to experience this part of the world. I am fortunate to have a strong support network of colleagues at Lincoln-Sudbury Regional High School who encouraged me to take advantage of this opportunity and did their best to assuage my feelings of guilt about not being at work. I am fortunate to have such caring friends and colleagues. Thank you, everyone who helped me prepare for the trip and to all those who are keeping things going for me while I am away. You gave me the peace of mind to do this.

The Arctic is a wilderness unlike any other. Whether in the icy desert at latitudes above 80ºN; in thin, patchy ice in the southern and western part of the basin; or in the open waters off the coast of Alaska, each day is something special. I look forward to my first trip out on deck each morning to enjoy the day’s views, and I have not been disappointed. And here in the last week of the trip, as the amount of darkness increases while the latitude decreases, it is actually snowing – enough to make a little snowman on the bow.

Snowman

Snowman

Midnight on the ship

Midnight on the ship

 

Karen Matsumoto, April 22, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: April 22, 2010

Science and Technology Log

Acoustic monitoring for cetaceans is a major part of this research effort. A hydrophone array is towed 24 hours each day, except when it needs to be pulled up on deck to allow for other operations, or required by weather or other maneuvers. The hydrophone array is hooked up to a ship-powered hydraulic winch system that brings up or lowers the hydrophone into the water. A team of two acoustic scientists listen to the hydrophone array during daylight hours and collect and record data by recording the sounds made by cetaceans, and locating their positions.

Sonobuoys, as described in the previous log entry are also used to collect acoustic data. Sonobuoys transmit data to a VHF radio receiver on the ship. Scientists monitor these buoys for an hour each recording session, and often communicate with the other group monitoring the hydrophone array about what they are hearing or seeing on the computer screen. They often don’t hear or see the same things!

Launching the hydrophone array

Monitoring the array.

A standard set of information is recorded each time a sonobuoy is launched. This includes the date, time (measured in Greenwich Mean Time!), Latitude and Longitude, approximate depth of the ocean where the buoy was launched, as well as specific information on the buoys. This is just like the information you would record in your field journals when conducting your own field investigations.

Setting the buoy instructions.

Launching the buoy into the water.

Success! When the buoy is deployed, the orange flag pops up.

One of my duties as Teacher at Sea is to conduct acoustic monitoring. This means checking the buoy and setting it to the correct settings so information can be received by VHF radio, and data collected by computer on any cetacean vocalizations we may observe. Many of the cetacean calls

can’t be heard, only seen on the computer screen! The computer must be visually monitored, and it takes a keen eye to be able to pick out the vocalizations from other “noise” such as the ship’s engine, sounds of the water hitting the buoy, and even the ship’s radar!

The person monitoring the buoy also wears headphones to hear some of the vocalizations. Clicks and “boings” made by some cetaceans can be heard by humans. Other sounds made by cetaceans, especially the large baleen whales are very low frequency, and can’t be heard by the human ear.

Karen listening in and visually monitoring the Sonobuoy. I can actually hear minke whales “BOINGING”!

Data is collected and recorded on the computer on a program called “Ishmael”.

All observations are also hand written in a “Sonobuoy Log Book” to help analyze the computer data and as back up information.

Personal Log

There is so much to learn, and I am anxious to get up to speed with the research team (which could take many years!). I have always been fascinated by cetaceans, and have had a keen interest in gray whales since whale-watching on the coast of California since I was a child. Grey whales have also been an integral part of the culture of First Peoples living on the Washington Coast, and so I have been interested in learning more about them.

I am an avid birder, and it is always an exciting challenge to go to a new place, learn about other ecosystems and see birds I am not familiar with. I have always loved pouring through and collecting field guides, which are like wish lists of animals I want to see someday. Out here in the western Pacific ocean, I have a whole new array of whales for me to learn about, and learn how to identify by sight and sound! I have been reading my new field guide to whales and dolphins, reviewing PowerPoint presentations about them, and trying to learn all I can, as fast as I can! I have been drawing whales in my journal and taking notes, which helps me to remember their shape, form, and field identification features. At the top of my wish list is to see a sperm whale! I’ll be happy just to hear one, knowing they are here!

Karen sketching whales in her journal to learn their profiles and field marks.

Question of the Day: Did you know that many baleen whale vocalizations are at such a low frequency, that they can’t easily be heard by the human ear? We need computers to help us “visually hear” calls of fin, sei, blue, and right whales.

New Term/Phrase/Word of the Day: mysticetes = baleen whales. Mysticeti comes from the Greek word for “moustache”.

Something to Think About:

“Call me Ishmael,” is one of the most recognizable opening lines in American literature and comes from the novel, Moby Dick by Herman Melville, published in 1851. The story was based on Herman Melville’s experiences as a whaler. Melville was inspired by stories of a white sperm whale called “Mocha Dick” who allegedly battled whalers by attacking ships off the coast of Chile in the early 1800s! Melville’s story was also an inspiration to the founders of Starbucks and also influenced the maker of the acoustic software we are using to track cetaceans on our research trip! (Can you tell me how?)

Animals Seen Today:

  • Sooty shearwater
  • Wedge-tailed shearwater

Did you know?
The earth has one big ocean with many features. The part of the ocean we are studying is called the
North Pacific Ocean and divided into three very general regions east to west: The western Pacific,
eastern Pacific, and the central Pacific. We are traveling along a transit from Guam, northeast to
Wake Island, then almost due east to O‘ahu, Hawai‘i. Can you trace our route on a map of the
Pacific?