Terry Maxwell: Making Models and Memories, June 20, 2017

NOAA Teacher at Sea

Terry Maxwell

Aboard R/V Hugh R. Sharp

June 6 – 21, 2017

Mission: Sea Scallop Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: June 20, 2017

Weather Data from the Bridge
Latitude: 41 18.06 N
Longitude: 68 42.35
Wind Speed: 20.3 knots
Air Temperature: 15.3 C

Science and Technology Log

I’ve had a lot of people ask “So what is the purpose of this trip?”  I thought it would be fitting to answer that question in this last blog from sea.  I’ve explained the process of collecting the data out here at sea.  I’ve explained the technology and methods we’ve used to collect it.  But the logical question now is, what happens once this data has been collected?

I’ve had the pleasure serving on the second half of this trip with NOAA Mathematical Biologist, Dvora Hart.  Dvora is the lead scientist for the scallop fishery.  She is well known in the New England area for her work with scallop fisheries.  To many of you in the Midwest, scallops may not seem like a big deal, but did you know that scallops are the second largest commercial fishery market in America?  In 2016 scallops were a 485 million dollar industry.  They are second only to the lobster market in terms of commercial fisheries value.

NOAA has been completing scallop surveys with lined dredges since 1978.  The methods have changed over the years as the technology and research methods have advanced, and these methods have yielded success.  However the scallop fisheries have not always been as plentiful as they are now.  In 1994 several measures were put in place to help a struggling scallop fishery.  The changes were larger dredge rings so smaller scallops would pass through, less crew members on board a vessel, and sections of one of the most productive fisheries in the Atlantic, Georges Bank, would be closed for portions of time to scallop fishermen.

These kind of changes come from a Regional Fisheries Management Council.  This council has appointed members from the governors of the New England states involved, head of NOAA Greater Atlantic Fisheries gets a seat, and then 3 more members from each state are nominated.  The end result is 19 members who make up this council to decide how to best run a variety of commercial marine organisms in the Northeast Atlantic.  There is also a technical committee, which advises this council.   This is where Dvora Hart and the data from the scallop survey come in.

habcam survey charts

Data from the HabCam surveys are very effective at adding a layer of depth to the knowledge of the population of scallops in the Northeast Atlantic Ocean.

The scallop survey, which started May 16th, has been meticulously planned out by NOAA Fisheries.  The area where the scallop survey has been preformed has been broken up into regions called strata.  These strata areas are determined by their depth and their general geographical area.  Once scallops are collected in a strata, a weighted mean, a size frequency, shell heights, and a mean number of scallops of each size category are taken.  From the meat weights that were collected, a total biomass of scallops for the area is taken.  There is a relationship between the meat weight and the shell height which gives researches an idea of the total biomass of scallops in the area.  At any given depth there is a conversion of shell height to meat weight.  These numbers can be plugged into software which can model the biomass for an area.

biomass

Scallop biomass modeling from the 2016 survey.

All of the data collected during the NOAA scallop survey is combined with the Virginia Institute of Marine Science (VIMS) scallop survey.  Dvora and the NOAA scientists created forecasting models for 19 different areas in the Northeast Atlantic.  Forecasts are made using the predicted biomass for the strata areas, by aging the samples of scallop shells collected, fishing mortality (amount of caught by fishermen), and natural mortality rates.  Models are then created to forecast 15 years out to predict the consequences of fishing an area heavy.  Dvora is part of a technical team that advises the Regional Fisheries Management Council using the data collected in this survey and the models her and her team have created.  Scallop fisheries are very healthy currently due to the data collected, data interpreted, and models created by NOAA scientists, commercial fishermen, and Regional Fisheries Management Council.

Personal Log
These 16 days have been quite an experience.  I’d like to share just 5 of the more memorable moments from this trip.

5. Amazing sites of nature.  What a unique experience to be out only surrounded by the vast Atlantic Ocean for over two weeks.  I’ve seen so many awe inspiring moments.  Sun rises, sun sets, full moons over the ocean in a clear sky, rainbows that span the horizon, thousands of stars in the sky, and thick ominous fog which lasts for 24 hours.  Truly once in a life time sights.

 

 

4. The 12 hour shifts.  Whether it was running the Habcam and joking around with the crew while we watched computer screens for 12 hours or working the dredge station in all kinds of conditions, the work was fun.  Being out on the deck working the dredge was my favorite type of work.  To be out in the open air was awesome regardless of how hard the work was.  The last day the waters were crazy as we worked on the deck.

 

 

3. The awesome animals that came up in the dredge.  Too many pictures to post here, but my favorite animal was the goosefish.  That fish looked like it wanted to take a bite out of your arm even if it was out of water.  Such an awesome animal.

IMG_0407

Seeing these goosefish come out of the dredge never got old.  Such an amazing fish.

2. The awesome animals that would come near the boat.  Crew members saw whales, dolphins, sharks, sunfish, and mola mola.  Though my favorite was my first day out when the humpback whales surrounded the boat, the dolphins riding by the boat is was a close second.

IMG_0518

One of our last days a group of about 4 dolphins followed the ship for about 10 minutes.

1. General life about the Hugh R. Sharp.  What a great group of people to be with for 16 days.  I felt accepted and looked out for the whole time I was here.  Mike Saminsky dropping what he was doing the first day I got to the ship to show me around and grab some dinner, TR sharing his hidden stash of snacks with me, a variety of crew members trying to help me through my sea sickness, and every body on the cruise allowing me to ask questions and interview them.  Just the general down time and laughs had will be very memorable.

IMG_0360

General life aboard the Hugh R. Sharp will be a lasting memory for me.

Thank you to the people of NOAA, the Hugh R. Sharp, my wife and kids (Hannah you are amazing for shouldering the extra load at home!), and family, friends, and students that followed the blog at home.  This has been an experience of a lifetime, and I’m grateful to all of you who made it possible.  Specific thanks to my work crew chief Nicole Charriere who was an awesome leader during this cruise.  I learned a lot about how to lead a group watching her.  Thank you to Larry Brady and Jonathan Duquette the Chief scientists for this cruise.  Their organization and decision making made this a smooth experience for me.  Thank you to Katie Sowers, Emily Susko, Jennifer Hammond, and Huthaifah Khatatbeh for help with the trip arrangements and all of my blog questions, you all made this experience much easier.

Did You Know?

I will travel over 1,000 miles to go home today.  Yes that’s crazy to me.  But I have traveled over 1,000 nautical miles on the Hugh R. Sharp since this cruise has began.

 

Joan Le, Rolling in the Deep, August 11, 2013

NOAA Teacher at Sea
Joanie Le
Aboard NOAA Ship Henry B. Bigelow
August 5 – 16, 2014

Mission: Deep-Sea Coral Research
Geographic area of the cruise: Southeast of Cape May
Date: August 11, 2014

20140810-042237-15757112.jpg

Weather information from the Bridge
Air Temperature: 24.2° C
Wind Direction: 140
Weather Conditions: Mostly Cloudy
Latitude: 38° 31.7′
Longitude: 73° 14.7′

Science and Technology Log

TowCam is back, and the deep sea pictures are in. The high resolution images from the last dive have been downloaded and many are stunning. We’ve spotted dozens of red crabs, flat fish, skates, eels, anemones, sponges and most importantly, coral. Clustered around the steeper rocky slopes, they greet us like tiny shrubs peeking around the corners of the rock.

But one of the reasons studying deep-sea coral is so important, is that they are part of a larger ecosystem. Documenting the diversity of organisms associated with the coral is equally as important and exciting as the coral sightings themselves. In fact, many conservation efforts have begun to shift their focus from single-species protection to focusing on the ecosystem as a whole. And now, without further delay, a few of TowCam’s high resolution images:

This slideshow requires JavaScript.

Brilliance Under Pressure

While gathered around the control room today marveling at the beautiful fauna that thrives under the extreme environmental conditions of the deep sea, the video feed for our winch control went out. Without it, Dr. Lizet Christiansen would have been unable to safely maneuver the TowCam around the steep and rocky cliffs.

Stuck right in the middle of one our best dives yet, Brian Kinlan stepped in with a quick and brilliant save. Using two cell phones, video chatting, and a whole lot of duct tape, we were able to rig a new video feed and the dive continued. It reminded me again how difficult research can be while at sea, when you can’t simply run to the hardware store to fix broken equipment.

Electronic Technician Mike Peperato quickly restores video feed.

Electronic Technician Mike Peperato quickly restores video feed.

Thanks to our equally brilliant crew and tech support, the video feed returned shortly and the dive continued as planned.

Personal Log

After 4 midnight-noon shifts, I am starting to find my rhythm on the ship. My daily workout has finally moved from the stationary bike to the treadmill, as I can now walk (and even run) without falling over as the ship bobs back and forth. Though I’d rather be running in the absolutely beautiful sunshine that has daily graced our ship, my outdoor time is filled quite nicely writing my blog or simply searching for dolphins off the flying bridge of the ship. In honor of some late-night (early morning?) conversations around the true definition of a “hipster”, I decided to throw in a few hipster-esque shots of the sights around the ship.

And for the record, I’d like to state that if a hipster is someone that is driven by their passions, dances to the beat of their own drummer, and has met no obstacle that can slow them down in their pursuit of an important and meaningful life, then field scientists are true hipsters–in the best sense of the word. Skinny jeans = optional.

Karen Matsumoto, April 25, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: Friday, April 25, 2010

Science and Technology Log

The Oscar Elton Sette is making its way to Wake Island, and we hope to be there by tonight. One of the research operations is to recover a HARP (High-frequency Acoustic Recording Package) that is in place on Wake Island and replace it with a new HARP unit.

This morning, I was on “CTD duty” at 4:30 a.m. A CTD (conductivity-temperature-depth) station is deployed prior to the start of the visual survey effort, right at sunrise. The CTD data is collected using the ship’s SeaBird CTD shown below. The CTD is deployed to a depth of 1000 meters (depending on depth where we are) with a descent rate of about 30 meters per minute for the first 100 meters of the cast, then at 60 meters per minute after that. It takes three people, plus a winch driver to deploy the CTD, as well as the expert operation from the bridge to keep the ship steady and in one place during the entire operation!

Checking the CTD unit prior to launch.

Launching the CTD unit.

Background on CTDs

The CTD is a device that can reach 1,000 meters or more in depth, taking up to five water samples at different depths, and making other measurements on a continuous basis during its descent and ascent. Temperature and pressure are measured directly. Salinity is measured indirectly by measuring the conductivity of water to electricity.

Chlorophyll, a green photosynthetic pigment, is measured indirectly by a fluorometer that emits purple light and measures fluorescence in response to that light. These measurements are made continuously, providing a profile of temperature, salinity, and chlorophyll as a function of depth. The CTD unit is torpedo-shaped and is part of a larger metal water sampling array known as a rosette. Multiple water sampling bottles are often attached to the rosette to collect water at different depths. Information is sent back to the ship along a wire while the instrument is lowered to the depth specified by the scientist and then brought back to the surface.

Monitoring the CTD in the ship’s E-lab.

Data gathered from the CTD during its descent.

By analyzing information about the water’s physical parameters, scientists can make inferences about the occurrence of certain biological processes, such as the growth of algae. Knowledge like this can, in turn, lead scientists to a better understanding of such factors as species distribution and abundance in particular areas of the ocean.

I am continuing my acoustic work with the sonobuoys. Today I heard a Minke whale BOING! Below is what a Minke whale boing looks like on the computer. It sounds very much like someone blowing a low tonal whistle or a cell phone vibrating on the desk!

 

To hear an Atlantic minke whale call (which is different from those found here in the North Pacific, but really cool!) go to this website:

http://www.pmel.noaa.gov/vents/acoustics/whales/sounds/sounds_atlminke.html

Personal Log

I am making so many great friends among the Sette crew and the science team! I am getting spoiled from all the fantastic meals put together by Randy our cook, and no one ever wants to miss a meal! Our wonderful Doc Tran makes incredible Vietnamese dishes and delicious desserts. Today we had cream puffs for dinnertime dessert! Who would have ever guessed!

Marie Hill, our Chief Scientist and fearless leader was awarded the prestigious NOAA Team Member Award! We surprised her with balloons and decorations in her cabin, and Doc Tran and Lisa made a yummy cake in celebration! Congratulations Marie!!!

Marie Hill, Chief Scientist finding her cabin wildly decorated to congratulate her on her award.

We had a visitor today on the flying bridge-an exhausted juvenile red-footed booby! He sat on the mast, finding a place to rest in the middle of the ocean! It felt great to feel the warm wind hit my face and watch the sapphire blue water crash against the bow of the ship! What a great feeling!

Juvenile red-footed booby on the bridge

Deep blue Pacific ocean water!

Question of the Day: How can you figure out how much food to bring on a 2-week cruise? How do you keep the food fresh? What do you do with leftovers?

This is the situation that the Chief steward has to deal with on every cruise! How would you figure this out? Can you do the math?

New Term/Phrase/Word of the Day: Beaufort Sea State is an empirical measure for describing wind speed based mainly on observed sea conditions. It is also called the Beaufort Wind Force Scale. We stop conducting our visual observations when wind/sea conditions reach Beaufort 7, as wind and sea conditions are too rough to accurately make observations (and its windy out there!).

Something to Think About:

This part of the North Pacific is often described as an ocean desert. We have not seen any whales, and have had only a couple sightings of dolphins since we left Guam. We have also seen migrating sea birds, but not in huge numbers. What do you think may account for the lack of sea life in this expanse of tropical waters?

Animals Seen Today:

  • Sooty tern
  • Red-footed booby (juvenile)

Did you know?

That the team of whale visual observers never discuss the numbers of animals they see among themselves. Some people consistently count high, others count low, others are spot on! By not discussing how many animals they observed, they don’t influence each others’ observations. Back at the lab, researchers compare each observer’s counts from their written observations, and can tell which observers tend to under or overestimate numbers of animals they see. They can then make adjustments to total numbers based on everyone’s observations! This is similar to calibrating thermometers or other scientific equipment!

Today’s sunset from the Sette.

Jennifer Fry, July 22, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 22, 2009

Weather Data from the Bridge 
Wind speed: 13 knots
Wind direction: 003°from the north
Visibility: clear
Temperature: 13.6°C (dry bulb); 13.2°C (wet bulb)
Sea water temperature: 15.1°C
Wave height: 1-2 ft.
Swell direction: 325°
Swell height: 4-6 ft.

Science/Technology Log 

Today we did a fishing trawl off the coast of Oregon. First, the scientists used multiple acoustic frequencies of sound waves.  After analyzing the sonar data, the scientists felt confident that they would get a good sampling of hake. The chief scientist called the bridge to break our transect line (the planned east/west course) and requested that we trawl for fish.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

The NOAA Corps officers directed operations from the trawl house while crew members worked to lower the net to the target depth.  The fishing trawl collected specimens for approximately 20 minutes. After that time, the crew members haul in the net. The scientists continue to record data on the trawl house.

The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.

The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.

Today’s total catch fit into 2 baskets, a “basket” is about the size of your laundry basket at home, approximately 25-35 kilos. Included in the sample were some very interesting fish:

  • Viper fish
  • Ctenophores or comb jellies
  • Larval stage Dover sole, lives at the sea bottom
  • Jelly fish, several varieties (*Note: Jelly fish are types of zooplankton, which means they are animals floating in the ocean.)
  • Hake, approx. 30 kilos

The scientists made quick work of weighing and identifying each species of fish and then began working with the hake. Each hake was individually measured for length and weighed.  The hake’s stomach and otolith were removed. These were carefully labeled and data imputed into the computer.  Scientists will later examine the contents of the stomach to determine what the hake are eating. The otolith (ear bone) goes through a process by which the ear bone is broken in half and then “burnt.” The burning procedure allows one to see the “age rings” much like how we age a tree with its rings.

Personal Log 

A view from the trawl house during a fishing trawl.

A view from the trawl house during a fishing trawl.

Everyone works so very hard to make the Hake Survey successful.  All hands on the ship do a specific job, from cook to engineer to captain of the ship.  It is evident that everyone takes their job seriously and is good at what they do. I feel very fortunate to be part of this very important scientific research project.

 

 

A viper fish

A viper fish

Did You Know? 
Bird facts: An albatross’ wing span can be 5 feet, which equals one very large sea bird. A shearwater is slimmer and smaller yet resembles an albatross.

Animals Seen Today 
Ctenophore, Jelly Fish, Dover sole, Hake, Humboldt squid, Fulmar, Albatross, Gull, and Shearwater.

Here is something interesting, a hake with two mouths discovered in the trawl net.

Here is something interesting, a hake with two mouths discovered in the trawl net.

A hake and its stomach contents, including krill, smaller hake and possibly an anchovy

A hake and its stomach contents, including krill, smaller hake and possibly an anchovy

Dover Sole, larval stage

Dover Sole, larval stage†

NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.

NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.

Jennifer Fry, July 20, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 20, 2009

Chief scientist, Dezhang Chu, gets to know a hake while chief scientist, Lisa Bonacci looks on.

Chief scientist, Dezhang Chu, gets to know a hake while chief scientist, Lisa Bonacci looks on.

Weather Data from the Bridge 
Reading in the morning:
Wind speed: 40 knots
Wind direction: 000°from the north
Visibility: clear
Temperature: 11.6°C (dry bulb); 10.5°C (wet bulb)

Reading in the afternoon:
Wind speed: 20 knots
Wind direction: 358°from the north
Visibility: foggy
Temperature: 12.2°C (dry bulb); 11.8°C (wet bulb)

Science/Technology Log 

Collecting the hake’s stomach help scientists determine its diet.

Collecting the hake’s stomach help scientists determine its diet.

Fishing trawl #1. We conducted a successful fishing trawl.  Collection of hake totaled 3500 kg. (kilograms.)  Pictured are chief scientists Lisa Bonacci and Dezhang Chu getting to know the hake.  Fishing trawl #2: There was trouble with the sonar equipment so we were unable to conduct a successful fishing trawl.

Personal Log 

Today’s unsuccessful fishing trawl due to a malfunction reminds me that we often learn more from our mistakes that our successes. Scientists are constantly reviewing their scientific process to make sure they align with their hypothesis. After 3 days of gale force winds (34-40 knots) and big waves, today was a welcome change with 20 knot winds and calm seas in the afternoon.  I finally feel like I’ve my “sea legs” about me.

The hake stomach and a pair of otolith, ear bones will help determine what the hake is eating and how old the fish are.

The hake stomach and a pair of otolith, ear bones will help determine what the hake is eating and how old the fish are.

Animals Seen 
Fish:  Hake Myctophidae
Birds:  Fulmar, Albatross, Gulls, and Shearwater

Jennifer Fry, July 19, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 19, 2009

The XBT (Expendable Bathythermograph)

The XBT (Expendable Bathythermograph)

Weather Data from the Bridge 
Wind speed: 42 knots
Wind direction: 350°from the north
Visibility: clear
Temperature: 11.4°C (dry bulb); 10.4°C (wet bulb)

Science and Technology Log 

The seas are still very rough with 40 knot winds. No fishing trawls due to the high waves and heavy seas. However, despite the rough seas, we were able to conduct an XBT, which stands for Expendable Bathythermograph.  An XBT is a measuring apparatus consisting of a large lead weight connected to a very thin copper wire. The function of the XBT is to measure the temperature throughout the water column.  It is launched off the stern (back) of the ship. As it sinks to the sea floor, temperature data is transmitted to an onboard computer.

Biologist Chris Grandin prepares to launch an XBT

Biologist Chris Grandin prepares to launch an XBT

Personal Log 

The Miller Freeman is an NOAA research vessel.   Here’s a bit of information about the Miller Freeman…For more information go here. The Miller Freeman is a 215foot fisheries and oceanographic research vessel and is one of the largest research trawlers in the United States. Its primary mission is to provide a working platform for the study of the ocean’s living resources. The ship is named for Miller Freeman (1875-1955), a publisher who was actively involved in the international management of fish harvests. The ship was launched in 1967, but not fully rigged until 1975. The vessel was again re-rigged in 1982. Its home port is Seattle, Washington.  It is capable of operating in any waters of the world. The ship has 7 NOAA Corps officers, 27 crew members, and maximum of 11 scientists.

Following is a “tour” of the ship.  It has many nice amenities for extended life at sea.

The Laundry Room - Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick if you’re up there too long.

The Laundry Room – Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick at times.

The Kitchen - Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.

The Kitchen – Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.

The Galley - This is where we enjoy deliciously prepared meals.

The Galley – This is where we enjoy deliciously prepared meals.

The Library - Pictured here is the ship’s library where crew members can read and check e-mail.

The Library – Pictured here is the ship’s library where crew members can read and check e-mail.

The Lounge - Here’s the lounge where movies and video games can be watched.

The Lounge – Here’s the lounge where movies and video games can be watched.

The Gym - The gym is located on the lowest level of the ship.  This is where you can work off the great food that you’ve eaten.

The Gym – The gym is located on the lowest level of the ship. This is where you can work off the great food that you’ve eaten.

The Gift of Patience 
Wending our way through the North Pacific Ocean,
The massive waves crash against our hull with Herculean strength
As high as a one story building, their tops are dolloped with luscious whipped cream
They take their turn crashing against the ships sturdy hull, as gale force winds whip wildly past.
We play a waiting game. We practice the ancient art of patience.
When will we have hake, the silvery, slender fish that evades our sonar?

As the winds blow, cold sea spray stings my face.
I watch as the never ending line of waves wait their turn to hit the ship’s hull.
The waves wait patiently as do we.
The sea teaches us serenity.
We must not show greed or impatience.
The sea will provide.
One should lay empty and open waiting for the gifts from the sea.

~Inspired by Anne Morrow Lindberg’s Gifts from the Sea

NOAA Ship Miller Freeman

NOAA Ship Miller Freeman

Jennifer Fry, July 17, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 17, 2009

Hake are unloaded into holding containers, soon to be weighed and measured

Hake are unloaded into holding containers, soon to be weighed and measured

Weather Data from the Bridge 
Wind speed: 20 knots
Wind direction: 340°from the north- north west
Visibility: foggy
Temperature: 15.2°C (dry bulb); 13.0°C (wet bulb)

Science and Technology Log 

Each day I observe the NOAA scientists using the scientific process.  These are the same process skills we learn in the classroom. The scientists determine what they want to find out and state it in a question form. These are some of the questions/hypotheses that they are trying to answer.

  • What and where are the populations of hake?
  • In what environments do the hake best thrive?
  • When do they migrate?
  • What do they feed on?
  • What feeds on the hake?

Once the hake are observed on the sonar, the trawl net is dropped into the water.  The fish are hauled out onto the deck where they are emptied into huge holding bins.  Scientists want a good sampling of hake for the survey, not too much and not too little.  Getting a good sample is important to the scientists; both for their research and the environment.  The scientists don’t want to take too many hake each time they fish, doing this might diminish the hake population. 

Collecting Data: Observing – Using the senses to collect information.

Classifying – Sorting or ordering objects or ideas into groups or categories based on their properties.

Measuring – Determining dimensions (length/area), volume, mass/weight, or time of objects or events by using instruments that measure these properties.

Otoliths—fish ear bones—are extracted and placed in vials (test tubes) for later study.

Otoliths—fish ear bones—are extracted and placed in vials (test tubes) for later study.

The scientists then collect their data. Fish are separated by species or classified.  All hake collected are then weighed. A certain number of them are measured in length, and their sex is determined.  Scientists observe; dissect a group of hake, and collect the fish’s ear bones, called the otoliths, (2 white oval shapes pictured above). Otoliths are stored in small vials, which are like test tubes, for later study. The test tube has a serial number which is fed into a computer as well. Later, scientists will observe the otoliths under a microscope.  The otolith helps determine the age of the fish. When observed under a microscope, the otolith, or ear bone has rings similar to rings of a tree. The more rings, the older the fish.  The age of the fish or data is then recorded in a computer spreadsheet.

Communicating – Using pictorial, written, or oral language to describe an event, action, or object.

Making Models – Making a pictorial, written or physical representation to explain an idea, event, or object.

Recording Data Writing down the results of an observation of an object or event using pictures, words, or numbers.

As data is collected, it is recorded into a computer database, then scientists create tables and graphs from information in this database.

Inferring  – Making statements about an observation that provide a reasonable explanation.

Predicting – Guessing what the outcome of an event will be based on observations and, usually, prior knowledge of similar events.

Interpreting Data – Creating or using tables, graphs, or diagrams to organize and explain information.

The otoliths look like small oval “winglike” structures.

The otoliths look like small oval “winglike” structures.

Once all the data is in the computer, scientists can analyze or figure out the answers to these questions.

  • What and where are the populations of hake?
  • In what environments do the hake best thrive?
  • When do they migrate?
  • What do they feed on?
  • What feeds on the hake?

Scientists use the data to infer or make a statement about the data that gives a reasonable explanation.  Scientists also make predictions by guessing what the outcome might be based on the data/observations.

Marine Mammal Watch – NOAA Fisheries instructs the scientists to conduct a “marine mammal watch” prior to a fishing trawl. This is to protect the marine mammals, such as dolphins, whales, sea lions, and seals.  When the nets go into the ocean, the curious sea lions want to see what’s going on and play around the nets.  This can prove dangerous for the animals because if they get tangled in the net, they cannot come up for air, and being mammals, they need air.  As it happened, a half a dozen sea lions were spotted around our trawl net. To protect the inquisitive animals we found another spot in which to put our net.

California sea lion

California sea lion

Personal Log 

Everyone aboard the Miller Freeman is a team.  It’s an amazing working environment.  The ship runs like a well oiled machine.  The crew is always so helpful and are dedicated to their work.  The scientists are incredibly dedicated to their specific field and are committed to helping the world and the ocean’s biome. Everyone is so patient with all my questions.  I am so grateful and honored to be part of this hake survey which is so scientifically important in determining the health of our ocean.

Animals Seen Today 
California sea lions
Hake Myctophidae: lantern fish