Beverly Owens: Science on Board NOAA Ship Henry Bigelow, June 18, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 18, 2013

Weather Data from the Bridge:
Air temperature: 13.50 oC (56.3 oF)
Wind Speed: 20.05 knots (23.07mph)

Science and Technology Log

Teacher at Sea Beverly Owens, and Dewey the Dragon at the Helm
Teacher at Sea Beverly Owens, and Dewey the Dragon at the Helm

On a research vessel such as NOAA Ship Henry B. Bigelow, does the ship support the science? Or are the ship’s activities separate from those of the Science Crew?  I didn’t realize how much the Ship’s Crew and the Science Crew worked hand-in-hand until I toured the Bridge.

First off, the ship is what’s known as an FSV. What does FSV stand for? FSV stands for Fisheries Survey Vessel. The primary responsibility of the Henry B. Bigelow is to study and monitor the marine fisheries stocks throughout New England (the Northeastern section of the United States). There are many scientific instruments aboard the Henry B. Bigelow that allow crew members and visiting science teams to do this and other work.

The ship has multiple labs that can be used for many purposes. The acoustics lab has many computers and can be used for modeling data collected from multibeam sonar equipment.  The chemistry lab is equipped with plentiful workspace, an eyewash, emergency shower, and fume hood. Our TowCam operations are being run from the dry lab. This space has nine computers displaying multiple data sets. We have occupied the counter space with an additional eight personal laptops; all used for different purposes such as examining TowCam images or inputting habitat data. The wet lab is where the collection sorting, and filtering take place. It is used during fisheries expeditions to process and examine groundfish.  During our research expedition, the wet lab is used mostly for staging TowCam operations. We also process sediment and water samples that were collected from the seafloor.  Sediment is collected using a vacuum-like apparatus called a slurp pump; water is collected in a Niskin bottle.  The sediment is sieved and any animals are saved for later examination.  Water samples are also filtered there, to remove particulate matter that will be used to determine the amount of food in the water column.

Walking around the ship, I noticed a psychrometer set, which is used to monitor relative humidity, or moisture content in the air. There is also a fluorometer, which measures light emitted from chlorophyll in photosynthetic organisms like algae or phytoplankton. The CTD system measures physical properties of the ocean water including conductivity/salinity, temperature, and depth. Additionally, the ship has a thermosalinograph (therm = heat, salin = salt, graph = write). Saltwater is taken into the ship and directed toward this instrument, which records the sea surface salinity and sea surface temperature.

The crew of the Henry B. Bigelow not only supports the research efforts of the science team but is also actively involved in conducting scientific research. Their instrumentation, knowledge, and team work enable them to protect and monitor the western North Atlantic waters and its living marine resources.

 Personal Log

Dragon on the Bridge
Dewey the Dragon is plotting the course.

Dewey the Dragon, all the way from Crest Middle School, enjoyed getting a tour of the Bridge. Dewey the Dragon learned how to steer the ship, read charts, and monitor activity using devices such as the alidade. Thanks to Ensigns Katie Doster and Aras Zygas for showing us around.

Did You Know?

Teacher at Sea, Beverly Owens, using the Alidade on the FSV Henry B. Bigelow
Teacher at Sea, Beverly Owens, using the Alidade on the FSV Henry B. Bigelow

The alidade is a device that allows people on the ship to sight far away objects, such as land. The person on the ship spots three separate points on land uses these sighting to determine the location of the ship. Alidades can also be used as a tool when making and verifying maritime charts.

Beverly Owens: What Is That? June 23, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 23, 2013

Weather Data from the Bridge:
Air temperature: 17.23 oC (63.014 oF)
Wind Speed: 6 knots (6.90 mph)

Science and Technology Log:

We’ve seen amazing and beautiful animals living in these deep water canyons, many of which I did not recognize. During the progression of each tow I find myself asking the scientists around me, “What is that?” But that is what science is all about: being curious and trying to obtain the answers.

No matter how many hours I’ve sat on watch, or how many TowCam images I’ve looked at on the computer monitor, it’s still exciting to be one of the few people who get to see images directly from the ocean floor! It’s incredible that a large metal apparatus with a camera can send images and data thousands of meters through a tiny cable back to computers on the ship. As the pilots navigate TowCam through the water, images are sent back to the ship every 10 seconds.

Image Highlights taken using TowCam during the Canyons CSI research expedition.
Image highlights taken using TowCam during the Canyons CSI research expedition.

So what do we see in the images that are being sent back? I’ve gotten to see amazing things living more than a mile below the ocean. These include octopods and squids,  skates, sea pens, anemones, delicate brittle stars, bivalves, and lush colorful coral gardens. All these organisms live on the  bottom of the ocean in cold, dark water and under extreme amounts of pressure.

Morphology: The structure of a corallum.
Morphology: The structure of a corallum.

How many different kinds of deep-sea corals are living at the bottom of the ocean? At least 71 species are known to occur  off the northeastern coast of the U.S.; and new species are likely to be discovered.  Many of the deep-sea corals look similar in color or structure. How do scientists tell them apart? They use taxonomic keys and DNA analysis to identify species.  Dichotomous keys are a systematic way of identifying organisms by making a series of choices based on an  organism’s characteristics. These keys are particularly useful if you don’t have instrumentation to conduct a DNA analysis.

Earlier this week, marine ecologist Dave Packer from NOAA’s National Marine Fisheries Service taught me how to use a dichotomous key for deep-sea corals. Corals are actually animals, even though many of them look plant-like in shape, so they belong in the Kingdom Animalia, the Phylum Cnidaria, and the Class Anthozoa. We began by discussing animals in the four Orders of deep-sea corals within the Anthozoa that are found off our northeastern coast: Scleractinia (stony corals), Antipatharia (black corals), Alcyonacea (soft corals and sea fans), and Pennatulacea (sea pens). Compare  the corals shown below. You will notice that each group has a different style or appearance.

The Four Orders of Corals.
The Four Orders of Corals

Even though corals appear to be morphologically simple animals, they are highly detailed. Individual corals can be very small. Look at the image to the left to become familiar with some of the structures. Below are some additional features that may be found on different types of corals.

Some additional features that may be found in corals.
Some additional features that may be found in corals

Mr. Packer showed me a piece of coral that we would be “keying out.”  By looking at the surface of it, we could tell it was a stony coral and belonged to the Order Scleractinia. Stony corals are usually very hard to the touch.  Then, we examined its characteristics. Look at the picture to the right, and see if you can identify the characteristics that we examined on this coral:

Try your hand at Taxonomy
Try your hand at Taxonomy
  1. Is it solitary (grows alone) or is it colonial (grows with other coral polyps)?
  2. Are the septa (fins sticking out at the top) smooth or rough?
  3. Are the coral polyps only on one side, or scattered in a random pattern?
  4. Is the coenosteum (portion of the skeleton between the polyps that looks like tree branches) porous or smooth?
  5. Corals reproduce by “budding.” Do new corals bud inside an older coral (intratenticular) or are polyps added to the outside near older coral polyps?
  6. Does it have 24 septa?

Check your answers below to see if you got these questions correct!

Drum roll, please… This coral is Solenosmilia. Try pronouncing that one! Going through an actual dichotomous key requires answering many more questions and making more choices. Coral polyps and structures can be so small that often a microscope is necessary to look at some parts. Sometimes corals may look very similar, so DNA testing is conducted to confirm the identification.  Dichotomous keys can be used in identifying many other types of organisms as well, such as plants and fungi.

Want to try your hand at using a dichotomous key? Try this sweet activity using candy! Think about the characteristics of the candy pieces listed in the picture and key: Skittles, M & M’s, Gummy Bears, packaged Lemon Heads, unpackaged Lemon Heads, Dum Dum lollipops, Sugar Babies, Atomic Fireball, Mike and Ike’s, Tootsie Rolls, and Gobstoppers. What characteristics do they have in common? If you were going to sort them, how would you begin? We’re going to start with packaged versus unpackaged. Continue to follow along with the Candy Dichotomous Key until all the candy is sorted. How are the candy pieces similar? How do they differ?  You have now used  a dichotomous key to identify candy!

Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)

Check your answers to the Coral identification:

  1.  Colonial
  2. The septa are rough
  3. The coral polyps  appear to be randomly scattered
  4. The coenosteum is smooth
  5. These corals are intratenticular – notice how some appear to be budding off from one another.
  6. No.

    Beverly Owens, Teacher at Sea, with coral sample of Solenosmilia
    Beverly Owens, Teacher at Sea, with coral sample of Solenosmilia

Personal Log:

One of my favorite marine organisms is the starfish. We have seen many brittle stars during the course of our research expedition. There have been many large white brittle stars, and many tiny pink brittle stars that live symbiotically with certain corals.

Did You Know?

Corals are actually animals? They belong in the Kingdom Animalia. Corals can live colonially, with other coral animals, or can be solitary and develop alone.

Beverly Owens: Getting ready to Cruise! June 7, 2013

The Dragon, Crest Middle School's Mascot
The Dragon, Crest Middle School’s Mascot

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Getting ready! I’ll be headed to Rhode Island, and leaving on the NOAA ship Henry B. Bigelow very soon. Today, I showed my 8th grade students a picture of the ship and told them about the research that would be taking place. I brought a bandana to school and asked all of the my students to sign it. Our school’s mascot is a dragon, so I will be bringing Dewey the Dragon along with me on my Teacher at Sea trip. Dewey will be wearing the bandana my students signed (as seen in the photo). I will be taking pictures of Dewey during the trip, so that students will be able to see him in the lab, and will provide some idea of scale in many pictures.

I am looking forward to this research experience, and am excited about the opportunity to share this information with my students, school, family, and local community. What an exciting adventure awaits!