Shelley Gordon: ACCESS Partnership, July 24, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 24, 2019


Applied California Current Ecosystem Studies (ACCESS) is a joint research project conducted by NOAA (Cordell Bank National Marine Sanctuary and Greater Farallones National Marine Sanctuary) and Point Blue Conservation Science. 

NOAA’s Office of National Marine Sanctuaries manages 13 sanctuaries and two marine national monuments, protecting a total of 600,000 square miles of marine and Great Lakes waters within the United States.  Four of the sanctuaries are in California.  Greater Farallones National Marine Sanctuary (GFNMS) is a large sanctuary that protects over 3,000 square miles of California coast and offshore marine habitat from San Francisco to Point Arena.  There are numerous beaches and costal habitats included in this sanctuary, as well as the Farallon Islands.  Cordell Bank National Marine Sanctuary (CBNMS) is a smaller sanctuary around Cordell Bank, a large offshore seamount approximately 22 miles from the coast.  Sitting at the edge of the continental shelf, Cordell Bank is approximately 26 square miles in size, and while you cannot tell it is there from the surface, it supports a huge diversity of brightly colored sponges, corals, anemones, and other invertebrates.  Both sanctuaries protect a wide variety of living organisms across the food chain, from phytoplankton to blue whales.

Cordell Bank and Greater Farallones NMS
Map of Cordell Bank and Greater Farallones National Marine Sanctuaries. Map taken from cordellbank.noaa.gov

Point Blue Conservation Science is a non-profit organization that is working to combat climate change, habitat loss, and other environmental threats by helping to develop solutions that benefit wildlife and people.  They work with local natural resource managers (like National Marine Sanctuaries) to help monitor and improve the health of the planet. 

Scientists from each of these organizations have come together to work on ACCESS.  This project, started back in 2004, collects data on the physical conditions and living things within GFNMS and CBNMS.  Scientists use this data to document wildlife abundance, monitor changes over time, and help inform decisions about conservation efforts.  For example, data collected on the location of whales can help create policies to reduce threats to whales, like ship strikes and entanglements.   There are many huge ships that come in and out of San Francisco Bay on a daily basis.  Scientists are currently working with the industry to support a reduction in ship speed, which can reduce the likelihood of whales coming into dangerous contact with ship hulls.  Another threat to whales are entanglement in fishing gear.  Legal commercial crab fishing using crab pots occurs within the sanctuaries.  In recent years there have been greater incidents of whales being entangled in the buoy lines that fisherman use to help them collect the crab pots from the bottom of the ocean.  As the result of a recent lawsuit filed by ­­­­­the Center for Biological Diversity, the commercial crab season ended early this year to try to help protect the whales.

Adult Common Murre
Adult Common Murre. Photo: Dru Devlin

An interesting, and possibly concerning, phenomenon is being observed on our cruise.  Kirsten Lindquist, the seabird expert on this cruise, has seen a great number of Common Murres on the water during our data collection observations.  However, she has noticed a lack of chicks.  Common Murres nest on rocky outcroppings and the chicks leave the nest 15-25 days after they hatch, before they are able to fly.  The chicks then float on the water are fed by their parents for several weeks until they can feed themselves.  Generally, at this time of year she would expect to see a large number of adult and chick pairings floating on the surface of the water together.  Today we saw quite a few chicks floating with an adult, but this has not been the case during the other days on this cruise.  It is unclear why there are fewer Common Murre chicks than are typically seen.

Did You Know?

Dani and Shelley deploy CTD
Dani Lipski and me deploying the CTD, a device used to measure water conductivity, temperature, and depth. Photo: Jaime Jahncke

Scientists use “conductivity” as a measure of how salty the ocean water is.  If the water is relatively cold and salty that is a sign of “good” upwelling conditions, meaning that the cold water from the deep ocean is moving up over the continental shelf, bringing a high concentration of nutrients with it.  The upwelling along the California coast is a main reason why there is such a diversity of ocean life here.

Talia Romito: Second Day at Sea, July 25, 2012

NOAA Teacher at Sea
Talia Romito
Onboard R/V Fulmar
July 24– July 29, 2012

Mission: Ecosystem Survey
Geographic area of cruise: Cordell Bank and Gulf of the Farallones National Marine Sanctuaries
Date: July 25, 2012

Location Data:
Latitude: 37 53.55 W
Longitude: 123 5.7 N

Weather Data From Bridge:
Air Temperature 12.2 C (54 F)
Wind Speed 15 knots/ 17 mph
Wind Direction: From the South West
Surface Water Temperature: 13 C (55.4 F)

Science and Technology Log

Wednesday July 25, 2012

Up Early!

I woke up at 6 AM to the sounds of the people scurrying around to get ready for departure.  The Captain, Erik, and Mate, Dave were preparing the boat while the rest of us were getting breakfast and loading gear.  We welcomed four people onto the boat to complete the team for the day.

Me on the left in my Rubber Fashion Statement

Me on the left in my Rubber Fashion Statement

Today we are completing both the Offshore and Nearshore Line 6 transects.  It is going to be a long day for me with eight stations along the transect for deploying different instruments for gathering data.  I’ll tell you more about that a little later.  The scientists and crew decided to start at the West end of Offshore Line 6.  It took about two hours to get out there so while the crew was in the Wheelhouse the rest of us were able to settle in for little cat naps.  It felt so good to be able to get a little more sleep before the work began.

Gear Up and Get to Work!

With ten minutes until “go” time, the team started to get ready for the long day ahead.  Everyone had on many layers of clothes with a protective waterproof outer layer.  I put on my black rubber boots, yellow rubber overalls, and bright orange float coat (jacket with built-in floatation).  I looked like a bumble bee who ran into an orange flower.  It was definitely one of my better fashion statements.  I think everyone should wear rubber clothes in bright colors, just kidding :P.

Conductivity - Temperature - Depth CTD

Conductivity – Temperature – Depth – CTD

The boat stopped and then Kaitlin and I got to work on the back deck.  At each station we deployed at least two pieces of equipment.  The first is the CTD which means Conductivity, Temperature, and Depth.  This machine is so cool. It gathers information about a bunch of different things.  It has four different types of sensors.  They include percentage of dissolved oxygen, turbidity (amount of particulates in the water), fluorometer for chlorophyll A (the intensity and wavelength of a certain spectrum of light), and a conductivity/ temperature meter in order to calculate salinity.

The second piece of equipment is the Hoop Net.  The name is pretty intuitive, but I’ll describe it to you anyway.  There is a large steel hoop that is 1 meter in diameter on one end.  The net connects to it and gradually gets smaller to the cod end at the collection bucket which is 4.5 centimeters in diameter.

Hoop Net on the winch

Hoop Net

The net is 3.5 meters long from hoop to where it connects to the collection bucket and the mesh is 333 microns.  The bucket has screens that allows water and phytoplankton to escape.  The purpose of the hoop is to collect zooplankton.  The samples we collect to go the Institute of Ocean Sciences in Canada to be processed after the cruise is over.

The third piece of equipment is the Tucker Trawl.  We deploy it once each day near the Shelf Break in order to collect krill.  This net is huge and heavy.  This net allows the scientists to get samples at different depths within the water column.  The Tucker Trawl has three separate nets; top, middle, and bottom.  They deploy it with the bottom net open and then close the bottom and open the middle and top nets in order as the net raises.  They let out  400 meters of cable in order to be at a depth of 200 meters below the surface to start and raise the net from there stopping twice to open the next two nets.  The scientists watch the eco-sounder (sophisticated fish finder) and determine at what depth they would like to open the next two nets.  Please watch the video to get a clear picture of what is going on and how awesome it is.

The Funny Part!

Blow out Pants

Blow out Pants

Ok so working on the back deck has a  lot of ups and downs literally.  When Kaitlin and I are deploying or recovering the CTD and Hoop Net we are bending, stretching, working on our knees and more.  The first time I bent over to rinse down the hoop net I accidentally dropped the spray nozzle and it locked in the open position; I was sprayed with a steady stream of seawater right in the face until Kaitlin was able to turn in off.  It was definitely a cold welcome to work on the boat.  Oh yeah, I forgot to tell you we use seawater on the back deck for rinsing nets, etc.  There is a freshwater hose, but that is mainly used to clean the boat after each cruise.  The second time I got on my knees to collect a specimen from the Hoop Net I had a blow out!  My rubber pants split right down the middle.  So much for being prepared.  The Mate Dave was nice enough to let me borrow his rubber pants for the remainder of the trip.  Thanks Dave – you’re a life saver.

Camaraderie and Practical Jokers!

In between the stations and observing we all like to have a good time.  We always snack in between.  If someone gets something out then we all help ourselves to some of theirs or our own concoction.  We’re eating pretzels, chips and salsa, carrots and humus, pea pods, dried apple chips and more.

Fishing Lure

Fishing Lure

Erik had been planning to punk the scientists during this trip.  He bought a blue glittery fishing lure that looks like a centipede and waited for the most opportune moment to pull his prank.  While the scientists were getting the Tucker Trawl ready he tossed the lure into one of the nets so that it would come up with the sample.  When we pulled up the net Kaitlin and I saw it in the collection bucket and were very curious about what it was.  We called Jamie over and after a few moments realized it was a lure and looked up to see Erik and Dave laughing hysterically at us.  It was a good time all around.  At the same time the observers where coming down from the Flybridge and Jamie was able to continue the prank for at least fifteen minutes.  We all had a good laugh when the second group realized it was a lure too.

View from the Boat!

Black Footed Albatross

Black Footed Albatross

This is one of the best parts of the day!  I saw so many different animals from the boat during the day.  Here are just a few of the highlights.  A mother whale and calf pair were breaching multiple times.  Another Humpback Whale was tail slapping at least 12 times that I counted.  We saw Blue Whales too.  The seabirds were around as well.  The most common were Sooty Shearwaters, Common Murres, Pomarine Jaegers, and Black Footed Albatrosses.  All of these birds are amazing.  If you see a Common Murre adult and chick; the adult is the dad he’s the one that raises the chick.  The Jaeger has a special kind of scavenging style called Cleptoparasitism (stealing food from other birds).  I saw one chasing another bird till it dropped its food in mid-air and the Jaeger caught the fish before it hit the water.  Pretty cool right?!

On the way back to Sausalito we went right under the Golden Gate Bridge.  The weather was perfect.  The sun was setting with puffy clouds in a baby blue sky.  As my eyes drifted down towards San Francisco I was mesmerized by the view.  I could see the entire Bay.  The buildings reflected the golden glow of the sunset perfectly.  There wasn’t a whisper of fog on the water; I could see Alcatraz Island, Angel Island, and The Bay Bridge.