Andrea Schmuttermair: Tows Away! June 26, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: June 26, 2012 

Ship  Data from the Bridge:
Latitude:  2805.26N
Longitude: 9234.19W
Speed:  10mph
Wind Speed:  5.86 knots
Wind Direction:   E/SE
Surface Water Salinity:  35.867 PPT
Air Temperature:  28.8 C
Relative Humidity: 86%
Barometric Pressure:  1010.51 mb
Water Depth:  96.5 m

Science and Technology Log


Sunrise
Sunrise on the Oregon II

Opisthonema oglinum, Lagadon rhomboides, Chloroscombus chrysurus…..yes, I have officially started dreaming about taxonomic names of our fish. It’s day 4 and I now have a much better grasp at identifying the variety of critters we pull up in our trawls. I am always excited to be out on deck when they bring up the trawl to see what interesting critters we catch. Surprises are great!

Do you want to know where the Oregon II is headed?

Check out Ship Tracker at http://shiptracker.noaa.gov/

If you click on the link above, you can see the path that our ship is taking to hit all of our stations for the survey. We often have station after station to hit- meaning as soon as we are done sorting and measuring, we have to bring in the next catch. Because some stations are only 3-5 miles apart, we sometimes have to do “double dips”, where we put in the trawl for 30 minutes, pull it up, and put it right back in again.

It’s been interesting to note the variety of our catches. Croakers, bumperfish, and shrimp have been in high abundance the last 2 days as we were in shallower water. Before that we had a couple of catches that had a high abundance of pinfish. When we take our subsample, we typically enter data for up to 20 of that particular species. We take length measurements on each fish, and on every fifth fish. We will also weigh and sex it (if sexing is possible).

Shrimp in the Gulf
A comparison of the various sizes of shrimp we pull up from our trawls.
Shrimp waiting to be measures
A relatively small catch in comparison to the 200+ we’ve been pulling up recently.

When we were in shallower waters, we had a significant increase in the number of shrimp we brought up. Tuesday morning was the first catch that did not have well over 200 shrimp (this is because we’ve been moving into deeper waters).  For the 3 commercial shrimp, white (farfantepenaeus setiferus), pink (farfantepenaeus duorarum), and brown (farfantepenaeus aztecus), we take 200 samples, as opposed to our high-quantity fish, where we will only take 20 samples. For each of the commercial shrimp we catch, we measure, weigh and sex each shrimp. I’ve gotten very good at identifying the sex of shrimp- some of the fish are much more difficult to tell. The information we get from this survey will determine the amount of shrimp that boats can take during the shrimping season in Louisiana and Mississippi. During the first leg of the groundfish survey, the data collected determined the amount of shrimp that could be caught in Texas. The groundfish survey is crucial for the shrimping industry and for ensuring that shrimp are not overfished.

Students- think of the food chain. What would happen if we overfished and took out too many shrimp? (Hint: Think of predators and prey.)

Sunrise
The trawl net at sunrise

We’ve now started doing 2 different tows  in addition to our trawls. Some of the stations are trawl stations, whereas others are plankton stations.

The trawl on deck
Alex, Alonzo and Reggie unloading the trawl net.

At a trawl station, we lower the trawl from the stern down to the ocean floor. The trawl net is meant for catching larger critters that live at the bottom of the ocean. There is a chain, also known as a “tickler”, which moves lightly across the ocean floor to lure fish to leave their hiding spots and swim into our net. The trawl is down for 30 minutes, after which it is brought back on deck to weigh the total catch, and then brought back into the wet lab for sorting.

Another important mission of the groundfish survey is to collect plankton samples. To do this, we use a Neuston tow and a bongo tow.

neuston tow
The Neuston tow about to pick up a lot of Sargassum- oh no!

The Neuston tow has a large, rectangular frame with a fine mesh net attached to it. At the end of the net is a large cylindrical bucket, called a codend, with a mesh screen meant for catching the organisms. In comparison to the trawl net, which has openings of 41.4mm , the Neuston’s mesh is only 0.947mm. This means the mesh is significantly finer, meant for catching some of the smaller critters and plankton that would otherwise escape the trawl net. The Neuston tow is put on the surface of the water and towed for 10 minutes. Half the tow is in the water while half is out. We end up picking up a lot of Sargassum, or, seaweed, that is found floating at the water’s surface. When we gather a lot of Sargassum, we have to sift through it and spray it to get out any of the organisms that like to hide in their protective paradise.

Bongo tow
The bongo tow on deck waiting to be sent down to about 3m from the ocean floor.

After we’ve completed the Neuston tow, we do the bongo tow.  The bongo’s mesh is even finer than the Neuston tow’s mesh at only 0.333mm. The bongo has 2 parts- a left and a right bongo (and yes they do look a little like bongo drums- hence their name). The top part of the bongo is a large cylinder with an open bottom and top. The net is attached to this cylinder, and again at the bottom of each side is cylindrical tube  called codends meant to catch the plankton. The bongo tow is meant to take a sample from the entire water column. This means that instead of riding on the surface of the water, it gets sent down to about 3 meters from the ocean floor (there is a sensor at the top that is 2m from the bottom of the net)  and brought back up immediately.

Sifting through the sieve
The remnants from our Neuston tow. This is the sieve we use to weed out what we want and don’t want.
bongo leftover
Here are our 2 samples from the bongo tow. The left one is preserved in ethanol and the right is preserved in formaldehyde (10% formalin and sea water)
Neuston tow samples
Here is a sample from the Neuston tow. Carefully camouflaged are thousands of crab megalops, aka juvenille crabs.

For both tows, it is important to rinse the nets to get any lasting organisms we might not see with our own eyes into our sample. Once we’ve done this, we bring the tubes back into the wet lab where we continue to rinse them through a sieve so that only certain items are leftover. In the Neuston, we often find small fish (usually less than 3mm), baby shrimp, crabs and Jessica’s favorite, the Sargassum fish. Most recently a few flying fish got caught in our Neuston tow. Prior to pulling it up, I was enjoying watching them flit across the water- they were about all we could see in the water in the middle of the night. After being rinsed thoroughly through the sieve, we preserve them by placing the sample in a glass jar with either ethanol or formaldehyde solutions. They are preserved in ethanol for DNA work and in formaldehyde for long-term preservation. These samples are then saved to send to a lab in Poland, which is the sorting center for the SEAMAP samples.

Flying fish
Flying fish we pulled up in our Neuston tow at nighttime.

Personal Log

My stateroom
My sleeping quarters (top bunk), also known as a stateroom. My roommate is Kristin, one of the scientists on board.

Well, I think I am finally getting used to the schedule of working the night shift. I am thankful that my bunk is on the bottom floor of the ship- which means it is completely dark- so that I can sleep during the daytime. Yesterday was probably one of the least busy days we’ve had so far, and because we were in deeper waters, our trawls were much smaller. This means I had a little more time to work on my blogs, which at times can be hard to fit in. It amazes me that we have internet access on the ship, and it’s not even as slow as I expected. It goes down from time to time, especially when the waters are rough. We’ve been fortunate to have pretty calm waters, aside from the first day.

You may have heard about Hurricane Debby on the news as it prepared to hit the Gulf. On Sunday, we were heavily debating heading back to Galveston to “bunker down” and ride out the storm. However, the storm that was forming seemed to dissipate and head in a different direction, thank goodness.  I was not thrilled about the possibility of heading back to port!

We had our first drills the day after we set sail. The drills- fire and abandon ship are distinguished by different types of bells, similar to using Morse code. The abandon ship drill was fun. We got to put on our survival suit, which is like a big orange Gumby suit. It not only protects you in cold water, but also makes you highly visible. I remember reading some of the former TAS blogs, and this picture was always in. Of course, I’ve got to add mine as well.

Survival Suit
Here I am in my survival suit. Judd also decided to be in the picture. 🙂

I’ve been having fun exploring different areas of the ship, even though there is only so far you can go on the ship. Yesterday, I went up to the bridge, which is the front of the ship where the captain or the NOAA Corps officers steer the ship from. You can think of it like a control center of an airplane. There are navigation charts (both computerized and paper) and radars that help guide the ship so it knows what obstacles are out there. There is a great view from the bridge that you don’t get anywhere else on the ship. It’s also fun to watch the folks down on deck when they are deploying the CTD or either of the 2 tows.

We’ve caught such an abundance of critters, I thought I’d share some of my favorite catches thus far:

cownose ray
Here I am holding a cownose ray (Rhinoptera bonasus)- my favorite catch yet. He weighed about 25lbs! This one was the highlight of my day as rays are some of my favorite ocean critters!

Atlantic sharpnose shark
One of the 4 Atlantic sharpnose sharks (Rhizoprionodon terraenovae) we’ve caught so far.

Sharksucker
A sharksucker (Echeneis naucrates)- these guys hang onto sharks to catch a ride- he’s still alive so is able to hang onto my arm!

Critter Query Time!

Critter Query #1: What is a fathom (in your own words please)?

Critter Query #2: What are the differences between skates and rays?

Marian Wagner: Deep in the Work, August 20, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: Saturday, August 20, 2011

Weather Data from the Bridge (the wheelhouse, where the controls of the ship are)
E-SE Wind at 5 knots (wind is travelling 5 nautical miles per hour, 1.15 statute miles = 1 nautical mile)
Sea depth at 12:42 pm was 51.2 meters
Water Temperature 29.62 Celsius

Science and Technology Log

Research aboard the R/V Savannah has commenced and is at full throttle.  Scientists and crew are well-trained and everyone knows their jobs thoroughly.  All work is moving along with great efficiency!  Now that I have learned and experienced the details this research, I’ll explain it here:

As a reminder, our mission is to survey the population of commercially-important species to inform stock assessments, or, put another way, we study how many fish there are and where they exist, and we provide information to help fisheries managers set a sustainable harvest (so we don’t run out of fish). We conduct our research by dropping chevron fish traps onto the ocean floor to catch samples of fish we can use to estimate a population and report important biological measures (for example, age, length, weight, feeding habits, and genetics). The method of using chevron traps to catch live biological samples doesn’t work well for all species, so another way of estimating abundance is by recording the activity that is happening around the traps with video cameras.

We cannot begin dropping fish traps until one hour after sunrise because the cameras need natural light to record the habitat and the activity (if we were to use artificial light it would change everything: sometimes fish are attracted to artificial light, other fish avoid it, so our research would be compromised, or messed up, if we used artificial light). So, the crew that works the shift from midnight to noon gets the first traps ready, and they start deploying them around 8:00 am.  Here’s what it looks like to drop traps off the boat:

Cameras rolling, we are almost at the target spot to drop the trap.

The traps stay down on the ocean floor for 90 minutes.  We usually deposit 6 traps at a time in the same general area (each a mile or less apart), and we pick them up in the same order we dropped them.  To pull the traps out of the water, we use a hydraulic pot hauler (that was made in Seattle, WA!) and a team effort of coordinated and careful action.  If we were not extremely careful doing this work on the deck, not only could the science data be useless, but people could easily be hurt.  This is what we look like in action:

Pulling up trap, excited to see what we caught

I get up in the morning around 9AM, I have breakfast and relax during the few hours I have off before my shift begins.  I like to talk to people, visit the bridge for weather and information on our direction, and when I can get on the single computer, I sometimes do so before my shift begins.

My shift begins at noon, when I suit up to work on the deck of the stern (the back).  We work dropping traps, picking them up, and processing fish that we catch.  The work is very carefully conducted, with everyone having specific roles but also helping each other in every way so we can do our best job.  The amount of teamwork is incredible.

I am extremely impressed with how well each scientist and crewman clearly thinks of the team first, and his/her individual needs second.  Everyone (I mean EVERYone) works hard (I mean VERY hard), is very thoughtful and conscientious of the “big picture”, is fun to laugh with and be around, and, in general, everyone is just easy to live with.  Doing field science research like this would be really tough if scientists did not also get along well as a member of a team.  Because conducting this research depends upon teamwork, being able to live and work well together is perhaps as important as one’s research skills.

This door is charming yet inconvenient during a middle-of-the-night bathroom run, but esential in case of emergency.

Personal Log

Living on a ship has so many opportunities for adventure!  I mean…going to the head (bathroom) is still an adventure for me!  Walking through two watertight doors to get to the bathroom is an adventure.  Keeping my balance in a rocking shower, a place where I am often most relaxed, is a new adventure.  Being constantly aware of the amount of water I am using so we don’t run out of running water (and knowing everyone else is doing the same) is a reality, and an adventure of sorts.  Not being able to get away from the strangers-who-are-now-family is an adventure.  And there are all the work-related adventures…wrestling with a moray eel against its gaping teeth (which could have infected and killed the muscles in my arm for life) was a foolish adventure (I should have let it get out of the tub and slither away instead of wrestling it), but I successfully made it through to tell about it with no injury.  There are so many adventures.  I am remembering how much I love learning by immersing myself in new experiences.  I really believe the most powerful way to learn about another way of life is to live it.

After being iced for 30 minutes to take data on him, this moray was still fighting but with much less vigor. I threw him off the ship after this photo. He's alive.

Also, I love being in the unique environment of the pelagic ocean, the part of the ocean that is not near land. It is another experience of immersion to be around this environment for a length of time, and really get to live within it. I can feel the changes of the rocking motion of the ship when the seas are rougher, I can see when the clouds spell rain, I know the phase of the moon and the smell of the ocean air.  I know this environment now just as well as I know my own neighborhood.