Meredith Salmon: Who’s Who Aboard the Okeanos: Part III, July 27, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Date: July 27, 2018

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.48°N

Longitude: 62.41°W

Air Temperature: 27.8°C

Wind Speed:  10.5 knots

Conditions: Partly Sunny

Depth: 5272.37 meters

 

Commanding Officer – Commander Eric Johnson, NOAA Corps

Hometown: Maryland but currently resides in D.C

 

Ever since Eric was young, he had been fascinated by the ocean. After reading about Eugenie Clark’s contributions to marine science and shark research, he was hooked on learning as much as he could about the sea. Eric began his studies at St. Mary’s College of Maryland; however, he made the decision to take a six year sabbatical and work in a variety of fields to gain practical experience. During this time, he found employment as an apprentice for a deep sea salvage company and completed electrical work on ROVs for the Navy. This job granted him the opportunity to go to sea and encouraged him to apply what he learned in the field.

 

After this six year period, Eric returned to college at the University of Maryland, majored in Marine Biology, and earned his scuba certification. Upon graduation, he was a manager at REI in College Park and volunteer diver at the National Aquarium in Baltimore. As an exhibit diver, Eric was responsible for feeding the animals by hand in the tanks, maintenance of tanks and scuba equipment, as well as educational outreach.

 

Although Eric learned a great deal about customer service and public speaking during his time at REI and the Baltimore Aquarium, he was interested in researching a more permanent marine science career. While researching potential employment opportunities on the NOAA website, he discovered the NOAA Corps. Eric was very interested in the mission of this Uniformed Service and decided to apply. Eric was not selected the first time since he did not have direct experience working in a related field; however, he was not discouraged. Instead, Eric secured a job working at a Biotech company, reapplied to the NOAA Corps, and was selected. Once he graduated from Basic Officer Training at the Coast Guard Academy, Eric began an extensive and impressive career with NOAA.

 

Eric’s first sea assignment was as navigation officer on the Oregon II.  He was responsible for operations focused on diving, navigation, and safety aboard this vessel. After spending two years at sea, he began his first land rotation as the Executive Officer of the NOAA Dive Program before advancing to the NOAA ship Hi’ialakai. Eric kept track of scientific diving operations aboard the Hi’ialakai, which amounted to approximately 3,000 to 4,000 dives per year! Then, Eric served as the NOAA Recruiter for a year and a half before becoming Chief of the Recruiting Branch. He found the recruiting positions to be incredibly rewarding and enjoyed encouraging those who were looking to make a difference while serving their country to apply to NOAA. Eventually, Eric returned to his original ship, the Oregon II, as Executive Officer before beginning as Commanding Officer on the Okeanos Explorer. Although serving as the Commanding Officer is a major responsibility, Eric is dedicated to supporting NOAA’s mission in regards to science, service, and stewardship. He finds is assignment on the Okeanos very exciting since this ship’s main purpose is ocean exploration.

 

Throughout his career, Eric has learned that it is especially important to pursue your true interests and not be afraid to explore the unknown. Eric believes that stepping outside your comfort zone and learning how to adapt to new situations enables you to construct a skill set that will help you experience success in a variety of situations.

CDR Johnson and wife

CDR Johnson and his wife, Angela, at his Change of Command Ceremony last year

 

Fun Facts about CO Eric Johnson

Eric continues to be an avid diver and has completed over 1,000 dives during his career.

– If you added up all of the hours Eric has spent diving, it would be about one month underwater!

– In Eric’s opinion, the best spot to dive is south of Hawaii at Palmyra Atoll.

Cecelia Carroll: A Busy Day Off the Coast of New Hampshire and Massachusetts, May 11, 2017

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 13, 2017  

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 11, 2017

Latitude: 42.45.719 N
Longitude: 282.18.6 W

Science and Technology

As soon as the day group’s shift started at noon we were right into sorting the catch and doing the work-up of weighing, measuring and taking samples.

It’s with a good bit of anticipation waiting to see what the net will reveal when its contents are emptied! There were some new fish for me to see today of which I was able to get some nice photos.  I was asked today if I had a favorite fish.  I enjoy seeing the variety of star fish that come down the conveyor belt as we sort through the catch even though they are not part of the survey.  The Atlantic Mackerel (Scomber scombrus) are beautiful with their blue and black bands on their upper bodies and their shimmering scales.  They are a schooling fish and today one catch consisted primarily of this species. I’m fascinated with the unusual looking fish such as the goosefish, the Atlantic wolffish (Anarchichas lupus) with its sharp protruding teeth, and some of the different crabs we have caught in the net.  Another catch today, closer to land where the seafloor was more sandy, was full of Atlantic Scallops. Their shells consisted of a variety of interesting colors and patterns.

Today I also had a chance to have a conversation with the Commanding Officer of the Henry B. Bigelow, Commander Jeffrey Taylor.  After serving as a medic in the air force, and with a degree in Biology with a concentration in marine zoology from the University of South Florida.  What he enjoys about his job is teaching the younger NOAA officers in the operation of the ship.  He is proud of his state-of-the-art ship with its advanced technology and engineering and its mission to protect, restore, and manage the marine, coastal and ocean resources.  Some things that were touched upon in our conversation about the ship included the winch system for trawling.  It is an advanced system that monitors the cable tension and adjusts to keep the net with its sensors open to specific measurements and to keep it on the bottom of the seafloor. This system also is more time efficient. The Hydrographic Winch System deploys the CTD’s before each trawl.  CO Taylor also related how the quiet hull and the advanced SONAR systems help in their missions.  What we discussed that I am most familiar with since I boarded the Henry B. Bigelow is the Wet Lab, which was especially engineered for the Henry B. Bigelow and its survey missions. This is where I spend a good bit of time during the survey.  The ergonomically designed work stations interface with the computer system to record and store the data collected from the fish samples 100% digitally. I was pleased to hear what thought, skill and fine tuning had gone into designing this room as I had earlier on the trip mentally noted some of the interesting aspects of the layout of the room. Commanding Officer Taylor also had high praise for his dedicated NOAA Corps staff and the crew, engineers and scientists that work together as a team.

 

Sea stars

 

Atlantic mackerel

 

TAS Cecelia Carroll holds a wolffish

 

Crab and sea star

 

Atlantic sea scallops

David Murk: Do You Know Your ABCs? May 14, 2014

NOAA Teacher at Sea
Dave Murk
Aboard NOAA Ship Okeanos Explorer
May 7 – 22, 2014

Mission: EX 14-03 – Exploration, East Coast Mapping
Geographical Area of Cruise: Off the Coast of Florida and Georgia – Western portion of the Blake Plateau (Stetson Mesa)
Date: May 14, 2014

Weather data from Bridge:

We are sailing south and are at 28.55 degrees  North, 79.44 degrees  West

Wind: 23 knots out of the southeast.
Visibility: 10 miles
Water Depth in feet: 653 feet
Temperature: 27 degrees Celsius  – both sea and air temp. are 80 degrees!

Our location can also be found at:  (http://shiptracker.noaa.gov/).

Science and Technolgy Log:

DO YOU KNOW YOUR ABCs?

Can you understand this sentence?

“During a watch change, the XO checked the AIS then handed control over to the  CO.  When contacted by the mapping room regarding the XBT launch and CTD termination check, the CO said,“Roger that”.  

After reading this- you’ll have a better idea what some of these acronyms mean and how we use them on the Okeanos Explorer. In other words, you’ll be able to say- “roger that” to show you understand and agree.

Let’s start with the XO and CO  –  They are easy and make sense.

CO – The Commanding Officer – He or she is responsible for everything on the ship. (see Personal Log for more information on Commander Ramos of the Okeanos Explorer)

XO – The Executive Officer – Reports to the Commanding Officer and is second in command.

AIS –What is it and why do we need it?

Okeanos Explorer AIS screen

Okeanos Explorer AIS screen

Automatic Identification System.  The Okeanos Explorer has an electronic chart display that includes a symbol for every ship within radio range.  Each ship “symbol” tells Commander Ramos the name of the ship, the actual size of the ship, where that ship is going, how fast it’s going, when or if it will cross our path, and a lot of other information just by “clicking” on a ship symbol!  Here is a link to get more information on AIS.  I also took a picture of the Okeanos Explorer AIS screen and below that there’s the actual picture of our closest neighbor,  the ship named “Joanna”(look closely on the horizon) .  If the CO feels like the ship is going to need to change course, he will inform the scientists in the mapping room right away.  Safety and science RULE!

Explanation of AIS

Our closest neighbor,  the ship named “Joanna”(look closely on the horizon).

Our closest neighbor, the ship named “Joanna”(look closely on the horizon).

XBT- What is it and why do we need one?

Sam Grosenick, mapping intern, launches the XBT.

Sam Grosenick, mapping intern, launches the XBT.

Every two or three hours the mapping team calls the bridge (the driver seat of the ship) and asks permission to launch an XBT – which is short for an eXpendable BathyThermograph.   That’s a heavy weighted probe that is dropped from a ship and allows us to measure the temperature as it falls through the water. WHY do we need to measure the temperature of the water if we are using sonar?  Sound waves travel at different speeds in different temperature water, just like they travel at different speeds in cold air than warm air.  So they need to know the temperature of the water to help calculate how fast the sound or ping that the ship’s sonar sends out so they can map the bottom of the ocean.  A very thin wire sends the temperature data to the ship where the mapping team records it.  There is more information about XBT’s here:

explanation of XBT

NOAA’s network of XBT data

CTD – What is it and why do we need one?

Chief Electronics Technician Richard Conway and Chief Boatswain Tyler Sheff prepare for a dawn launch of the CTD

Chief Electronics Technician Richard Conway and Chief Boatswain Tyler Sheff prepare for a dawn launch of the CTD

Many oceanographic missions use CTD’s.  The Okeanos Explorer is no exception.  CTD stands for conductivity, temperature, and depth, and refers to the electronic instruments that measure these properties. The grey cylinders are water sampling bottles and the big white frame protects everything.   WHY do scientists need CTD’s? Scientists use a CTD to measure the chemistry of the Ocean from surface to bottom.  The CTD can go down to near the bottom and the cylinders close when the scientist on board ship pushes a key on the computer and close so that a water sample is captured at that depth.  It’s a lot easier than swimming down there and opening up a jar and closing it.

WHY do they want to know about conductivity? Why do they care how much electricity can go through the water?   If the water can conduct more electricity, then it has a higher salinity, i.e. more salt.   That helps the scientists know the density of the water at that depth and can help inform them of the biology and ocean currents of that area.

It’s a CTD, not a railing! (picture taken by Kalina Grabb)

It’s a CTD, not a railing! (picture taken by Kalina Grabb)

Close-up of CTD

Close-up of CTD

More info on a CTD from NOAA

CTD vertical cast

 

Personal Log 

Commander Ramos at the helm

Commander Ramos at the helm

As I mentioned in last blog, everyone plays a part on the Okeanos Explorer.  The CO plays a big part in making sure the scientists achieve their goals.  The man in charge- Commander Ricardo Ramos answered a few of my questions last night  in his office in the forward part of the ship.

When I say Oregon Trail, fifth graders usually think of covered wagons.  I doubt that they think of a family of immigrants from Mexico deciding to leave family and friends in sunny Los Angeles and hit the trail north to rainy Oregon. But the devastating riots in Watts in the 1960s caused Commander Ricardo Ramos’s parents to do exactly that. There were some adjustments to be made to life in tiny Klamath Falls, Oregon but his parents, 3 brothers and sister were up to the challenge of no family support and a new community.  The family worked for Weyerhaeuser and Commander Ramos knew he did not want to work in the plant the rest of his life.  It was never IF he’d go to college, but “WHERE”.  He was the second of the five children to attend college, earning 2 Associates degrees and a degree in Electrical Engineering.   After entering NOAA and gaining his masters from Averett University, he spent time on various NOAA ships and in other capacities.  He is also a graduate of Harvard’s Senior Executive Fellows program.

He had a couple words of advice for elementary school students.  First, take advantage of all learning opportunities, for you will never know when you might need the knowledge you will gain.  Second, that communication, both written and oral,  is probably the most important part of his job.  He is not afraid of getting input and editing of his writing for the job.  His greatest reward is realizing that he is charge of a tremendous asset of the United States that provides a platform for scientist to explore our vast oceans.

 

Did You Know? 

My ship – The Okeanos Explorer is about  70 meters - the length of the top of the  arch on the Eiffel Tower!

My ship – The Okeanos Explorer is about 70 meters – the length of the top of the arch on the Eiffel Tower!

Displacement – When you think displacement, you probably think of a quick definition like “moved aside” that we learned when we made aluminum foil boats.  When you get in a kiddie pool, bathtub or any body of water, you move aside water. If you measure the weight or amount of water that you move aside, that is your displacement.  The Okeanos Explorer moves aside a lot of water – more than 2,500 TONS of water.  That’s about 700,000- gallons of water that gets displaced.  The ship is 224 feet long and 43 feet wide in its widest part.  Now, I don’t know about you – but I start thinking about the really big ships and tankers that we see passing by the Okeanos Explorer on the radar (their ‘deets’ are given to us by the AIS system – See the Section on ABC’s for an explanation of AIS) Well, there was a ship called “The Knock Nevis” and it was 1500 feet long!  Did it displace water?  You bet!. 650,000 tons of water when fully loaded! (use a ton of water = gallon converter on google to figure out how many gallons that is). Let’s just say that it’s a lot more than our little MUFFIN – the winner of the Coon Creek Boat Race.

MUFFIN, the boat race “WINNER” and Mr. Murk on the high seas. (picture taken by Sam Grosenick)

MUFFIN, the boat race “WINNER” and Mr. Murk on the high seas.
(picture taken by Sam Grosenick)

Katie Sard: Happy Hydro from Start to Finish, August 25, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29, 2013-August 15, 2013

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  Shumagin Islands, AK
Date:  August 25, 2013

Weather Data from Newport, OR:
GPS location:  44°38’12.63” N, 124°3’12.46”W
Sky condition: OVC
Air temperature:  10.6°C

The sun rising as we finished our transit back to Kodiak.

The sun rising as we finished our transit back to Kodiak.

Science and Technology Log

During my final days aboard the NOAA Ship Rainier, I began to understand the big picture of all that goes in to hydrographic survey.  While we were transiting from the Shumagin Islands back to the Coast Guard Base in Kodiak, the scientists invited me to sit in on a survey review meeting.  During the meeting I listened as the Commanding Officer (CO), the Chief Survey Technician, the Field Operations Officer (FOO), the sheet manager, and others went over the Descriptive Report for a project that had been completed on a previous leg in Behm Canal.  It was interesting to listen to the conversation and actually understand what these researchers were talking about!  I felt as though it was appropriate for me to attend this meeting on my final day on the ship, as this truly is the last step for the scientists on board before the chart and attached data are sent off the ship to the Pacific Hydrographic Branch where the data is further processed in order to ensure accuracy of the data.  As I have now participated in most parts of the survey process, allow me to show you a step-by-step explanation of hydrographic survey from start to finish.

Step One:  Getting to the Survey Location

Several NOAA Corps Officers on the bridge while coming in to port in Kodiak.

Several NOAA Corps Officers on the bridge while coming in to port in Kodiak.

It takes a dedicated and skilled team to safely navigate the ship to the correct survey location.  It is also important that the FOO conducts a survey meeting to review the plan of the leg with the research crew.  When I sat in on this survey meeting at the start of the leg the crew discussed what has been accomplished to date, which sheets we would be focusing on during this leg, and any technical issues that needed to be reviewed with the team.

Step Two:  Setting up Vertical and Horizontal Control Stations

Brandy Geiger (left) and Bill Carrier (right) work on equipment that was set-up on Bird Island as a vertical and horizontal control station.

Brandy Geiger (left) and Bill Carrier (right) work on equipment that was set-up on Bird Island as a vertical and horizontal control station.

Before data can be collected, it is necessary to have a reference of where the data is being collected.  As I discussed in a previous post, tidal gauges are set-up prior to survey in order to guarantee accurate water depths.  The NOAA Ship Rainier is currently setting up a tidal gauge near Cold Bay, Alaska so that they may begin working in their upcoming survey location.  You can track the Rainier at http://shiptracker.noaa.gov/

Step Three:  Running Shoreline Verification

Before the launches (small boats) are able to get data close to the shore, it is important for the skiff to visually check the shoreline to make sure that there are no major hazards to navigation.  The shoreline crew is responsible for marking any dangers, and getting close enough to shore to decide where the sheet limits should be set.  These sheet limits dictate how close the shoreline and rock formations are that the launches need to survey.

Step Four:  Data Collection on Ship and Launches

This is the time when the hydrographers and ship crew can begin “coloring in the lines” by filling in designated polygons with sonar data.  The hydrographers are in charge of determining where the ship or launch needs to be driven in order to gather the required data using navigation software on the ship called HYPACK.  They are also responsible for taking Conductivity Temperature Depth (CTD) measurements in order to apply accurate sound speed profiles to the data.  The deck department and the NOAA Corps officers are responsible for following the plan laid out by the hydrographers in order to navigate the ship to gather data.  This takes attention to detail, because if the ship goes off course, data is missed for a certain area creating a “holiday”, or a gap in the data.  If a holiday is created it means that the crew has to go back and get the missing data later.  Nobody likes a holiday as it costs time and money to fix.  While data is being collected, the hydrographers are in charge of keeping an acquisition log that is a detailed record of everything that is taking place during a specific survey.  The team uses a program called Seafloor Information Systems (SIS) in order to collect the sonar data on the ship.  On the launches, HYPACK serves a dual function as the navigation software and the sonar software.

Randy (left) and Brandy (right) working on ship survey by monitoring the systems, drawing lines for navigation, and ensuring that good data is being collected.

Randy (left) and Brandy (right) working on ship survey by monitoring the systems, drawing lines for navigation, and ensuring that good data is being collected.

Left - Releasing the CTD from one of the launches. Right - Controlling the CTD as it is dropped from the surface to the bottom.

Left – Releasing the CTD from one of the launches.
Right – Controlling the CTD as it is dropped from the surface to the bottom.

Step Five:  Processing and Cleaning the Data

This was one of the most interesting parts of the process as you begin to see the data come to life.  The “lines” of data that are collected using the Konsberg sonar unit are brought over to a program called CARIS.  Certain correctors such as sound velocity and the predicted tides are added to the data in CARIS as well.  While each processing step is being completed, the hydrographer is responsible for making notes in the acquisition log.

Here is an example of some lines of data that have been added into the processing software.

Here is an example of some lines of data that have been added into the processing software.

Next it is important to “clean” the data.  This is done by moving carefully over each line of data to filter out any noise that shouldn’t be there.  When the data has been cleaned it can then be added to the project file for the sheet manager.  This way the hydrographer that is in charge of that specific sheet of data can see what progress has been made and what steps are still required for the work to be completed.

Here is an example of data that needs to be cleaned.  Notice how the data jumps around rather than showing one continuous ocean floor.

Here is an example of data that needs to be cleaned. Notice how the data jumps around rather than showing one continuous ocean floor.

Step Six:  Writing the Descriptive Report (DR) and Conducting a Survey Review

The Descriptive Report (DR) seems to be the most tedious part of the process.  This is the report that is included with the sheet when it is sent to the Pacific Hydrographic Branch for review and further processing.  It thoroughly explains things like the area surveyed, how data was acquired, and results and recommendations.  After a DR is thought to be complete, the ship conducts an internal review.  This is what I got to sit in on during my last day on the ship.  After it has met the expectations of the Chief Survey Technician, the FOO, and the CO, the project can then be sent off the ship to the Pacific Hydrographic Branch before being sent on to the Marine Chart Division (MCD) where the charts are finalized.

This is an image of all of the work that has been completed in the Shumagin Islands by the Rainier.  The colored sections have been completed, and you can see the polygons that need to be finished.

This is an image of all of the work that has been completed in the Shumagin Islands by the Rainier during this field season. The colored sections have been completed, and you can see the polygons that need to be finished.

Like I said in my previous blog post, the scientific process is not easy.  These scientists and crew work tirelessly to ensure that they are producing quality work that can be utilized for safe navigation.  I appreciate their efforts, and I want to thank them for their long hours and their attention to detail.

Personal Log

I find myself unable to fully express my gratitude to the crew of the Rainier for my time with them.  They allowed me to ask endless questions, they welcomed me into their close-knit community, and they provided me with an experience of a lifetime.  I am extremely thankful for this opportunity, and I wanted to be sure to offer my appreciation.

It has been over a week since I’ve been back in Newport, Oregon, and I’ve had a great time reliving my Teacher at Sea (TAS) experience with family, friends, coworkers, and students.  While we were transiting from the Shumigans, Christie Reiser, a Hydrographic Assistant Survey Technician on board gave me an awesome video that she had made with several crew members.  The video gives a tour of the Rainier, and I thought it would be a nice to share it on my blog as a way to show people where I spent my 18 days at sea.

Here is the link for the video that Christie made:  http://www.youtube.com/watch?feature=player_embedded&v=59OqG9tB1RU

Just Another Day at the Office

In this section I usually do a detailed interview with one crew member.  As this is my last blog post, I wanted to be sure to include all of the other interviews that I had while on the ship.  For each of these interviews I have included a snapshot of the conversation that I had with each person.  While I wasn’t able to interview everyone on board, I can say for a fact that each person I met had a unique story.  I was particularly fascinated by the various pathways that people have taken in order to become part of the Rainier crew.  Enjoy!

RosemaryJackson

JohnStarlaRandy

Did You Know…

The NOAA Teacher at Sea community has created a Did You Know website.  Click on the following link to check out an assortment of things you might not have known:  http://teacheratsea.noaa.gov/dyk/#box23_text

Farewell

Thank you for following my blog and for sharing this experience with me.  Thanks again to the crew of the Rainier for giving me this once in a lifetime opportunity.  I’ve learned so much from this experience, and I plan to take the knowledge I’ve gained and pass it along to my students, friends, and community members.

The crew signed this flag and gave it to me as a departing gift.

The crew signed this flag and gave it to me as a departing gift.

Best wishes to the crew of the Rainier, good luck with the rest of your field season, and happy hydro!

TAS Katie Sard

Katie Sard: Setting up for Survey, August 4, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29 – August 15, 2013

Mission: Hydrographic Survey
Geographical Area of the Cruise: Shumagin Islands, Alaska
Date: August 1-4, 2013

Weather Data from the Bridge:
GPS location: 55°02.642’N, 159°57.359’W
Sky condition:  Overcast (OVC)
Visibility: 7 nm
Wind: 180° true, 8 kts
Water temperature: 8.3°C
Air temperature:  12.0 °C

Science and Technology Log

In my last post I talked mostly about the science needed for safely navigating the ship to our survey area in the Shumagin Islands.  Now that the surveying has begun, I’d like to use this post to talk about the actual logistics of the surveys that are being completed.  These surveys are the reason that we are in Alaska, and it takes quite a bit of planning and coordination to make sure that accurate data is collected.  The hydrographers are looking for features to put on the chart (map) such as depth, rocks, shoals, ledges, shipwrecks, islets (small islands), and kelp beds.

One of the massive kelp beds that we recorded while out on a survey launch.

One of the massive kelp beds that we recorded while out on a survey launch.

The last time most of this area was surveyed was back in the early 1900s.  Lead lines were used in order to gather data about the depth of the sea.  While accurate, this method only gave information on discrete points along the ocean floor.  This resulted in charts being left with large amounts of white space which represents areas that have never before been surveyed.

You can see the sea depth measurements on this chart are in a neat line where I've highlighted in red.  These are the lead line measurements that were taken in the early 1900s.

You can see the sea depth measurements on this chart are in a neat line where I’ve highlighted in red. These are the lead line measurements that were taken in the early 1900s. You can also see the large amounts of white space that haven’t yet been charted.

Here is a comparison of the type of data that would be gathered from a lead line versus multi-beam sonar. (Credit http://www.nauticalcharts.noaa.gov/mcd/learnnc_surveytechniques.html)

The sonar technology on the ship allows us to gather data which can be classified as full-bottom coverage.  That means that we have data on every inch of ocean floor that we cover rather than just one point along the way.

Now let’s get to the heart of survey!  The overall survey area here in the Shumagins is broken down into what the team refers to as sheets.  The Commanding Officer (CO) informed me that the reason they call them “sheets” is because back before the use of computers in surveying, hydrography would be done on a small boat and all the positions would be hand-plotted on a sheet of fine cotton paper.  The size of this “sheet” of paper and the scale of the survey dictated how big the survey would be. Anyways, each sheet has a sheet manager that is responsible for the data collected in that area.  Each sheet is then broken down even further into several polygons which represent specific areas to be surveyed on that sheet.  Meghan McGovern, the Field Operations Officer (FOO) on this ship, explained to me that while the ship itself is running sonar to collect data 24 hours a day only two launches can be sent out at a time to do additional surveys.  This is because the ship does not have the manpower to run the entire ship plus all four small survey launches.  However, it is hard on the crew to run continuous 24 hour operations on the ship, so every so often the ship will anchor and four survey launches can be sent out to gather data during the day.  I asked which method is preferred and Megan told me that it really depends on the area that needs to be surveyed.  Sometimes it can be more beneficial to anchor and send out all four launches if a lot of data needs to be collected on areas close to the shore.  In that case, the ship is not able to navigate as closely to the shoreline as the small launches are.

Before the launches can be sent out to gather data close to shorelines, benchmarks must be set and tidal gauges must be taken in order to measure the actual water level based on the varying tides.  This has not been done during my time in the Shumagins because they were done on the previous leg.  (For more information visit TAS Marvin’s blog to understand how she helped set-up benchmarks in the Shumagins.) Shoreline verification must also be completed by the small skiff (boat) in order to visually mark any dangers that may be hazardous to the launches while they are surveying.  I am hoping to do shoreline verification while I am here, but for now this area has already been done.

This shows several rocks that would need to be noted through shoreline  verification before sending the launches out.

This shows several rocks that would need to be noted through shoreline verification before sending the launches out.

To the left of Chernabura Island you can see the two polygons (V and X)  we were responsible for surveying.

To the left of Chernabura Island you can see the two polygons (V and X) we were responsible for surveying.

After the shoreline verification has taken place the actual data collection can begin.  I have been out in a launch two times since we reached our survey area.  The first time we were surveying polygons V (Victor) and X (X-ray) on the west coast of Chernabura Island.  I learned a great deal from the crew about the survey system on the small launch.  While I was on this launch I was allowed to drive.  It turns out it is hard to drive a boat in a nice, neat line.  Yesterday I was able to go out for a second time on a survey launch, and this time we collected near shore data on the east side of Near Island.

You can see the highlighted area was clearly marked on the boat sheet as "TAS Driven" to indicate to the hydrographer why the lines weren't exactly straight!

You can see the highlighted area was clearly marked as “TAS Driven” to indicate to the hydrographer why the lines weren’t exactly straight!

The launch runs a system that is very similar to the ship in order to collect bathymetric data.  The screen, that is projected to the Hydrographer in Charge (HIC) and the coxswain (driver), shows a swath of the area where data has been collected.

Here is what the HIC and the coxswain see as the data is being gathered.  Notice the red arrow I've inserted to show the "colored in" areas that represent where the data has been collected.

Here is what the HIC and the coxswain see as the data is being gathered. Notice the red arrow I’ve inserted to show the “colored in” areas that represent where the data has been collected.

On the screen it looks as though the ship is driving back and forth coloring in the lines as data is collected.  Once all of the data has been collected on the launch, it is saved to an external hard drive and brought back to the ship for night processing.  I haven’t observed night processing yet, but I plan to do that in the upcoming days.

I will hold off on more detail now and wait until next time to give you the science behind the detailed sonar that is being used during these surveys.

Personal Log

Yesterday was one of my favorite days on my adventure so far.  I went with three other people on one of the small launches called the RA-6.  While I was on the launch I had the responsibility of doing the radio communication back to the ship for a check-in each hour to let them know our position and what we had accomplished up to that point.  The sun was peeking through the clouds, and I was finally able to see the majestic islands that are surrounding us.  These islands have no trees, but their sharp cliffs and the mystical lenticular clouds that hovered above them captured my attention each time we drove close.

The lenticular clouds forming over the land near where we were surveying.

The lenticular clouds forming over the land near where we were surveying.

The birds out here are the only animals that can be observed and they include gulls, muirs, and puffins.  Each time we drove near a puffin I couldn’t help but laugh as they scuttled quickly away in the water.  Some of them seemed to have eaten too many fish to be able to lift themselves into the air.

My free time on the ship has been mostly spent at meals and in the wardroom.  Each night the ship shows three different movies that run on the cable channels throughout the ship, and a mix of people tend to gather in the wardroom to sit and watch the shows together.  I have also had the unique experience of using the elliptical machine several times while on board.

This is the wardroom where I watch movies with various crew members some evenings.

This is the wardroom where I watch movies with various crew members some evenings.

If you have ever used an elliptical machine, you know that normally when you step off the machine it feels like you are still in motion.  Add that feeling to the swaying of the ship and it makes for a strange type of vertigo!

The ship even has a small "gym" where the crew can work out while out at sea.

The ship even has a small “gym” where the crew can work out while out at sea.

Laura McCrum, a past student of mine, told me in a recent email to remember that knowledge is not confined to age…and she made sure to clarify that she wasn’t calling me old!  I am so grateful for this unique experience where I am able to continue my education each and every day in order to expand my knowledge base.  I hope that this experience will not only benefit me but also my students, coworkers, and community members as well.

Just Another Day at the Office

I wanted to start this section of my blog as a way to highlight a different member of the crew during each post.  These people go to work each day in such a unique environment that I thought it was important to share a piece of their stories.

Carl VerPlanck, 3rd Mate

The first time I saw Carl was on the bridge while the ship was departing from port.  He is the navigation officer responsible for creating routes, updating charts and publications, and maintaining a certain decorum on the bridge.  Carl also helps to train junior officers in the art of navigation.  He conducts underway watches and drives the launches while helping to train others to do the same.

Carl VerPlanck

Carl VerPlanck

When asked about how he got to be in the position that he holds today, Carl told me that he grew up in Indiana and received his GED when he was 18 before moving to Alaska to work on a fishing boat.  Having no prior experience on boats, he worked in a fish processing plant in Naknek, Alaska until he was able to start as a General Vessel Assistant (GVA) with NOAA.  He eventually worked his way up the rank as an Ordinary Seaman (OS), followed by an Able-bodied Seaman (AB) until he received his 3rd Mate certification.  He currently holds his 2nd Mate certification, and he plans to hold this position in the future.

While I was talking with him, Carl told me that the best part about his job was that he loves working in Alaska.  He has a sense of exploration while doing these surveys, and he likes the feeling that anything could be down there on the sea floor.  I asked him to share the advice that he would give a young person trying to break into the field of an ocean related career and he said that you shouldn’t be afraid to broaden the scope of what you might be good at or what your interests are.  Never miss a chance to take hold of an opportunity, and don’t be afraid to consider a non-traditional pathway.

I ended our conversation by asking Carl what he would be doing if he wasn’t currently working for NOAA, and he said he was sure he would still be in the maritime community in some way.  Besides working for NOAA I found out that Carl enjoys taking flying lessons and he is currently working toward getting his pilot’s license.  He has a home in Seattle where he lives, when not underway, with his wife and his 1 1/2 year old son.

Your Questions Answered!

I love getting questions via comments and emails, and so I wanted to do these questions justice by providing prompt answers.  So here we go…

My first question was from Kirsten Buckmaster, a fellow teacher at INMS.  She asked me if I have any specific duties from day to day on the ship.  As a Teacher at Sea it is really up to me to insert myself into the everyday schedule of the ship.  The Field Operations Officer (FOO) and the Commanding Officer (CO) sat down with me at the start of the leg and asked me what I was interested in doing while on board, and I told them that I was eager to do a little bit of everything.  Each day the FOO posts the Plan of the Day (POD), and this tells you what specific tasks are going to be done for the day.  Each day I look for my name on the POD to understand if I have any specific responsibilities.  Some days it is up to me to go observe on the bridge or in the plot room.  I am hoping to help with the deck department before my time is over, as well as try to better understand what the engineers do.

Plan of the Day (POD) for Saturday.  If you look to the left you can see my name under RA-6.

Plan of the Day (POD) for Saturday. If you look to the left you can see my name under RA-6.

Next I had a question from one of my students Mr. Zachary Doyle.  Zach asked me if I was getting seasick.  Luckily, it turns out that I am not prone to sea sickness…yet.  The POD gives the weather forecast, and the FOO makes sure to let the crew know if we are going to have any inclement weather.  If I know the ship is going to be rockin’ and rollin’ I will take Dramamine which helps to prevent sea sickness.  Also, the launches get shaken around a bit more so if I know I’m going out on a launch I will take some medicine the night before just in case.

Finally, my grandmother-in-law Liz Montagna asked me about the waves.  I’ve learned out here that we need to be aware of two important things: sea wave height and swells.  In simple terms, a swell is a wave that is not generated by the local wind.  They are regular, longer period waves generated by distant weather systems.  The wave height can be measured from the waves caused by the wind in the area where they are created.  Luckily we haven’t had waves breaking on the deck.  Liz also asked about who does the housekeeping.  In my stateroom the answer is my roommate and I.  We are responsible for keeping our living quarters neat and tidy.  The deck department is mostly in charge of the rest of the ship.  Each day I have met people in the passageways (halls) sweeping, mopping, and doing other necessary tasks to keep the ship looking good.

I love questions so please keep them coming!  Remember you can post a comment/question on the blog or email me at katie.sard@lincoln.k12.or.us .

All is well in Alaska!

TAS Sard

Did You Know…

I didn’t know how the Shumagin Islands got their name so I did some investigating.  It turns out that Vitus Bering was the man who led an expedition to the islands in 1741.  Nikita Shumagin was one of the sailors on this mission, but he unfortunately died of scurvy and was buried on Nagai Island.

Katie Sard: The Science Needed to Get the Data, July 31, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29 – August 15, 2013

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  Shumagin Islands, Alaska
Date: Wednesday, July 31, 2013

Weather Data from the Bridge:
GPS location:  54°52.288’N, 159°55.055’W
Sky condition:  Overcast (OVC) with Fog (FG)
Visibility:  Less than 2 nautical miles (nm)
Wind: 120 degrees true, 13 knots (kt)
Sea level pressure:  1009.7 millibar (mb)
Sea wave height:  1 foot (ft)
Swell waves:  180 degrees true, 3 ft
Water temperature:  9.4°C
Air temperature:  12.2°C

Science and Technology Log

From the moment I stepped on to the NOAA Ship Rainier in port at the Coast Guard Base in Kodiak three days ago, it was apparent to me that this ship functions in order to acquire information.  Hours upon hours of teamwork, dedication, money, and precise planning go in to making sure this ship gets to the right spot, functions properly, and has the correct instrumentation to collect the data.  My goal for this post is to share with you all of the science that goes into making sure that this ship is able to perform the overall mission of doing hydrographic surveys.

A view of the bow of the ship from the flying bridge as we began to get underway.

A view of the bow of the ship from the flying bridge as we began to get underway.

First perhaps I should give a brief background of what a hydrographic survey is and why they are done.  The NOAA Ship Rainier uses sonar in order to collect information about the ocean floor.  Each time the ship, or any of the survey launches (smaller boats), use this sonar, they are surveying the area for hydrographic information.

Two of the launches had to get rearranged into their standard locations on the ship as we left port.  They had been switched around while at port for maintenance.

Two of the launches had to get rearranged into their standard locations on the ship as we left port. They had been switched around while at port for maintenance.

This information is then processed and used to create nautical charts which NOAA produces for navigational purposes.  These nautical charts contain information on ocean floor depth, but they also give detailed information on areas that may be hazardous to those navigating the waters in that area.  I will stop there for now on the hydrographic surveys because the surveys have only just begun today on the ship.  The ship has been in transit the past two days, meaning that we have been moving from port to our survey area.   Little did I know how much science it takes to even get the ship to the survey area where the hydrographic surveys can begin.

If you are one of my students reading this blog, you may know how I say that science is everywhere.  One of my students even asked me this past year, “Mrs. Sard, are you like ALWAYS thinking about science?”  Well it turns out that science IS everywhere on this ship.  I’ve had the pleasure of chatting with several different crew members in my first few days, and they’ve been eager to explain the many functions of the ship and the crew.  What is important to understand is that there are several departments that all must work together in order to allow the ship to function properly.  Here is a brief breakdown of each department and what their main tasks are:

Wardroom – These are mostly members of the NOAA Corps which is one of the seven uniformed services of the United States.  Besides managing and operating the ship, these dedicated workers also function as scientists and engineers.

Survey – These are the scientists that are mostly in charge of the hydrographic data.  They collect, process, and manage the information that is collected during the surveys.

Engineers – These people have the important task of keeping the ship in functioning order.  They do things like maintain the engine room and respond to any mechanical type issues.

Electronics Technician (ET) – This crew is in charge of the technology on board the ship.  They ensure that things like the computers, internet, and phones are all up in working condition.

Steward – This department is tasked with the job of feeding the crew members.  (They do a great job, and I think I might actually gain weight while out a sea because I cannot say no to the delicious food they prepare!)

Part of the galley where the food is served and we eat three delicious meals each day!

Part of the galley where the food is served and we eat three delicious meals each day!

Deck – The deck crew members are responsible for things like driving the small launches, maintaining the ship’s equipment, and so on.

Visitors – These would be people, like me, who are only on board the ship temporarily.  They have a specific purpose that usually falls within one of the other departments.

Navigating the Ship

Now that you are aware of the overall goal of the ship, and you are familiar with the departments, let me discuss the science that is needed to get the ship where we need to go.  It was an overwhelming and exciting feeling to be on the bridge of the ship while we were getting underway.  The Officer On Deck (OOD) was giving orders to both the helmsman, who marked his orders down on a marker board, and the “lee helm” or engine controls operated by ENS Poremba. The third mate was acting as the navigator and had precisely mapped out the route for safely and efficiently departing the Coast Guard base.

You can see part of the route that the navigator has mapped out for the ship.

You can see part of the route that the navigator has mapped out for the ship.

The Commanding Officer (CO) was overseeing all that was happening, along with several other officers.  I was in awe of how smoothly everything came together, and how efficiently the people worked together as a team.  LT Gonsalves eloquently said that the ship is like a “floating city” and that all of the pieces must come together in order for it to function.

As I awoke yesterday, after our first night out at sea, I could hear the fog horn coming from the bridge.  I decided to go and observe again to see how things were functioning out at open sea.  ENS Wall showed me how to do a GPS fix to make sure that we are following the plans laid out for navigation.

Ens Wall taking a GPS fix that he showed be how to do!

Ens Wall taking a GPS fix that he showed be how to do!

These are taken about every fifteen minutes.  He used the current chart that was laid out as well as electronic GPS measurements and plotted them on the chart with a compass.  He then marked the latitude and longitude with the time to show that we were on course at that moment.

The OOD, John Kidd, went on to explain a bit more about the navigation of the ship including the gyroscope. Simply put, a gyroscope is an instrument used for measuring and maintaining orientation while out at sea, but it’s not as simple as it looks.  I noticed a sign that read “Gyro Error” and so I asked.  John went on to tell me that the gyro error is the difference between true north and what the gyro thinks is north.  The difference between true north and magnetic north is the combination of “variation” which is a function of local magnetic fields, and “deviation” which is the effect the magnetic fields aboard the boat have on the compass.  The steel ship itself and all of the electricity on board have some crazy magnetic fields that interfere.

Finally, I went up to the bridge this morning to quickly get the weather data that I needed for my blog.  What I thought would be a quick visit turned into a 30 minute conversation with the crew.  It was remarkable to see all of the data that is collected each hour dealing with the weather.  The conning officer is required to take the data once each hour and enter it into the computer.  They don’t simply look out and take a rough estimate of the weather.  It is a detailed process that takes a variety of instrumentation in order to get the quantified weather data that is needed.   All of the weather data is then sent off to  NOAA’s National Weather Service and is used to refine the local at-sea weather forecasts.

Weather data from the Bridge.  Hey INMS students - check out this data table! Data tables can be good!

Weather data from the Bridge. Hey INMS students – check out this data table! Data tables can be good!

I couldn’t help but smile at all of the science and math that was taking place in order to have safe navigation through the sea.  So much science goes in to making sure that the officers have accurate data in order to navigate the ship.  This is one of my goals as a TAS: I want to show my students how many different opportunities they have, and the possible fields of science that NOAA has to offer.

Personal Log

When I arrived in Kodiak on Saturday, Avery Marvin, the previous Teacher at Sea (TAS) was still on board for one night.  She took me on a tour of the ship, and gave me the low down on how everything functions.  Avery and I decided that before departing on Monday, we would take the day on Sunday to explore the island of Kodiak.  I couldn’t believe all of the wildlife I saw including the various creatures of the tide pools, bald eagles, sea otters, salmon, and so much more.

TAS Marvin (left) and myself (right) as we went tide pooling at Fort Abercrombie State Historical Park.

TAS Marvin (left) and myself (right) as we went tide pooling at Fort Abercrombie State Historical Park.

I have been so impressed by the functionality of the ship.  Every inch of space is used, and the people on board truly understand what it means to work as a team.  Yesterday we had our safety drills including Fire/Emergency and Abandon Ship.  When the different alarms sounded, I was required to quickly get to my muster station where I was checked in and accounted for to the CO.  I also was asked to try on my immersion suit.  In all of the excitement, I wasn’t able to get a picture, but it was an experience to practice these drills.

The rack where I will be staying over the next three weeks.

The rack where I will be staying over the next three weeks.

The head or the bathroom in my room that I share with my roommate Martha.

The head or the bathroom in my room that I share with my roommate Martha.

I believe my body is starting to get accustomed to the constant movement of the ship. While sleeping in my rack (bed) at night, I can feel it as the ship sways back and forth.  At times the waves are large, but for the most part it feels as though I’m being rocked to sleep.

Please post comments, or email me at katie.sard@lincoln.k12.or.us if you have any questions or information that you would like me to blog about.  I’m looking forward to sharing more information on my experience with you next time!

Best wishes,

TAS Sard

Did You Know…

Each ship has it’s own call sign.  These signs are displayed on the ship by flags that each represent one letter in the alphabet, and they are international symbols that are used.  The call sign for the NOAA Ship Rainier is WTEF.

The flags for the call sign of the Rainier.  From top to bottom they read WTEF.

The flags for the call sign of the Rainier. From top to bottom they read WTEF.

To ensure clearness when reading off these letters, the military alphabet is used.  For example, if you were reading the call sign for the Rainier it would read Whiskey Tango Echo Foxtrot instead of just WTEF.

Melanie Lyte: May 29, 2013

NOAA Teacher at Sea
Melanie Lyte
Aboard NOAA Ship Gordon Gunter
May 20 – 31, 2013

Mission: Right Whale Survey, Great South Channel
Geographical Area of Cruise: North Atlantic 
Date: May 29, 2013

Weather Data from the Bridge:
Air temperature: 12.8 degrees Celsius (55 degrees Fahrenheit)
Surface water temperature: 11.8 degrees Celsius (53 degrees Fahrenheit)
Wind speed: 21 knots (25 miles per hour)
Relative humidity: 100%
Barometric pressure: 1023.5

Science and Technology Log

Right whale I saw on 5/28

Photo Credit: NOAA/NEFSC/Peter Duley under Permit #775-1875

We finally had a right whale sighting today! It was a juvenile and was quite close to the ship. It was exciting to see it frolicking.  

Allison Henry, chief scientist, recently told me that over 70% of the right whales they see have entanglement scars. The scars are due to entanglement in fishing lines.

Right whale with entanglement scars.

Photo Credit:; Mavynne under Permit # EGNO 1151
Right whale with entanglement scars.

Sometimes teams of scientists with special training attempt to disentangle a whale. It can be dangerous work. The video below shows a team working to remove fishing lines from a whale in 2011. The scientists first need to attach the small boat to the whale with lines so they can stay with it while it swims until it exhausts itself.  Only when the whale is tired, can the team work to cut away the entanglement.

Watch  this video of a whale disentanglement.

The other hazard is that whales tend to rest and feed near the surface of the water in the shipping lanes, and can be hit by ships.

During the day, from 7am-7pm, the scientists take turns on watch. This means we watch for whales using “big eyes” which are giant binoculars. We spend 30 minutes on left watch, 30 minutes in the center, and 30 minutes on the right watch.  At the center station we record sightings and update the environment using a computer program designed for this purpose.

The big eyes

photo credit: Barbara Beblowski

Recording data

phot credit: Peter Duley

I visited the Wheel House on the ship today. This is also called the bridge, and is the control center of the ship (similar to the cockpit of an airplane). The wheel house has many controls that the crew needs to know how to use, and it takes years of training to be able to command a ship. I spoke with Commanding Officer Lieutenant Commander Jeffrey Taylor and Executive Officer Lieutenant Commander Michael Levine about the workings of the Gunter.

Wheel or helm of the ship

Wheel or helm of the ship

Auto Pilot

Auto Pilot

This is the wheel or helm of the ship. The Gunter is one of the last NOAA ships with this type of helm. The newer ships have a helm that looks more similar to that which you find in a race car. Although the helm is still used to steer the ship at times, especially when docking, the steering is left to the auto pilot  the majority of the time.

ARPA radar

ARPA radar

I know some of you were concerned about how the officers could see to steer the boat in the fog. The ship has an ARPA radar system that shows where other boats in the area are in relation to our ship. The radar also shows the course our ship is taking and alerts the crew to anything that may be in the path of the ship.

Throttles

Throttles

The throttles control the speed of the ship. The maximum speed of ship is 10 knots which is about 12 miles per hour. The ship uses diesel fuel and it takes about 1,200 gallons of fuel to run the ship for a 24 hour period. At night they will sometimes shut down one engine which makes the ship go slower, but which saves about 400 gallons or $1,600 a day. This is one reason why we anchored for 3 days during the bad weather. The weather made surveying whales impossible so it didn’t make sense to run the ship during that time. The cost of running the Gunter is $11,000/day on average. This includes everything to do with sailing including salaries, food, etc.

Personal Log

I know that some of my first graders have been asking about where I sleep and eat on the ship. Below are pictures of my stateroom and the galley of the ship. Two very important places!

Stateroom (sleeping quarters)

Stateroom (sleeping quarters)

Galley on the Gordon Gunter

Galley on the Gordon Gunter