Julia Harvey: Here I Go Again/Getting Ready to Sail

NOAA Teacher at Sea
Julia Harvey
NOAA Ship Hi’ialakai
June 25 – July 3, 2016

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Station Thirteenth Setting
Geographical Area: Pacific Ocean North of Hawaii

Grand Canyon

My boys and I at the Grand Canyon in March 2016.

My name is Julia Harvey and I currently teach biology and environmental science at South Eugene High School in Eugene, Oregon. Next year I will also be teaching AP Biology. I have been teaching for 25 years beginning on the island of Vava’u in the Kingdom of Tonga. Some of my students have now become science teachers.

Julia with Sea Urchin copy

Early interest in marine sciences.

Eugene is at the southern end of the Willamette Valley and just about an hour away from the Pacific Ocean. In the valley, we are closely connected to the Pacific Ocean. The salmon that swim up our McKenzie River have made their way from the Pacific. Our wet and rainy climate is the result of weather patterns that originate off shore. And when it gets to hot in the valley, we head over to cool off on the beaches of the Pacific.

In 2013, I sailed aboard the Oscar Dyson on the Gulf of Alaska out of Kodiak. I was part of the third leg of the Pollock fish survey. Pollock is the fish used to make fish sticks and imitation crab. I didn’t know until this cruise, that the Pollock fishery is the one of the largest fisheries in the world. And I had never even heard of a Pollock until I was going to be sailing on the Oscar Dyson. I worked with amazing scientists on board who kindly helped me learn the process for finding schools of fish in the water using acoustics and then how to process the catch in order to provide information about the health of the fishery.

Pollock Survey

Happily surveying pollock

There were other studies going on the Oscar Dyson.  One involved surveying the ocean bottom and another involved counting  krill.

Enlarged Sorting Krill copy

Preparing to count krill.

I leave aboard the Hi’ialakai (easy to say after learning Tongan) in a few days. We will be at sea for 9 days, north of Hawaii.   The Chief Scientist is affiliated with Woods Hole Oceanographic Institute and other scientists are from University of Hawaii, NOAA Earth System Research Laboratory, and North Carolina State University. The main purpose of the study is to recover and deploy WHOTS moorings while collecting CTD (conductivity/temperature/depth) casts and data from shipboard sensors. I am especially interested to learn more about the sea spray analysis and how it relates to climatic effects.

This will be my first physical oceanography cruise. All of the studies I did aboard the Vantuna at Occidental College were biological as was the work done on the Oscar Dyson. I am excited to take my learning in a different direction.

I found it more difficult to pack for the cruise out of Hawaii then out of Alaska. This time, there is a larger range of weather that could be expected. Beginning on Oahu (shorts and tank tops) to the open ocean (steel toe boots and layers of clothes). But there are a few items that are making the trip with me again. I could not leave the Go Pro behind. I captured Dall porpoises bow surfing in 2013 as well as the processing of thousands of fish. And of course I have the anti-seasickness medication. It was wonderful to feel good the whole cruise last time. I will not be streaming videos but I will be entertained with a few books I packed.

I will be blogging several times while I am at sea and I hope you will continue to follow my journey at sea.

 

 

 

Gina Henderson: Samples Aplenty, August 23, 2012

NOAA Teacher at Sea
Prof. Gina Henderson
Aboard NOAA Ship Ronald H. Brown
August 19 – 27, 2012

Mission: Western Atlantic Climate Study (WACS)
Geographical area of cruise: Northwest Atlantic Ocean
Date: Thursday, August 23, 2012
Weather conditions: calm conditions overnight leading to widespread radiation fog immediately following sunset. Ship had to make use of foghorn for a couple of hours overnight. Today, cloudy with possible rain showers. Winds SW from 10-15 kts, with gust up to 20 in rain showers. Seas from the SW at 3-5 ft.

Science and Technology Log

WACS Field Campaign Update:

This morning we reached the 3-day mark for sampling at station 1, which was in the high chlorophyll concentration off of Georges Bank. During these 3 days, we have been continuously sampling aerosols using both the Sea Sweep and the Bubble Generator (see last post for descriptions of each of these methods).

Some issues that have cropped up throughout this time are linked to our extremely calm and settled weather. Although the calm winds have made for minimal seas, ideal conditions for the Sea Sweep, those scientists sampling ambient air have been picking up ship exhaust in their measurements, despite the bridge keeping our bow head-to-wind. However, during our transit this complication should not be an issue and ambient sampling can take place continuously.

Conductivity, Temperature and Depth:

CTD rosette

Conductivity, temperature, and depth (CTD) rosette after deployment. Niskin bottles can be tripped at different depths for seawater sampling at various levels.

We also took a Conductivity, Temperature and Depth (CTD) profile using the CTD rosette on the 21st, collecting water near the bottom at 55m and other levels on the way to the surface.  These water samples were utilized by numerous scientists on board for experiments such as, testing for surface tension, biological testing and chlorophyll measurement.

The science plan for today involved one final CTD cast while at station 1, with all Niskin bottles being tripped at 5m. This large volume is necessary for a Bubble Generator experiment that will be run with this CTD water during the transit to station 2.

After the CTD cast was completed, the Sea Sweep was recovered and other necessary preparations for the transition to our new station. While underway for approximately 24 hours, intake hoses were switched to enable sampling of ambient aerosols along the way.

How to sample aerosols?

One of the tasks that I have been helping out with is the changing of aerosol impactors that are used to collect aerosol samples. These impactors consist of metal cylinders with various “stages” or levels (upper left photo below). Each level has different sizes of small holes, over which a filter is laid. During sampling, these impactors are hooked up to intake hoses where airflow is pumped through them and as the air is forced through the different “stages” or levels, the aerosols are “impacted” on the filters.

Filters being changed inside aerosol impactors (upper left). Picture of me unhooking impactors from inlet hoses for filter switching (upper right). Kristen just finished changing filters in a clean box (bottom).

This all seems simple enough…. However can be a little more cumbersome as the impactors are heavy, climbing up ship ladders with heavy things can be tricky depending on current sea state, and 2 of our impactor changes happen routinely in the dark, making things a little interesting at times!

Seawater sampling for chlorophyll:

Megan filtering raw seawater for chlorophyll extraction and measurement.

Another type of sampling I have helped out with involves the filtration of raw seawater to extract chlorophyll. This is done in the seawater van where we have a continuous flow of in situ water that is taken in at the bow at a depth of approximately 5m. This is done with two different types of filters, a couple of times a day. The photo below shows Megan running a sample through one type of filter, which will later be prepared with an acetone solution and after a resting period, be measured for chlorophyll concentration using a fluorometer.

Lots of sightings during transit:

As we headed south during our transit to station 2, we had an afternoon full of sightings! An announcement from the bridge informing us that we were now in “shark infested waters” sent an air of excitement around the ship as we all raced to the bridge for better viewing. Some loggerhead turtles were also spotted. Our final sighting of the day was a huge pod of porpoises riding the wake from our bow.

Pod of porpoises riding the bow wave during our transit south to station 2.

Everyone races to the bridge after an announcement about “shark infested waters!”

Susan Kaiser: Safety and Teamwork Needed for Success, July 27, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: Friday, July 27, 2012

Weather Data from the Bridge
Latitude:  24 deg 41 min N
Longitude:  82 deg 59 min W
Wind Speed: 5.61 kts
Surface Water Temperature: 30.33 C
Air Temperature: 29.33 C
Relative Humidity: 79.0%

Science and Technology Log

Close up of the bridge of NOAA Ship Nancy Foster

Close up of the bridge of NOAA Ship Nancy Foster

Safety is first in the science classroom AND on board the NOAA Ship Nancy Foster too. Our expected departure was delayed by one day because the Public Announcement (PA) system was not working. Without the PA system, communication about emergency situations would not be possible. The ship’s crew worked to solve the problem themselves and also contacted outside help, but in the end a part had to be replaced so we stayed in port at Key West an extra day. Ships don’t sail without meeting safety requirements. By morning on Friday the system was working fine and the crew prepared to set sail.

Lt Josh Slater leads the science team safety briefing in the dry lab.

After boarding the NOAA Ship Nancy Foster one of our first tasks was to review the safety protocols of the ship with one of the ship’s officers.  We learned the whistle signals for man overboard (3 prolonged blasts of the alarm), fire (1 continuous blast of the alarm) and abandon ship (7 or more short blasts followed by 1 long blast) and the designated places to report in these situations. We will be practicing abandon ship in a drill very soon so I will report on that later. Since the ship works on a 24 hour schedule someone is always awake on board which means someone is always asleep too.  Lt. Slater stressed the importance of not being too loud and showing respect for others’ space.  After all this ship is home to the crew and the science team are guests in that home.

NOAA Ship Nancy Foster officers ENS Jamie Park, ENS Michael Doig and Lt Josh Slater (hidden), inspect diving equipment.

NOAA Ship Nancy Foster officers ENS Jamie Park, ENS Michael Doig and Lt Josh Slater (hidden), inspect diving equipment.

Teamwork is critical on board the ship. The science team and the ship’s crew work closely to help each other achieve the best results and stay safe. Most of the data collected on this cruise uses divers. Twice each day, the science team meets to review the Plan of the Day or POD. This meeting allows team members to learn the expectations of them to meet the research objectives of the day. They also have the chance to provide input or to ask questions. What do you think is a main focus of this meeting?  You got it…Safety! While we waited for the PA system repair, the scientists checked their SCUBA gear again under the supervision of the ship’s crew members. This double-check insures all the equipment is safe to use.

After we steamed away from the keys, the scientists did a practice dive to simulate an unconscious diver at the surface. This drill included 5 science team divers as well as the ship’s crew and allowed them to practice their response in an emergency situation as well as deploying a small boat. A debriefing meeting afterward helped to identify the important tasks that need to be completed in the event of an emergency.   Practicing through drills allows a quick response to an unusual situation and helps everyone stay safe.

Unconscious diver drill. Pictured Ben Binder, Lt. Slater, and Chris Rawley. Sarah Fangman, who acts as the unconscious diver, is in the boat.

With the safety issues well-covered, the science team is ready to begin retrieving the “listening stations” called VR2s from their positions on the ocean floor tomorrow.  VR2 stands for Vemco Receiver 2 and is the model of the equipment used by the scientists use to collect fish movement information.  What do you think the “listening stations” are listening for? Read about the “listening stations” in a future posting of my blog. For now you can make an educated guess by reading for hints in this blog and answering this poll.

Personal Log

Mrs. Kaiser at the Reno-Tahoe International Airport ready to start her NOAA Teacher at Sea adventure!

Flying out of Reno, NV the plane took off heading south climbing quickly into the sky.  From my window seat I could see Pine Middle School below. Then after a quick glimpse of Lake Tahoe to the west, the plane turned gracefully eastward. As I looked down I could see the desert valleys that once lay beneath the ancient Pleistocene lakes, covering a good part of the Great Basin with water. Although it doesn’t seem possible, one can still find shells and marine fossils in these now desert locations. I thought how different the landscape is today compared to the distant past. Our environment is undergoing constant changes even though the processes may seem slow and may not be noticed from day to day.

This is why it is important to observe, record and think about all aspects of our environment and to be aware of small changes so we can predict if they may become big impacts. Soon I would be landing in Florida, a state very different from Nevada, and joining the science team aboard the NOAA Ship Nancy Foster. This team is one of many that makes observations of their marine ecosystem, recording data and interpreting any changes or patterns they notice. I am very pleased to join them for the next 2 weeks and expect to learn a great deal.

Greeting me at the airport were artistic decorations made of models of tropical fish found along the Florida coast.  High on the walls, they are creatively arranged in geometric patterns reminding me of synchronized swimmers competing in the Summer Olympics. These fish are more than art. They represent an important economic factor to Florida. They lure tourists for diving and snorkeling activities. Some of them are harvested for food or fished for sport. They are also important to the ecosystems of the coastal reefs and shore communities of Florida. I wonder what changes these scientists are seeing in this marine ecosystem. What are the solutions they will propose to the public? How can a balanced management meet the needs of people who live and work there? These are difficult questions to answer.

Great Basin at 30,000 ft. This area would have been covered with small lakes during the Pleistocene period.

It is dark when I arrive finally in Key West but a scientist meets me at the airport and drives me to the ship where I find my bunk and spend the night! Everyone has been very kind and helpful which makes participating in NOAA Teacher at Sea even more amazing – if that is even possible!

Sue Oltman: Approaching Latitude Zero, June 1, 2012

NOAA Teacher at Sea
Sue Oltman
Aboard R/V Melville
May 22 – June 6, 2012

Mission: STRATUS Mooring Maintenance
Geographical Area: Southeastern Pacific Ocean, off the coast of Chile and Ecuador
Date: June 1, 2012

Weather Data from the Bridge:
Air temperature: 23.7. C / 74.6 F
Humidity: 73.1%
Precipitation: 0.3 mm
Barometric pressure: 1013.15 mB
Wind speed: 4.7 kt SE
Sea temperature: 24.77 C

We are almost at the equator!  The coordinates of the Galapagos Islands, where Puerto Ayora is, are 0, 90W.  The weather has been warm but a nice pleasant breeze is going all the time – the trade winds, a constant wind out of the southeast. It’s helpful as the ship is heading in the same direction as the wind!  When out on deck, it feels like perfect weather, it’s easy to forget how direct the sun is so close to the equator. Sunscreen is a necessity!  We are approaching the place where every day is an equinox.

It’s neat to think I will be staying at a hotel on the equator (equalizer of day and night.) Students, when I get to my hotel I will check and see whether water goes down the drain clockwise or counterclockwise, as we discussed in science class!

Most of the crew will take the ship to its home port in San Diego after dropping the science team off in the Galapagos. A new team of scientists will be waiting to board. The Stratus Team is crunching away at data gathering and wrapping up our reports.  Thoughts are starting to drift towards scenery of volcanic islands, beaches, giant tortoises and exotic birds which we look forward to seeing very soon!  So the science continues, no matter where you go…but we have a few more days left as sailors!

The crew tries to arrange some fun on occasional nights as we have to make our own entertainment…there is no TV and very limited internet (quite slow when it works!) and of course, no leisurely phone calls or text conversations from out here in the deep blue.  Sometimes it’s a movie – North by Northwest (a theme – our direction of travel), City of God, and a North Korean movie none of us had ever seen, as well as a poker game.  Most of us have books we are reading, but it was a big surprise that there is a fantastic library here! It has a few dozen shelves of books, mostly fiction, something for everyone’s taste. I’ve already read two books and have started a third.

Melville's library

There are about twice as many books than are shown in this picture! The library also has a TV and DVD player for watching a movie.

There are few books on the Galapagos Islands floating around and we have all been skimming them to decide how we will spend our time when we arrive in port. Many of us like to listen to our iPods and I have mentioned before, spend some time exercising.  Photography is a shared hobby, too, and now that our cruise is nearing an end, there is a lot of photo sharing going on. A few crew members find some spare time to fish from the side as we move forward. The ones that have been caught were shared at mealtimes. I especially enjoyed the yellowtail!

Being on a ship for a couple of weeks has also given me a look behind the scenes for every shipment of imports that comes across the seas to ports in theUnited States, such as Brunswick, Georgia. Each cargo ship has a crew of people bringing the goods over safely, loading and unloading, and doing it again. We have traversed over 2,000 miles and done it in excellent weather. The shipping industry and the goods my family and I use is something I had not given a second thought to before.  I have a new appreciation for the maritime industry.

Science and Technology Log

Since deploying the moored buoy, we have put quite a few drifters in the water including the one I personalized for our school!

Launching a drifter

Elsie and Jamie launch a drifter, one of many data gathering instruments that will drift with the current and report ocean temperature, and its location is tracked online.

Since we are getting closer to land, there is a higher likelihood of finding fishing gear in the water, so we have to be on alert for that at all times. We don’t want our instruments to get tangled up in the long lines fishermen leave in the water hoping for a catch to come along.  One day, the ship did run into some long lines and had to stop and make sure it wasn’t in the propellers. Another very cool instrument we’ve been deploying are ARGO drifter floats http://argo.whoi.edu/argo.whoi_about.html – Think of a scientific instrument that will measure temperature, conductivity (salinity)  and depth and that can be programmed to move around at different depths, GPS keeping track of its location for several months or even years.  They have computer processors in them and a little motor that “drives” it deeper or shallower as the need for data at certain coordinates dictates. Here is a diagram of the ARGO drifters we have been launching. http://argo.whoi.edu/argo.whoi_components.html

As the data from last year’s Stratus 11 deployment is analyzed, plus the hourly data from our UCTD profiles, several trends have become evident. I have also been able to get a look inside some of the instruments. Can you imagine sending a tablet computer hundreds of meters into the ocean? That is exactly what has been done. In the photo, you can see an example of an instrument that measured ocean currents for a year at great depth and pressure.

Gathering data from the mooring

Sean Whelan downloads the data from instruments and then prepares the instruments to be shipped back to Woods Hole.

Seaguard Current meter picture

Collecting data from a current meter using the touch screen and stylus, this instrument has withstood a year of underwater conditions on a card like you keep in a digital camera.

There is also redundancy of instruments (more than one) in case one fails or the battery dies, which sometimes does happen. Regarding the trends – the science team has anticipated this, having seen it similarly each year, these are their hypotheses as the Stratus experiment continues.  As we near the equator, the salinity is rising – there is more evaporation when the sun is more direct. As some of the ocean water becomes humidity in the atmosphere, the salt is left behind in the ocean, as salt does not change to a vapor in our atmosphere – it is left dissolved in the ocean and thus increases the ocean’s salinity. A “big” increase in salinity would be 1 part per thousand in a small area, for example, so we are tracking the trend of small changes. In the hourly UCDT deployments we have been conducting, we have measured between 34.08 and 37.7 parts per thousand.

Checking data in the main lab

Bob Weller and Sebastien Bigorre check the monitors for the status of the multi beam sonar display.

Oxygen content is important for all life as well as for many practical applications.  The absence of oxygen (or lower amounts) allows other chemical reactions to take place in the water.  The formation of certain acids becomes possible, which is deadly for some organisms, and favorable for others. An example we saw of this was a piece of hardware that was on the mooring cable had a very low oxygen levels, had sulfuric corrosion on it.

Another measure important to scientists is fluorescence which detects the amount of phytoplankton in the ocean – small organisms at the base of the ocean food web which use the CO2 to reproduce.

Society has great dependence on the ocean to absorb the right amount of carbon dioxide in the atmosphere, but at a certain point, the ocean chemistry will change and affect this balance of life. Climate prediction allows us to keep the pulse of the stability of this balance and all of this data we have gathered is part of the scientific puzzle of climate prediction.


Sue Oltman: A Successful but Slimy Recovery, May 30, 2012

NOAA Teacher at Sea
Sue Oltman
Aboard R/V Melville
May 22 – June 6, 2012

Mission: STRATUS Mooring Maintenance
Geographical Area: Southeastern Pacific Ocean, off the coast of Chile and Ecuador
Date: May 30, 2012

Weather Data from the Bridge:
Air temperature: 21.4 C / 65 F
Humidity: 77.6%
Precipitation: 0
Barometric pressure: 1015.1 mB
Wind speed: 15.8 kt SE
Sea temperature: 22.42 C

Location: 19.55 S, 85.2 W

The Trade Winds are now constant, helping us along to our destination!

Personal Log

An interview with the Captain, Dave Murline

SO: How long have you been a ship captain?

DM: Since 1994. Since then there has been an increase in  paperwork, regulations and inspections due to a world-wide push to make going to sea safer.

SO: What kinds of skills are necessary?

DM: You need a well rounded background in Seamanship, good people skills and the habit of treating everyone with respect.

SO: Does being on a science research ship bring any specific/different expectations than being on another type of merchant ship?

DM: Yes, on a research vessel, you are dealing with scientists and their instruments as opposed to general cargo. Every voyage is different and brings on its own set of new challenges. Scientists tend to work outside of the norm so there are always new ways to figure out how to use the ship in the best way that we support the mission. This is a job that always keeps me thinking and using my imagination!

SO: We are in the middle of a huge ocean, and our destination – a buoy – is like a pinpoint on a map. What has to be considered to make sure you get to the exact location?

DM: We need to consider weather, currents and also vessel traffic around the area. Some hazards to navigation are reefs (shallow), islands, clearances to foreign countries EEZ (Exclusive Economic Zone within 200 Miles of any country), and pirates. Once I encountered pirates on the Arabian sea, but on a ship like this, were able to out maneuver them. We have not gone back there!

Melville Captain

I’m on deck with Captain Dave Murline who is cooking up some freshly caught yellowtail. If you like to fish, a side benefit is when you get to enjoy your hobby!

SO: Have you ever gotten lost?

DM: I’ve never been lost at sea, but get lost sometimes driving around in my hometown!

SO: Can you name a really interesting research cruise you have been on?

DM: Every voyage is unique and interesting. I’m always looking forward to the next mission and challenge. Our work varies from studying the atmosphere sea interaction to marine mammals. There is so much to learn about our oceans, it is all very fascinating.

SO: What is something most people don’t know about your job?

DM: There is tons of paperwork with my job! That is what I consider the “work” part. Also, along with many other responsibilities, I am the ship’s medic which can be a “scary” part of the job as we are often working far away from any medical facilities. That is why “Safety” is our number one priority on any cruise.

SO:  Thanks for letting us get the inside scoop on being the Captain of the R/V Melville!

****************************************************************************

There are so many interesting people on the ship with a variety of skills. We eat all meals together and many of the crew support the science team in different ways. They are from many areas of the country and it has been great to get to know them!

My work out routine has become more varied – Unfortunately, the noise with mineral spirits/paint odors are a package deal along with the stairmaster in the machine shop, so I found another way to get some exercise in after noticing what some of the crew did. I spent about an hour doing many laps around the ship, up and down all the stairs of the outdoor decks, with the beautiful ocean all around me. For entertainment, I not only had my iPod, but for added visual interest, all kinds of valves, winches, life preservers, hoses, and the occasional engineer fixing something. A good line from my music today – I sing my heart out to the infinite sea! (The Who)

There is a little store on the ship that has been locked up tight. All of the guests on the ship are anticipating the sale in the ship store tomorrow!  There are t-shirts, hats, and other items as Melville souvenirs.

 Science and Technology Log

A successful but slimy recovery!

The Stratus 11 Buoy was successfully recovered in a process that began before breakfast and lasted into the evening. Remember the thousands of meters of cable?

First, a computer command triggered the acoustic release of the anchor.  There is not a way to safely recover this anchor, so it is left on the ocean floor. Once released, the bottom of the cable, with all 80 plus of the glass balls for flotation, gradually make their way to the surface.  So when we came out after breakfast, the yellow encased glass balls were all bobbing on the ocean’s surface.  A few folks had to go out in the life boat so the chain could be attached to the ship’s crane, then we started reeling them in. A beautiful rainbow was in the sky like a special treat for us!

Life boat and yellow glass balls

Sean, Eugene and Rob hold onto the deepest part of the cable which has surfaced, thanks to the glass balls encased in yellow cases.

Sometimes one or more will implode due to the massive pressure, and this time, only two did. Little by little, as the cable was wound onto the winch, the instruments started coming in. The deepest ones come in first and the shallowest ones last, opposite from deployment. They were cataloged and cleaned and if all is well, will be used next year on Stratus 13. It is amazing how all of these sensitive tools can last for a year under such conditions!  The battery left with the buoy is good for up to 14 months.  Sometimes, there would be fishing line entangled with the tools, as there is some good fishing in this area. As we started to get to the more shallow instruments – and by this I mean 150 meters or so – we started seeing that organisms had started taking up residence on them!  This is called a fouling community.  There are slimy growth algae and these little shells with a neck called gooseneck barnacles, sometimes with a crab in the shell. The closer to the surface we got, the population of these barnacles just kept increasing and increasing! There were quite a few instruments that were so covered in the barnacles; you could not even identify it!

Nan Galbraith

Nan’s organizational skills help the team know which instrument provided what data to maintain the integrity of the research.

Stratus 11 and its detritus and barnacles

Wearing a coating of fouling organisms, the Stratus 11 buoy looks nothing like the one we deployed 2 days ago! This is typical after a year in the ocean.

Sean and Stratus 11

Sean snags the Stratus 11 buoy to bring it in to the Melville. Photo: Rob Ball

Stratus 11 has been successfully recovered, barnacles and all! The crane carefully hoists it onto the aft deck. Photo: Rob Ball

As we recovered more instruments, we were drawn closer to the old buoy, which had acted as an artificial reef for the past year. Whales sometimes like this, so once again, we spotted our cetacean friends! Once the last instrument was on deck, it was time to recover the actual buoy. Like earlier in the day, we needed a few folks out in the boat to help make sure the buoy stayed with the ship and did not float away, as we had released it from the crane. It took longer than expected, but it was finally on board and it, too, had its own fouling community.

All hands were needed to help clean the instruments.  At first, it was a novelty to see a cute little crab crawl out of a colorful barnacle shell, but then all of us became quite ruthless, ripping and scraping them off of the tools with no regard for the destruction of their little ecosystem. We had quite a pile to get through and had no time for this – what was at first cute was not only annoying, but downright nasty!

Cleaning the shallow instruments was the messiest of all! Jamie from NOAA and I tackle a couple of more instruments, with a plethora of barnacles at our feet.

Some folks’ clothes were so disgusting, so caked with grime and detritus of the sea that it was decided to sacrifice them to the great Pacific instead of potentially fouling the ship’s washing machine. With all of the great attitudes and camaraderie, it wasn’t too bad to be doing this clean up together as a team.  All felt a great satisfaction at seeing two facets of the mooring project – the deployment a couple of days earlier and now a successful recovery with no injuries or loss of instruments.  A good nights rest was in order!

Getting ready to clean some instruments

Sebastien, Pamela, Elsie, me, Eric and Jamie have a moment of fun on a long day of hard work. A terrific group to cruise with! Photo: Ursula Cifuentes

You saw it here first… The EM122 Multi Beam sonar mapped out some brand new ocean floor for future research and deployment. The newly mapped area is seen on the screen – and in a year or so, will be added to the mapping database on Google Earth. So, before this part of the ocean floor makes its mapping debut to the world, you get an insider’s sneak preview here!

Mowing the lawn to determine topography

Sneak peek! A brand new map of a section of ocean floor, using the EM 122 Sonar and the “mowing the lawn” technique

Sue Oltman: Reaching Our Destination and KMS Goes Swimming, May 27, 2012

NOAA Teacher at Sea
Sue Oltman
Aboard R/V Melville
May 22 – June 6, 2012

Mission: STRATUS Mooring Maintenance
Geographical Area: Southeastern Pacific Ocean, off the coast of Chile and Ecuador
Date: May 27, 2012

Weather Data from the Bridge:
Air temperature: 21 C / 64.9 F
Humidity: 84.1%
Precipitation: 0
Barometric pressure: 1014.5 mB
Wind speed: 11 kt SE
Sea temperature: 21.75 C

Science and technology Log

I’m seeing for real that being a research scientist can be really exciting and hands-on when working out in the field. In our routine of launching UCTDs every hour while steaming towards our target, more acquisition of ocean data takes place in other ways. At certain coordinates, WHOI deploys drifter buoys that monitor ocean characteristics as they drift with the current.  The data can be followed on line not only by the scientists, but by the public!  Two were launched this morning on our watch at coordinates 21º S,  84º W.  And one of them is Kittredge’s adopted buoy!  It is serial number 101878. As you can see in the video clip and photo below, I’ve made sure a little bit of Kittredge Magnet school is left here in the Peru Basin of the Pacific Ocean, where it is about 4,400 m in depth.

Sue with the buoy

It’s time to launch the drifters! All the fish that see this will know about our school!

KMS went swimming in another way, too – my KMS hat flew off my head while working on the aft deck. (Sorry, Mrs. Lange!) Science Rocks in the South Pacific!

The team did a second CTD deployment – this one to the bottom, about 4,500 m.  This is precise work, to analyze maps and bathymetric data to be accurate to find the depth at which it is desired to anchor the Stratus 12 buoy. Keith, Jamie and I were “spotters” with the rosette as the crane lowered it down. Pamela, who is studying phytoplankton, retrieved samples of water with organisms from this deployment.  However, due to customs in Ecuador, it is tricky for her to get her samples back to Chile. Ecuador does not allow anything into the islands that may potentially contain anything living thing, even a sealed sample of water containing plankton. So the samples will continue with the ship to San Diego and then be shipped to her in Chile.

We made it to the old buoy! It was exciting to see Stratus 11 come into view. The bottom area was surveyed in great detail within a few miles of the Stratus 11 to confirm Seb’s chosen spot for Stratus 12.

Dr. Weller and crew

Dr. Bob Weller and Jeff Lord have a pre-deployment meeting with the captain and some key crew members who will be assisting.

The next day, the deployment of the new mooring, Stratus 12, is a full day of coordinated teamwork – about 4,500 m of cable with 2,000 m of instruments. The first 50 meters at the surface has 20 instruments!  It took over 8 hours to put the buoy and all attached instruments in the water, and that is after hours of assembly on the aft deck.  One new instrument added was at the deepest part of the ocean in this area and will provide data on deep ocean temperatures and salinity, something currently missing from climate models.

Stratus 12 is in the water!

We enjoyed perfect ocean and weather conditions on the day of the launch! The Stratus 12 buoy is in the background behind me.

Anchor splash

After the last instrument is placed on the mooring line, its anchor is sent down. At 10,000 lbs., the anchor drop makes a really big splash!

The glass balls go on the mooring line

All hands are on deck to contribute to the mooring assembly and launch.

The all night watches are not over, though – we must continue to collect bathymetric data to map the ocean floor around here. Only about 5% of the ocean floor is actually mapped, and when the team returns next year, they may not be on the same ship. Not all ships have the same sophisticated multi beam sonar as the Melville. Those on watch are actually watching the sonar monitor display as the ship engages in the “mowing the lawn” technique to create a detailed map. The Melville will “hang around” in this area for a couple of days before we remove Stratus 11 from the water. This allows time for data to be transitioned from one buoy to the new one. I am told recovering the buoy is going to be some dirty, grimy work!

Why here, anyway?

The area off the coast of Pacific off Northern Chile and Peru has been historically difficult for climatologists /meteorologists to model.  To predict climate, varying parameters of atmospheric conditions are fed into a computer to simulate what the outcome will be.  The predictions made are then compared to actual conditions to determine the reliability of the computer model. Meteorologists have not been able to accurately predict this region: the actual ocean conditions are much cooler than the computer predicts.

Another finding showing the importance of this area is that when the type, thickness, and altitude of clouds in the Northern Chile /Peru basin are changed for simulations, almost the whole Pacific Ocean’s heat distribution is in turn affected! Satellites gather data remotely, but the constant stratus clouds block satellite data transmission, so it is just not reliable. Data must be collected right here. Given that oceans cover 71% of the planet, and the Pacific is the largest, fully understanding this region is critical to building accurate climate models. Therefore, the Stratus research brings us to 20º S 85º W.

Personal Log 

Animal life has been spotted! On two days, we saw whales! One – perhaps a Blue Whale – was far away and just its fluke was seen.  The next day we had two whales swimming close to the ship, and we were able to watch them and hear them breathe for a while.  According to the crew, seeing whales in this area is rare. It’s odd to be in a body of water teeming with life and see so little of it. We also encountered only one boat, a Spanish fishing vessel.

Bob and Mark continue to feed us well.  The food storage area is below the main deck and they use a dumbwaiter to bring the food up to the kitchen where it is prepared and served. There is food from all over the world; the ship was in South Africa before reaching South America. All of the meat is from South Africa and also some of the coffee. One night, we had some kudu meat – like steak, but from antelope. It was very good, and tasted like bison. Every country’s Customs sends agents to inspect the food service area while in port. The U.S. Customs is very strict and will not allow foreign food into port, so maybe that is why they are feeding us so much!

The cooks work at least 10 hour days. Bob has been a cook for 21 years and his favorite part of his job is getting to travel.  Mark, our other cook, has been in this job for 10 years. Both of them work for Scripps, as it operates the boat.

Here’s how much we have been eating daily – 7 dozen eggs, 5 heads of lettuce, 5 gallons of milk, and there are NEVER any leftovers! The kitchen always keeps some of the meals for the “midnight rations” so those who sleep in the daytime and work on the night shift from midnight to 8a.m. do not miss out on any of the good fixins.

Finally, I am used to the noise and can sleep pretty well. It’s like I am in a room with power tools being used, even with ear plugs, you can hear the engines.  Everyone here is in the same boat, though (pun intended!). Our next exciting task is ahead, recovering and cleaning up the Stratus 11 buoy.

Wes Struble: Science Research in the Bahamas? Sign me up! February 27, 2012

NOAA Teacher at Sea
Wes Struble
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: February 27, 2012

Weather Data from the Bridge

Position: 26 degrees 31 minutes North Latitude & 76 degrees 48 minutes West Longitude / 9 miles east of the Bahamas
Windspeed: 8 knots
Wind Direction: East by Southeast
Air Temperature: 24.8 deg C / 76.5 deg F
Water Temperature: 24.2 deg C / 75.5 deg F
Atm Pressure: 1025 mb
Water Depth: 3830 meters / 12,770 feet
Cloud Cover: Approximately 60%
Cloud Type: Some altostratus and cumulostratus

Science/Technology Log:

The temperature has become quite warm and it has been a delight to walk around the deck in the sunshine in a t-shirt and shorts (the current weather back home is between 10 and 20 deg F and snowing). As you can see from the photo below the weather continues to be clear with some fair weather cumulus clouds and a light breeze.

A view of the wide western Atlantic off the Ron Brown's bow from the weather deck several days after leaving the port of Charleston, SC

The Ron Brown's wake trailing off into the west as we head toward our first CTD station

NOAA research scientist, Dr. Molly Baringer, Chief Scientist during the cruise, catches up on some computer work and reading in the shade of the bridge on the "lifeguard chair" on the "steel beach" (the weather deck) of the NOAA research vessel Ronald H Brown

A drifter buoy arrives prepackaged and ready for deployment

Removing the plastic packaging and recording the coordinates and serial number of the drifter buoy before deployment

A drifter buoy ready for deployment by Dr. Aurelie Duchez

Dr. Aurelie Duchez tosses the drifter over the stern of the Ron Brown. This cruise is a continuation of a long period of study (over 30 years) of the Gulf Stream and the Western Boundary currents in and around the region of Florida and the Bahamas. This region is of particular interest because of the impact these currents have on the weather and climate patterns of the northeastern North America and Northern Europe. The Gulf Stream current helps transport large amounts of heat energy derived from the equatorial Atlantic to the northern latitudes of America and Europe. An image of the Gulf Stream current from space - NASA photo. The Gulf Stream is the orange colored current that passes on the east coast of Florida and flows north along the eastern seaboard of the US

This phenomenon helps to moderate the climates of those areas by producing milder temperatures than would normally occur at these latitudes. Changes in the characteristics of these currents could potentially have a profound affect on the climates of these regions and it would be of particular interest to understand in detail the nature and interaction of these mobile bodies of water. To study these currents a combination of techniques have been employed. We should all be familiar with the concept of induction – the process of producing a current in a conductor by moving it through an electromagnetic field. This was one of the more important discoveries of Michael Faraday and is one for which we should be very grateful since most of our modern world depends upon the application of this scientific discovery.

Michael Faraday - the great British Scientist

As an example think of what modern life would be like without electric motors or generators. Well, it just so happens there exist old communications cables on the seafloor under these very currents between south Florida and the Bahamas. These cables are affected by a combination of the earth’s magnetic field and the motion of the seawater (a solution composed primarily of dissolved ions, charged particles, of Na+ and Cl). This combination of charges, motion, and the earth’s magnetic field causes a weak electrical current to be induced in the cable – a current which researchers have been able to measure.

A schematic showings the induction of an electric current in the underwater cable by motion of the sea water current (NOAA Image)

The electric current in the cable can be related mathematically to the strength of the ocean currents flowing over them. In addition to the data produced by the cable, the NOAA scientists are also deploying moored buoys below the surface that measure the characteristics of the seawater (temperature, density, etc) and use an Acoustic Doppler array to measure the relative motion of the current.

ADCP (Acoustic Doppler Current Profiler) and two other types of buoys - image from Grand Valley State University

An ADCP (Acoustic Doppler Current Profiler) buoy - Image from SAIC

A buoy deployment operation on the Ron Brown. Notice the large orange spherical ADCP buoys in the right foreground on the deck of the ship

These two data acquisition systems (in addition to the drifter buoys and CTD sampling) provide the data used to analyze the dynamics of the currents. As more data is collected and analyzed the nature and impact of these currents is slowly unraveled. Consider visiting the following website for a more detailed explanation:

http://www.aoml.noaa.gov/phod/wbts/index.php