Lisa Carlson: “No life is too short, no career too brief, no contribution too small,” July 16, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 16, 2023

– – ⚓ – –

Weather Data from the Bridge

July 14 (1200 PT, 1500 EST)
Location: 38° 34.9’ N, 123° 42.7’ W
15nm (17mi) West of Stewarts Point, CA

Visibility: <1 nautical miles
Sky condition: Overcast, fog
Wind: 19 knots from NW 330°
Barometer: 1014.6 mbar
Sea wave height: 3-4 feet
Swell: 5-6 ft from NW 300°
Sea temperature: 11.0°C (51.8°F)
Air temperature: 13.1°C (55.6°F)
Course Over Ground: (COG): 330°
Speed Over Ground (SOG): 10 knots

July 15 (1200 PT, 1500 EST)
Location: 38° 56.3’ N, 124° 02.1’ W
13nm (15mi) West of Point Arena Lighthouse, Point Arena, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 340°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet 3-4
Swell: 7-8 ft from NW 320°
Sea temperature: 10.8°C (51.4°F)
Air temperature: 13.3°C (55.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 9 knots

July 16 (1200 PT, 1500 EST)
Location: 39° 36.2’ N, 124° 01.6’ W
14nm (16mi) Northwest of Fort Bragg, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 29 knots from NW 320°
Barometer: 1011.4 mbar
Sea wave height: 3-4 feet
Swell: 5-6 ft from NW 320°
Sea temperature: 11.3°C (52.3°F)
Air temperature: 13.9°C (57.0°F)
Course Over Ground: (COG): 280°
Speed Over Ground (SOG): 7 knots

– – ⚓ – –

Science and Technology Log

Without a vessel and without a crew, none of this mission would be possible. As I’ve said before, this crew is special. Like any job, employees are required, but that does not mean that you will work well cohesively and passionately towards a goal. The two weeks I’ve been spending with this crew who is so wholeheartedly excited about their job and role, while being on the ocean, has been so rewarding and inspiring. More later, this is starting to remind me of crying along with my sobbing fourth graders on the last day of school.

While I’ve discussed a lot of the daily operations of the crew and ship, and what I’ve been learning and working on myself, however, I have not discussed the vessel and agency that has made all of this possible. Many people question, “What is NOAA?” when I explain this opportunity.

About NOAA

NOAA logo: a circle bisected by the outline of a seagull, dark blue above the seagull's wings and lighter blue below. Around the circle read the words: National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

“The National Oceanic and Atmospheric Administration (NOAA) is a U.S. government agency that was formed in 1970 as a combination of several different organizations. The purpose of NOAA is to study and report on the ocean, atmosphere, and coastal regions of Earth.”

National Geographic Education: “National Oceanic and Atmospheric Administration (NOAA)

“Our mission: To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and managecoastal and marine ecosystems and resources.”
NOAA: “About Our Agency”

NOAA: “About Our Agency”

NOAA Ship Bell M. Shimada can carry a total crew of 24, which include NOAA Corps officers, engineers, other crew members, and scientists.

“The NOAA Commissioned Officer Corps (NOAA Corps) is one of the nation’s eight uniformed services. NOAA Corps officers are an integral part of the National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce, and serve with the special trust and confidence of the President.”

NOAA OMO: “NOAA Commissioned Officer Corps

The Vessel

NOAA Ship Bell M. Shimada, commissioned in 2010, is a fisheries survey vessel designed to produce a low acoustic signature, built to collect data on fish populations, conduct marine mammal and seabird surveys, and study marine ecosystems. The quiet operation provides scientists the ability to study fish and marine mammals without significantly altering their behavior.

Stats and Specs (Link for more information)
Length: 208.60 ft
Beam (width): 49.2 ft
Draft (bottom of the lowered centerboard to waterline): 29.7 ft
Displacement (full load): 2,479 tons (4,958,000 lbs)
Speed: 11.00 knots
Endurance: 40 days
Range: 12,000 nautical miles
Home port: Newport, Oregon
Crew:
– 24 (5 NOAA Corps officers, 4 licensed engineers, and 15 other crew members)
– Plus up to 15 scientists

Namesake

“[Dr.] Bell M. Shimada (1922-1958), served with the United States Fish and Wildlife Service and the Inter-American Tropical Tuna Commission, and was known for his studies of tropical Pacific tuna stocks.”

Wikipedia: “NOAAS Bell M. Shimada

The ship’s namesake was known for his contributions to the study of Tropical Pacific tuna stocks, which were important to the development of West Coast commercial fisheries following World War II. Dr. Bell Shimada and colleagues at Pacific Oceanic Fisheries Investigations (POFI) Honolulu Laboratory were among the first to study the population dynamics of tunas and the oceanography affecting their abundance and distribution.

a man (Dr. Shimada) wearing a white t-shirt, shorts, and red baseball cap stands holding a penguin. He grasps the penguin securely beneath its wings, which are spread out to each side. The man, and the penguin, look at the camera. He appears to be on a vessel - we can see some ocean water in the background - and we can tell that two other people are behind him, mostly obscured.

Dr. Bell M. Shimada, circa 1957.
Wikipedia: “Bell M. Shimada

“In her remarks at the christening and launch, [Dr. Shimada’s daughter] Julie Shimada offered the following, “I hope the Bell M. Shimada is a lasting testament that no life is too short, no career too brief, no contribution too small, to make a difference.”

NVC Foundation: “NOAA Honors Nisei With Launch of Fisheries Vessel “Bell M. Shimada””

– – ⚓ – –

Interviews with the Crew
(Part 1 of 2)

(Take note of the similarities and differences between how these crew members chose an ocean-related career and got to be assigned to NOAA Ship Bell M. Shimada)


A photo of a photo in a wooden frame with a name plaque reading CDR Laura Gibson. The photo is a portait of a woman posing in a survival suit, hands in the air. She's wearing a navy blue hat that says Bell M Shimada R-227.

Executive Officer
Commander Laura Gibson

What is your role aboard NOAA Ship Bell M. Shimada?
CDR Gibson’s role includes a lot of administrative work, handling the budget, standing bridge watches as the Officer on Duty (OOD), along with other executive duties.

What do you enjoy the most about your role?
The mission and camaraderie of the crew, as well as getting to know the ship and happy, successful operations.

When did you know you wanted to pursue an ocean-related career?
CDR Gibson enjoys Scuba diving and grew up on lakes. She worked on a research ship in college and continued working on the water which led her to NOAA. She mentions her Dad as a large motivator and inspiration of wanting to pursue an ocean-related career.

What do you think you would be doing if you were not working for NOAA?
Working a boring 9-5 desk job!

Favorite animal
Rhinoceros

Fun Fact: she brings a stuffed animal dog with her from her son, named Barfolomew.

His nickname is Barf!

a stuffed animal (a brown dog with long black ears) photographed against a carpet

A photo of a photo in a wooden frame with a name plaque reading LT Nicole Chappelle. The photo is a portait of a woman wearing a blue jacket.

Operations Officer
Lieutenant Nicole Chappelle

What is your role aboard NOAA Ship Bell M. Shimada?
Coordinate with scientists to make the plan of the day, assist in navigation and operation of the vessel.

What do you enjoy the most about your role?
Nicole enjoys seeing all of the sea life and creatures, and hearing and learning what the scientists are doing and why.

When did you know you wanted to pursue an ocean-related career?
She originally wanted to work with animals, which she did as a member of a rehabilitation team at Sea World. She then wanted to join uniformed service. Nicole chose NOAA’s uniformed service (NOAA Corps) because their science missions aligned with her interests.

What do you think you would be doing if you were not working for NOAA?
Working with animals and marine life or being a scuba instructor.

Do you have an outside hobby?
Horseback riding, Scuba diving, jogging, kayaking, hiking.

What’s something you were surprised to see or learn about living and working onboard when you first started?
Nicole remarked on the times she’s been out in the ocean, hundreds of miles away from shore, and how few other vessels you see there. She says it gave her a much greater appreciation for just how big the ocean is.

Favorite animal
Horses


A photo of a photo in a wooden frame with a name plaque reading Deb Rose. This is a photo of woman wearing a green NOAA t-shirt, a purple bandana, and sunglasses.

Junior Engineer
Deb Rose

What is your role aboard NOAA Ship Bell M. Shimada?
Junior Engineer Deb Rose (in her words) handles the “hotel services” of the vessel. Her role includes plumbing, electrical work, repairs, and many other behind the scene tasks to keep the vessel running safely.

What do you enjoy the most about your role?
I get to fix stuff! Troubleshooting, figuring out what’s wrong, and fixing the problem were among steps that she described as part of her work onboard.

When did you know you wanted to pursue an ocean-related career?
While working at Firestone, Deb met and befriended Jason who became a wiper on NOAA Ship Oscar Elton Sette. She saw pictures and heard his stories of how he is now a licensed engineer, and decided to follow in his footsteps! She mentions Jason as a motivator that inspired her to pursue an ocean-related career.

What do you think you would be doing if you were not working for NOAA?
Continue to work on the Alaska Marine Highway ferries. (These ferries cover 3,500 miles of Alaska’s coastline.)

Outside hobbies: Video games, Scuba diving, swimming, fishing

What’s something you were surprised to see or learn about living and working onboard when you first started?
How few women there still are in the industry. Deb has often been the only or one of the only female crew members both on land and at sea. She hopes that this trend will keep changing and that women will be in more engineering industries.

Favorite animal
Her favorite animals are the Jackson Chameleon and dogs.

Fun Fact: Humans are more related to salps than any other creatures we catch. She can also identify 12 Rockfish species!


A photo of a photo in a wooden frame with a name plaque reading Connor Rauch. The photo is a portrait of a man with glasses standing against a wall.

Deck Department
Connor Rauch

What is your role aboard NOAA Ship Bell M. Shimada?
Connor is a General Vessel Assistant as part of the Deck Department. He helps deploy and recover the trawl net and CTD rosette, stands watch as a lookout, helps keep the ship clean, and much more! He took classes at Seattle Maritime Academy for one year and is now applying his education on his first NOAA vessel!

What do you enjoy the most about your role?
He is enjoying his first assignment on a NOAA vessel and traveling up and down the Pacific coast. He says he is also enjoying being on the water, applying new knowledge to tasks, and training to a real ship. He also enjoys learning about trawling and commented on how nice the people onboard are.

When did you know you wanted to pursue an ocean-related career?
He wanted to try something new after working for a non-profit group during the Covid-19 pandemic assisting those in need. He decided to work on the water since he grew up sailing and kayaking. He thought of working on local ferries, but after taking classes at Seattle Maritime Academy, he had the confidence to apply for NOAA.

Do you have an outside hobby?
Reading, kayaking, camping, and hiking.

What’s something you were surprised to see or learn about living and working onboard when you first started?
Connor said he was pleasantly surprised at how tight the crew is, how easy it is to sleep, how comfortable the ship is, and the good food!

Favorite animal
Beavers and dog

– – ⚓ – –

Personal Log

As this experience comes to the end, I reflect on all parts of this mission. The crew, vessel, marine life, food, sleep, friendships, and more. I’m so thankful I was able to have this experience and share NOAA’s Teacher at Sea program more with coworkers, family, friends, and my students. Meeting and talking with the crew resulted in long conversations and plenty of laughs and connections amongst each other that they previously had not known.

Winds and swells picked up over the weekend and on Sunday July 16 we only caught six Hake. After that trawl and an increase in marine mammals being sighted when we were trying to trawl, fishing was called off for the rest of the Leg. At 1020 Monday July 17, we completed our last transect for Leg 2 of the Survey and headed due North for the long trek to Newport, Oregon. We still found ways to entertain ourselves, nap, snack, share stories and riddles, take photos of sunsets and marine mammals, watch shooting stars and have a movie night. Below are photos of our art craft: fish prints of two Chilipepper Rockfish!

– – ⚓ – –

Did You Know?

NOAA Ship Bell M. Shimada has an endurance, the amount of time the vessel can be at sea in a row, of forty days. This is not because the ship can’t make its own fresh water through reverse osmosis from sea water, or a lack of fuel, oil, extra parts, or a way to exhume waste and trash in an environmentally friendly way…

but because of food!

Our galley crew is amazingly talented and spoils us with a huge all you can eat buffet, desserts, and drinks every day! But, as per various laws and for the safety of the crew, they are lawfully entitled to fresh fruit, vegetables, meat, etc. within set guidelines and window of time.


– – ⚓ – –

Animals Seen Today

Pacific White-Sided Dolphins! Although these energetic friends caused us to abandon a trawl attempt after multiple marine mammal watches ended early because of their presence, they were so much fun to watch! I brought my DSLR camera up to the bridge deck and eventually sat down on the deck watching them jump and race through the ocean waters next to the hull. Below are some of my favorite photos I took of the pod.

Lisa Carlson: Where Did You Come From, Where Did You Go? July 13, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 13, 2023

– – ⚓ – –

Weather Data from the bridge:

July 11 (1200 PT, 1500 EST)
Location: 37° 46.7’ N, 123° 26.6’ W
43nm (50mi) West of San Francisco, CA

Visibility: 2 nautical miles
Sky condition: Overcast, fog
Wind: 20 knots from N 250°
Barometer: 1015.2 mbar
Sea wave height: 2-3 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 12.2°C (57.2°F)
Air temperature: 12.7°C (57.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 10 knots

July 12 (1200 PT, 1500 EST)
Location: 38° 06.8’ N, 123° 01.6’ W
7nm (8mi) North of Point Reyes Lighthouse, Inverness, CA

Visibility: 2 nautical miles
Sky condition: Overcast, fog
Wind: 12 knots from N 350°
Barometer: 1016.0 mbar
Sea wave height: 1-2 feet
Swell: 3-4 ft from W 280°
Sea temperature: 11.0°C (57.2°F)
Air temperature: 11.5°C (57.9°F)
Course Over Ground: (COG): 270°
Speed Over Ground (SOG): 10 knots

July 13 (1200 PT, 1500 EST)
Location: 38° 17.3’ N, 123° 06.1’ W
2.5nm (4mi) Southwest of Bodega Bay, CA

Visibility: 3 nautical miles
Sky condition: Few clouds, fog
Wind: 13 knots from NW 300°
Barometer: 1015.9 mbar
Sea wave height: 1-2 feet 1-2
Swell: 3-4 ft from NW 300°
Sea temperature: 10.7°C (51.3°F)
Air temperature: 13.7°C (56.6°F)
Course Over Ground: (COG): 340°
Speed Over Ground (SOG): 10 knots

– – ⚓ – –

In my July 6 post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams and therefore find fish to trawl for. In my July 10 post, I explained how we get the fish onboard, and what we do with the sample once it is collected from the net. These entries described what work is done in the Acoustics Lab and the Wet Lab, but there is one more Lab onboard to explore and explain: the Chemistry Lab.

view down the starboard side of NOAA Ship Bell M Shimada shows a wooden nameplate (reading Bell M Shimada) on a railing, the fast rescue boat mounted aftward, and the Golden Gate Bridge in the background.
NOAA Ship Bell M. Shimada leaving Pier 30/32 in San Francisco, CA on July 5, 2023. (Just a nice photo taken by me that I wanted to include)

Science and Technology Log

Each morning after breakfast, we usually gather in the Acoustics Lab, determine what transect we are on, if we are inshore or offshore, and in some ways: hurry up and wait. Once certain patterns and blips show up on the echo grams, the Acoustics team talks with the bridge and may request to turn around and attempt a trawl. After all marine mammal observations are completed, the net is retrieved, and the samples are brought to the Wet Lab, we sort and collect data on the samples. These operations usually take place between 0800 and 2000. (8am to 8pm)

So what happens at night? In the Chemistry Lab, scientists work with the Deck and Surveys Departments to deploy a collection of electronic instruments and 12 Niskin bottles (open bottles used to collect and hold water samples, about one meter long) secured to a cylindrical frame called a rosette. It is deployed from the side sampling station instead of the stern. Scientists onboard NOAA Ship Bell M. Shimada use the instruments and collection of water samples in two ways: measuring Conductivity, Temperature, and Depth (CTD) within a water column to study oceanography, and collecting environmental DNA (eDNA).

photo of a large piece of sampling equipment on deck. a large white metal cylindrical frame houses a ring of perhaps ten tall gray canisters - the Niskin bottles. The bottles circle the conductivity, temperature, and depth probe, which is barely visible. Behind the frame, past the ship's rail, we see vivid blue water with a few white caps and a coastal mountain range beyond.

CTD Niskin bottles arranged on a circular rosette frame.

“Nighttime operations primarily consists of deploying the Conductivity-Temperature [-Depth] (CTD) rosette which gathers oceanographic data such as conductivity, temperature, dissolved oxygen, and chlorophyll fluorescence. The CTD can also be triggered to collect water at specific depths.”

NOAA Fisheries: “eDNA Part 2: There’s a Lot of Water in the Sea – and the Chemistry Lab
NOAA Ocean Exploration: “What does “CTD” stand for?

Conductivity, Temperature and Depth: CTD

CTD stands for conductivity (ability to pass an electrical current), temperature, and depth. Scientists use the rosette frame, which is attached to the ship by cables, and has the CTD and 12 Niskin bottles attached, to collect electronic data and multiple water samples.

“A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity. By measuring the conductivity of seawater, the salinity can be derived from the temperature and pressure of the same water. The depth is then derived from the pressure measurement by calculating the density of water from the temperature and the salinity.”

NOAA Ocean Exploration: “What does “CTD” stand for?
Elysha, wearing an orange life vest and white NOAA logo hard hat, sits at a metal desk with two computer monitors and a keyboard. The monitors display data from the CTD. Elysha has her right hand on a computer mouse while her left grips a pen over a yellow legal pad. She is turning to smile at the camera.
Senior Survey Technician Elysha Agne gives commands to the Deck Department running the winch and cable to the rosette, and ensures quality data is being collected at each sampling depth.

“For more detailed analyses back in the lab, each of the large gray bottles captures a water sample at a different depth. The data provide scientists important information about the local aquatic environment.”

NOAA: “Photo story: Virtually cruise aboard a NOAA ship for a fish trawl survey

Depending on the depth at which the vessel is currently operating, the rosette will descend to one to five predetermined depths (50m-500m) for sampling. For example, if the vessel depth reads 400m, water samples will occur at 50m, 150m, 200m, and 300m (more information in Table 1 below). A water sample is also taken just below the ocean surface using a through hull fitting, which allows seawater to be collected via a hole in the hull that feeds directly to the Chem Lab.

Table 1. Sample depths for eDNA. Two independent samples should be taken at each depth. The total ocean depth of location for the CTD cast determines the depths at which water samples will be collected. The rows of the table are labeled Sampling Depth (m) and the columns are labeled Topography depth of CTD cast.
Table 1 in Protocol manual, written by Chem Lab member and eDNA scientist Abi Wells.

While the rosette descends, data is recorded from multiple sensors and are later used by scientists to compare with Acoustic and Wet Lab data and compile and categorize new information from the survey. Pressure, depth, temperature, conductivity, salinity, oxygen, fluorescence, and turbidity were all being recorded during this leg of the survey mission.

photo of a computer screen displaying data. two graphs depict depth (m) on the y-axis and salinity or dissolved oxygen on the x-axes.
Program displaying data collected from the CTD rosette in real time.

Environmental DNA: eDNA

During the day, Hake stay in deeper waters, averaging around 200-350m, but at night the nocturnal feeders start their daily migration through the water column to shallower depths. They feed primarily on zooplankton, shrimp, myctophids (Lanternfish), and even young Hake at this depth. As Hake move throughout the water column, they leave behind DNA in the water that can be collected later as sort of a signature of their presence in that location. The collection, filtering, and preservation of sampled water in the ocean environment is categorized as collecting eDNA. This environmental DNA can be in the form of gametes (reproductive cells), fish scales, feces, etc.

Collecting water samples at different depths in the same vertical column can show what marine life was present at that location, and what depth they were at. I relate it to reviewing school security cameras or talking to other teachers at the end of the school day, to determine where a student was at a certain time and why.

The apparatus housing the CTD probe and Niskin rosette sits on deck. Abi, wearing a yellow hard hat, orange life vest, blue gloves and brown rubber boots, stands between the equipment and the rail of the ship to empty water from a Niskin bottle into a plastic bag. The profile of her face is mostly obscured by her long yellow ponytail.
Chem Lab member and eDNA scientist Abi Wells collecting a 2.5L water sample from a Niskin bottle after a successful CTD deployment.

When the rosette is back on deck, scientists use gloves and new collection bags called Whirlpacks, to collect approximately 2.5L of water from each 10L Niskin bottle. This process is conducted with a great emphasis on sterility, including wiping the bottle spigot with DNAway to remove any contaminants, using new materials, and not allowing fingers or the spigot to touch the collection bag.

Once the collection bags are filled and brought to the Chem Lab, filtration occurs using 1.0 micron filters. Although this size of filter, compared to smaller filters, allows some cells to pass through and not be collected, it is faster and results in less breakage of cells and loss of DNA. After 2.5L of the water sample is poured through individual filters for each depth sample, they are placed in pre-labeled (location and depth information) tubes with 2mL of preservative buffer. The tubes are stored at room temperature and away from UV light until NOAA Ship Bell M. Shimada is back in port and the samples can be further researched in on-land laboratories. Results from additional studies help to compile lists of marine life that was present in the water column and can be compared to acoustic data and species caught and logged in the Wet Lab.

– – ⚓ – –

Personal Log

So, there you have it. Three Labs onboard that conduct very different research, but fit together in the puzzle of Hake development, migration, diet, niches, ecosystem, biomass, and supporting sustainable commercial fisheries. Each additional piece of data; whether it be echo sounds, physical samples, eDNA, or CTD information, strengthens the others and helps to create a cohesive summary of the data. 

This was a lot to learn in the first few days, but as I’ve said before, all of the crew has been welcoming, supportive, and educational. Having a strong team that works together is priceless, and thoroughly noticed and appreciated. 

A few days into the mission my Mom asked me what the best part of my day was. I had three answers and haven’t had a day yet with only one answer. I replied that it was the great salmon dinner, clean clothes, and seeing Risso’s Dolphins for the first time.

Video taken by me of Risso’s Dolphins surfacing for air. (Plays on loop)

We are now a little more than halfway through the mission and it has truly flown by. We’ve shared riddles and daily Final Jeopardy questions. We’ve laughed over daily experiences and the faces Hake fish make. We’ve played music and watched baseball during dinner. We enjoy watching marine life and breathe in the salt air while strengthening our sea legs. Sometimes we just drink coffee and snack and enjoy this opportunity with each other, and that makes every part of the day the best part.

– – ⚓ – –

Did You Know?

Although Hake are occasionally cannibalistic, they are not at the top of their food chain. Humboldt Squid (Remember those 15 foot long tentacles in my Wet Lab post?), Dogfish Sharks, and marine mammals are all predators, as well as commercial fishing.
Today well over 100 Spiny Dogfish Sharks were inadvertently caught in the trawl, in the same location as the baskets of Hake we sampled from.
Maybe there were baby Hake fish in the sharks’ stomachs… we didn’t attempt to find out.

– – ⚓ – –

New Terms/Phrases

Although I had learned the terms a few days earlier, I got to help Wet Lab Lead Ethan Beyer collect otolith and stomach samples for the first time from a sub-sample of Hake the other day.

I watched and learned, then helped scan barcodes of otolith sample bottles, add 95% ethanol that is diluted 50/50 with water, and delicately pick up the ear bones with tweezers and place them in the bottle.

Additionally, each Hake in the sub-sample has its weight recorded, along with length, sex, and developmental stage. From that sub-sample, five stomachs are removed for later analysis, and five have their stomachs opened and their diet is recorded. We often find Lanternfish (Myctophids), Krill (Euphausiidae) and small Hake.

Lisa Carlson: One Fish, Two Fish, Rockfish, Hake fish! July 10, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 10, 2023

– – ⚓ – –

Weather Data from the bridge:

July 7 (1200 PT, 1500 EST)
Location: 36° 00.4’ N, 122° 05.9’ W
16nm (21mi) West of Big Sur, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 20 knots from NW 330°
Barometer: 1013.1 mbar
Sea wave height: 3-4 feet
Swell: 6-7 ft from NW 320°
Sea temperature: 14.0°C (57.2°F)
Air temperature: 14.4°C (57.9°F)
Course Over Ground: (COG): 323°
Speed Over Ground (SOG): 10 knots

July 8 (1200 PT, 1500 EST)
Location: 36° 34.5’ N, 122° 05.3’ W
17nm (20mi) Southwest of Monterey, CA

Visibility: 10 nautical miles
Sky condition: Few clouds
Wind: 19 knots from NW 330°
Barometer: 1013.8 mbar
Sea wave height: 5-6 feet
Swell: 6-7 ft from NW 330°
Sea temperature: 14.0°C (57.2°F) 13.7
Air temperature: 14.4°C (57.9°F) 14.3
Course Over Ground: (COG): 089°
Speed Over Ground (SOG): 10 knots

July 9 (1200 PT, 1500 EST)
Location: 37° 06.8’ N, 123° 00.5’ W
30nm (35mi) West of Pigeon Point Light Station, Pescadero, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 13 knots from NW 332°
Barometer: 1016.0 mbar
Sea wave height: 2-3 feet
Swell: 4-5 ft from NW 310° 4-5
Sea temperature: 14.3°C (57.7°F)
Air temperature: 15.2°C (59.4°F)
Course Over Ground: (COG): 093°
Speed Over Ground (SOG): 10 knots

July 10 (1200 PT, 1500 EST)
Location: 37° 26.7’ N, 123° 06.4’ W
32nm (37mi) West of Pescadero, CA

Visibility: 8 nautical miles
Sky condition: Overcast, fog in vicinity
Wind: 20 knots from NW 330°
Barometer: 1015.9 mbar
Sea wave height: 2-3 feet
Swell: 3-4 ft from NW 320°
Sea temperature: 14.5°C (58.1°F)
Air temperature: 13.6°C (56.5°F)
Course Over Ground: (COG): 314°
Speed Over Ground (SOG): 3 knots

– – ⚓ – –

Science and Technology Log

Lisa poses for a photo in the wet lab with a hake fish. She's wearing heavy-duty orange overalls and large orange gloves. With her right hand, she grasps the fish by its open mouth, and her left hand holds on to the tail. We can see metal tables and equipment in the background.
Me holding a Hake before sorting. After observation, we determined this was a developmentally mature female, measuring 50cm (20in) long!

In my July 6 blog post, I explained how NOAA Ship Bell M. Shimada is equipped to collect acoustic data in the form of echo grams. The acoustics team uses the data to determine if there are enough return signals to suggest fish are present and attempt a trawl. In this blog post, I will explain how we get the fish onboard, and what we do with the sample of marine life once it is collected from the net.

One question I had after learning about the acoustics and environmental DNA (eDNA) pieces of the survey mission was, “How does physically collecting and researching Hake samples fit into the puzzle of understanding their ecosystem and supporting sustainable fisheries?” (NOAA Fisheries quick facts and video here)

“While echosounders are useful, they do not provide certain quantitative data that researchers need to understand the ecology of these organisms and the midwater zone. To collect quantitative data, such as biomass, length and weight, and age class distributions, researchers must gather representational samples and take direct measurements of them. The best way to do this is by employing trawls.”

NOAA Ocean Exploration: “Trawls

So, although acoustics and eDNA research is important to the overall survey, they are only pieces of the puzzle, and the puzzle is not complete without conducting trawls and physically researching samples. NOAA Ship Bell M. Shimada uses a midwater trawl net that is deployed from the stern over the transom, and towed behind the vessel. As the name suggests, midwater trawls occur in the middle section of the water column, versus surface and bottom trawls. The net is conical in shape and uses two metal Fishbuster Trawl Doors, and two sets of heavy chain links called Tom weights, in order to keep the trawl in the middle of the water column.

a simple and stylized monochrome illustration of a fishing vessel towing a midwater trawl behind it. The net in tow is conical, attached at four points to two bars that hold the opening apart, and these bars are attached to lines (ropes) extending back from the vessel. This net is capturing two fish and missing a third.
NOAA Fisheries: “Fishing Gear: Midwater Trawls

“The midwater region is especially important because the creatures that inhabit it constitute the majority of the world’s seafood. Understanding the ecology of midwater organisms and their vast environment can provide us with better information to manage these important natural resources and prevent their overexploitation.”

NOAA Ocean Exploration: “Trawls

Deck department assisting in recovering the trawl net after a successful deployment.

Two deck crewmembers work with an orange and white fishing net on the aft deck of NOAA Ship Bell M. Shimada. They are wearing foul weather gear, life vests, and hard hats. At right, one leans over the net, searching for remaining captured fish. The other approaches from the left, looking down at the net, to assist. We can see a cloud-capped mountain range in the distance beyond the water.

Once the net is onboard, the net is emptied one of two ways depending on the size of the sample. For large samples, marine life is deposited into a hopper and subsequent conveyor belt. For smaller samples, the Hake will be put into a large basket then divided into smaller baskets of approximately 100 Hake each. Any other marine life like Salps, Myctophids, Pyrosomes, Rockfish, King of the Salmon, and small bony fish, etc. are recorded in the database and returned to the ocean.

“The ship’s wet lab allows scientists to sort, weigh, measure and examine fish. The data is entered directly into the ship’s scientific computer network.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada
a large black plastic bin filled with fish - mostly hake, but a few splitnose rockfish (eyes bulging from the pressure change) stand out for their red color. An orange-gloved hand reaches toward the basket from the upper left corner of the image.

Large basket containing a sample of Hake with a few (red) Splitnose Rockfish.

With our boots and bright orange rubber pants and gloves on, our first task is to distribute the sample of Hake into baskets of about 100 each. Based on how many baskets we fill, a random selection of baskets will be kept, and the others will be returned to the ocean. With the remaining groups of Hake, we determine their sex and length.

In order to do this, we use a scalpel to make an incision on the underside/belly of the Hake. Once open, we are able to examine their organs, including the gonads to determine if the fish is male or female, and if they are developmentally immature or mature. Young Hake are difficult to sex, and it takes practice to get over any initial fears of cutting into an animal; let alone being able to locate and identify the gonads. Hake usually spawn in early winter, so many of the smaller Hake we sample from during the summer are age one or younger.

Our largest Hake thus far was a developmentally mature female, measuring 50cm (20in). In order to accurately and consistently measure the length of the sample, we use a waterproof, magnetic plastic board with metric (centimeter and millimeter) markings called an Ichthystick (think: high-tech meter stick). The fish is placed on the board with its mouth touching the black board at 0cm, then a magnetic stylus is placed at the fork of the fish’s tail. Once the magnetic stylus is placed on the board, the length to the nearest millimeter is displayed on the LCD screen and automatically entered into the database program. The length data is grouped with the date, time, and identified sex for later observation and comparison.

Additional information, abstracts and outline about Ichthystick here

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

Ichthystick’s LCD display, motherboard, magnetic board, and magnetic stylus. Digital scale in background.

An even smaller subgroup is then selected and examined to record weights of individual Hake, collect ear bones called Otoliths for aging, stomach samples for diet, liver for RNA, and ovaries for maturity development. Otolith bones help determine the age of the Hake because they grow a new “layer” of bone each year, similar to coral structures and annual tree rings. Organs and bones removed from the Hake are sent to NOAA Fisheries centers for analysis and included in databases with the date, identified sex, length, weight, and location in which they were collected.

This data is used to build more of the puzzle, along with acoustical information, water samples, and eDNA data in order to further understand the ecosystem, biomass, diet, and

“support sustainable populations of Pacific hake on the West Coast.” (…)
“It provides vital data to help manage the migratory coastal stock of Pacific hake. The hake survey, officially called the Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey, occurs every odd-numbered year.”

NOAA Fisheries: “Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey

– – ⚓ – –

Personal Log

Although this subtopic of explaining the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey is a bit easier to understand than my July 6 Acoustics Lab post, it certainly does not mean it’s an easy task!

When I had a tour on July 4, I remarked how clean and
organized the Wet Lab is. I hadn’t see it in action yet, but noticed how everything had its place and use. On July 6 we conducted our first trawl and collected a sample of 11 baskets of Hake (approximately 1,100 Hake since we group about 100 Hake together in each basket.) From that sample, we kept four baskets and counted, sexed, and measured 541 Hake.

Five of us were working together in the Wet Lab for that haul. I’ll admit I probably
didn’t sex 100+ Hake. It took a few minutes of watching the others carefully and swiftly cut into the underside of a fish, open the two sides, and know what to look for to determine the sex of very young Hake. Eventually I found the courage to slice in and take a look. By the fourth or fifth Hake, the uneasiness had subsided and I found the process very interesting and educational. Although young samples are hard to sex as they are often undeveloped, the others encouraged me and answered my questions and guesses with enthusiasm and support.

While working on measuring the lengths of our samples, one Science Team member paused and remarked how beautiful he found the fish. Although they do not have vibrant, bold colors, shimmering scales, or anything else particularly remarkable, he found the beauty in them. He digressed into a conversation of their role in the ecosystem, how they are living and breathing creatures, and how they probably all have their own personalities and slight physical differences. I noticed some of their eyes were shiny and sparkling, and how their faces and expressions were
noticeably unique the more you looked. That “down to earth”, heartfelt discussion was very special and demonstrated how the crew respects the process of catching and sampling Hake, while keeping each other and marine mammals safe.

From the NOAA Corps Officers, to the deck department, to the engineers,
electronics, science team, survey team, galley crew, volunteers, and everyone in between; the crew on NOAA Ship Bell M. Shimada is special. They take pride in their vessel and job, and always seem to have a smile and kind greeting. Being away from land and loved ones for weeks and months at a time will certainly take a toll on the body and mind, but this team is there for each other. To all of the crew, thank you for making me feel so welcomed and appreciated. We’re almost halfway through the mission, and as tired as I may get after (sometimes) 12+ hour days, I sleep well knowing the crew trusts their vessel and each other; and look forward to learning and becoming more and more acquainted each day with the people that make this mission possible. Thank you!

– – ⚓ – –

Did You Know? (FAQs)

1. Are you finding schools of them?

We’ve had seven successful trawls out of nine attempts for Pacific Hake fish. They often come with pyrosomes (Sea Pickle) myctophids (Lanternfish), and salps in the net too. Some trawl attempts are successful without a hitch, but more often than not we have to restart our Marine Mammal watches a few times before deploying in order to keep our ocean life safe and not get tangled in the net. Two trawl attempts have been abandoned because of the amount of persistent marine mammal life and playfulness near the ship. (I think they know we’re watching and show off for our cameras.)

2. What’s your average depth?

The transects (Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data) usually range from 50m – 1,500m (164ft – 4,921ft) in depth.

  • However, right now one of the displays in the Acoustics Lab, the depth reading is 3,240m which is about 10,630ft or just over two miles deep! 
  • This depth is only 1,870ft shallower than the wreck of the RMS Titanic! 
  • (We were on a long transect, we do not often see depths this great.)

3. Have you gotten seasick? Seasickness should subside after about 3 days.

I’ve never gotten seasick thankfully! Knock on wood and all the other premonitions, please.

4. What is the Hake role in the ecosystem?

More info on this coming in later posts after explaining our Chemistry lab and technology aboard! 

  • However, as predators, they can be cannibalistic towards their own kind. 
  • As far as their role in human consumption: They are often used as a substitute for Cod and Haddock, and in fish sticks and imitation crab meat.

– – ⚓ – –

Animals seen July 5-July 10:

Mammals: Sea Lions, Harbor Seals, Dall’s Porpoise, Risso’s Dolphins, Pacific White-Sided Dolphins, Northern Right Whale Dolphins, Humpback Whales

Birds: Gulls, Black-Footed Albatross

Bony Fish: Hake, Lanternfish (Myctophid), Flatfish, King of the Salmon, Split Nose Rockfish, Chili Pepper Rockfish

Other Marine Life: Giant or Humboldt Squid (15 foot tentacles in trawl), Spiny Dogfish Shark, Shrimp, Plankton, Krill, Sea Pickle (Pyrosome), Salp, Eel Larva

Lisa Carlson: Come Out, Come Out, Wherever You Are, Hake! July 6, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 6, 2023

Weather Data from the Bridge:

— July 5 Departure
(1800 PT, 2100 EST)

Location: 37° 44.9’N, 122° 39.2’W
Docked at Pier 30/32
San Francisco, CA

Visibility: 10 nautical miles
Sky condition: Overcast
Wind: 17 knots from NW 300°
Barometer: 1012.8 mbar
Sea wave height: 1-2 feet
Swell: 2-4 ft from W 270°
Sea temperature: 14.2°C (57.6°F)
Air temperature: 14.7°C (58.5°F)
Course Over Ground: (COG): N/A
Speed Over Ground (SOG): N/A

— July 6 (1200 PT, 1500 EST)
Location: 35° 38.2’ N, 121° 18.9’ W
16nm (18mi) West of San Simeon, CA

Visibility: 10nm
Wind: 6 knots from 330°
Barometer: 1013.9
Sea wave height: 1-2ft
Swell: 2-4ft from 280°
Sea wave temperature: 14.4°C (57.9°F)
Air temperature: 14.9°C (58.8°F)
Course Over Ground: (COG): W 270°
Speed Over Ground (SOG): 10 knots

– – ⚓ – –

Science and Technology Log

On July 6, our first full day at sea, we gathered in the acoustics lab to observe and keep watch on data from various screens. Data includes our current course plotted on a digital chart, a camera showing current sea state, measurements of the wind speed and direction, and displays of the multiple frequencies at which the Simrad EK80 transmitter emits sound. The EK80 is used while traveling on numbered longitudinal east-west lines called transects. NOAA Ship Bell M. Shimada navigates on these lines while collecting acoustic data along the west coast of the U.S. and into Canada, in hopes of finding schools of Hake to collect for surveying.

A topographic map of a portion of the coast of California. The topographies of the both the land (beige and green scales) and water (blue scale) are depicted. Black dots mark the locations of three coastal cities: Crescent City, near the top of the map; San Francisco, a little more than halfway down; and Morro Bay, toward the bottom of the map. Black horizontal lines mark transects extending west from the coast line. The black lines are marked with red or black x's (showing previous sampling locations, perhaps) and a couple have green triangles.
Map showing transects 1-45 off the coast of California. Transect 1 is south of Morro Bay, CA and transect 45 is near Crescent City, CA.
(We hope to survey transects 8-35 by Cape Mendocino, CA before traveling north to dock in Newport, OR.)

“For acoustic surveys, the ship uses a multibeam echo sounder (MBES) that projects a fan-shaped beam of sound that bounces back to the ship. The ship’s MBES—one of only three systems of its type worldwide—acquires data from both the water column and the sea floor.”

NOAA Office of Marine and Aviation Operations (OMAO): “Bell M. Shimada

The Simrad EK80 emits sound waves from the hull of the vessel down to the sea floor. The process is very similar to a dolphin or bat using echolocation to find prey. Any object the signal hits that has a different density and reflectivity than the surrounding water will cause the waves to bounce back to the ship. An image, called an echo gram, is pieced together each time this occurs and the acoustics team is able to use this information to determine if there are enough return signals that suggest fish are present to attempt a trawl.

Fish that have swim bladders, like bony fish, reflect or echo the sound wave back to the vessel very strongly. Other marine life such as myctophids and zooplankton also have a different density than the sea water, and reflect sound, although not as strongly as fish with air-filled swim bladders. The sea floor itself also reflects sound very strongly, because of the density difference between water and rocks, sand, and mud.

Marine life that have swim bladders (represented in blue) reflect or echo the sound wave back to the vessel. Examples of such marine life include bony fish, myctophids, and zooplankton, as well as the sea floor itself, which has a different density than the sea water.

Image: Cross section example of a Black Sea Bass to show a swim bladder.

an illustrated diagram of the internal anatomy of a bony fish (perhaps a black sea bass). Labels mark the locations of the gills, kidney, swim bladder, urine bladder, gonad, intestine, spleen, stomach, liver, and heart.

If the acoustics team determines there is enough marine life (that they are interested in surveying) to attempt a haul, they will notify the bridge deck and officers that they would like to have the fishing net deployed.

Before an attempted haul, the science team conducts a marine mammal watch for ten minutes. In this time window, several pairs of eyes are observing from the bridge deck and stern for any signs of dolphins, whales, sea lions, seals, and any other marine mammals that are within 500 meters of the vessel. If any marine mammals are spotted within the ten minute observation, we will stand down and wait ten minutes before restarting the marine mammal watch. Net deployment cannot occur until the full observation window has completed.

First haul July 6:
1422-1432 Mammal watch, no marine mammals spotted.
The net deployment started, at which time the vessel continues forward at two knots. Vessel speed increases to three knots when the net is fully deployed with doors and weights in the water, which assist in opening the conical shaped net outwards linearly and laterally. During this time the science team watches displays of the EK80 frequencies and observe the linear width and depth of the net. Scientists can compare these displays to determine if the net is in the correct position to have the best chance of collecting fish.

Hauling back the net occurs after several minutes, at which time the vessel returns to a speed of two knots, and we estimate how many fish were collected. The amount of time in which the net is submerged depends on the depth of the water and acoustic information about the size of the school of fish the net is (hopefully) sampling. After recovery, the haul is deposited into a hopper which feeds onto a conveyor belt in the wet lab, then into large baskets and the wet lab team takes over.

During the first attempt, two sea lions were spotted which required the haul attempt to be paused. We restarted the ten minute marine mammal watch from 1500-1510, the deck department retrieved and reset the net, and the vessel was turned around to return to the start of the noted longitudinal transect. With no marine mammals spotted during the observation period, the second attempt was successful and resulted in:

– 1604-1634: 30 minute haul at 350m depth.

– 11 baskets of Hake collected.

– 4 sample baskets kept at random.

– 541 Hake counted and studied in the wet lab.

Photo: Two deck department members about to open the net to allow the sample to drop into a large collection basket.

Two crewmembers, dressed in orange paints and black and neon yellow coats, face away from the camera, toward a large orange net suspended from above. They may be working to empty the net.

– – ⚓ – –

Personal Log

On July 4 I arrived to pier 30/32 in San Francisco, CA to board NOAA Ship Bell M. Shimada. Although I grew up volunteering on the 441’ WWII Liberty Ship SS John W. Brown in Baltimore, MD, seeing a new ship still resulted in a mix of emotions, nervousness, adrenaline, excitement, and everything in between. After five and a half years, finally seeing the 208’ vessel that would become my home for the next two weeks was a core memory and feeling I will always remember.

NOAA Ship Bell M Shimada in port, as seen from a point on the dock beyond the bow. We can see the NOAA logo and read: NOAA R 227. The water is calm and turqoise; the sky is blue with clouds. A portion of what may be the Golden Gate Bridge is visible in the background.
NOAA Ship Bell M. Shimada docked at Pier 30/32 in San Francisco, CA on July 4

Once onboard, I met Chief Scientist Steve de Blois and Wet Lab Lead Ethan Beyer. I was given a tour of the acoustic, chem, and wet labs and shown to my cabin. After dinner ashore, I joined some of the crew on the flying bridge to watch the July 4th fireworks. I met additional science team members and enjoyed a long night’s rest.

In the morning on July 5, we had a welcome aboard meeting, various trainings, a safety meeting and orientation, fire and abandon ship drills, and a science team meeting. We introduced ourselves, took an official team photo, and soon departed pier 30/32 for our 14 day mission. After passing under the Golden Gate Bridge and heading to the Pacific Ocean, our cold hands were warmed by a wonderful hot dinner of chicken, steak, fresh veggies, salad, and desserts from our galley crew. After dinner, we settled in for our first night at sea, waiting with anticipation for our first trawl on July 6.

– – ⚓ – –

Did You Know?

an orange-gloved hand holds a hake (fish) up so that it faces the camera. We can see the another smaller hake hanging limply across its open mouth

– Hake can be cannibalistic!
– Some larger Hake we have collected have had a smaller Hake in their mouth, throat, or stomach!
– Their very sharp teeth often stick to our thick rubber gloves.

– – ⚓ – –

New Terms/Phrases:

“Salp: Barrel-shaped, planktonic tunicate in the family Salpidae. It moves by contracting, thereby pumping water through its gelatinous body.”

Wikipedia: “Salp

“Myctophid: Lanternfish (or myctophids, from the Greek μυκτήρ myktḗr, “nose” and ophis, “serpent”) are small mesopelagic fish (…) Lanternfishes are aptly named after their conspicuous use of bioluminescence.”

Wikipedia: “Myctophid

Simrad EK80: Multibeam Echo Sounder (MBES) transducer that emits sound waves from the hull of the vessel down to the sea floor. It allows scientists to observe and study returned sound wave signals that may suggest marine life is present.

Transect: Set and numbered longitudinal east-west lines NOAA Ship Bell M. Shimada navigates on while collecting acoustic data.

Lisa Carlson: Anticipation… Does everything happen for a reason? July 3, 2023

NOAA Teacher at Sea

Lisa Carlson

NOAA Ship Bell M. Shimada

July 5, 2023 – July 19, 2023

Mission: Fisheries: Pacific Hake Survey (More info here)

Geographic Region: Pacific Ocean, off the coast of California

Date: July 3, 2023

Introduction and Background

Hello! My name is Lisa Carlson and I am an elementary school teacher in Virginia Beach, Virginia. I have taught third, fourth, and fifth grade general education with Special Education and English as a Second Language (ESL) inclusion. This coming fall I will be a second grade teacher, continuing with ESL inclusion! Although I was surprised to move down from fourth grade, I try to maintain the belief that everything happens for a reason, and the only constant in life is change.

Lisa Carlson on a boat, presumably a sailboat. We can see lines, some navigation equipment, portions of the railing, and water in the background. She's wearing a hat, sunglasses, and a blue life vest.

For example, if I not missed out on previous opportunities to join NOAA as a Teacher at Sea due to the pandemic, a short career change, and other extenuating circumstances; I wouldn’t be writing this blog from a hotel room in San Francisco, California, anticipating boarding and seeing July 4th fireworks from the deck tomorrow.

– – ⚓ – –

My introduction to NOAA’s Teacher at Sea program began in the fall of 2017. After student teaching in the fall/winter of 2016 in a third grade class, and permanent subbing in a fifth grade in the winter/spring of 2017, I accepted a position for my own third grade classroom.

My classroom came together with a nautical theme, shades of blues and calm colors, nautical paintings by my Mom, lots of cleaning and moving by my Dad, sailboat name tags on the door, and our own 3D sailboat in my class library. It soon got around that my room was one to go see!

A closed classroom door papered in shiny blue-green wrap on the top half (representing ocean) and brown on the bottom half (representing sand). Paper sailboats of different colors are taped onto the "ocean;" each has a student's name (not legible). Four yellow flip flops, with more labels, are taped to the "sand." At the top of the door, blue letters on a black paper background say: WELCOME ABOARD.

Door decorations for my first third grade classroom!

Classroom decor: life ring painting, handmade pilings,
fish and life ring pillows, sea creature lights, and 3D sailboat

A corner of a classroom, with shelves, plastic organizer boxes, a small carpet, a nest chair, in nautical theme.

Our Technology Integration Specialist, a NOAA Teacher at Sea Alumnus, visited my room and explained the program to me. The application was due on my birthday, less than a month from when I learned about the opportunity.

– – ⚓ – –

So, I applied in November 2017, 2018, and 2019. One year I just wasn’t selected, one year administrative input was not turned in on time, and other hiccups along the way. Then, my 2019 application was accepted, and I was over the moon in January 2020 to learn that I was a finalist. Of course, we all know what happened that March; and the 2020 and subsequent 2021 sailing seasons were canceled. Slowly, a few teachers were able to sail in the summer of 2022, and I was able to read their blogs from afar with the belief of everything happening for a reason.

My 2023 NOAA Teacher at Sea Assignment!

Now, it’s my turn! I will be sailing off the coast of California for two weeks on NOAA Ship Bell M. Shimada with members of the science team as part of the Integrated Ecosystem and Pacific Hake Acoustic Trawl Survey.

“For three decades, the Teacher at Sea program has helped teachers participate in annual NOAA research surveys conducted by our scientists. Teachers from around the country embark on a two to three week expedition at sea. They gain invaluable on-the-job experience and communicate their journey through a series of blogs and lesson plans.”

NOAA Teacher at Sea Blog: “Looking Back on 30 Years of Teachers at Sea

I am so excited for this opportunity and experience after five and a half years of anticipation. So follow along, wish us fair winds and following seas, and as many schools of Pacific Hake as possible to sample from and research!

– From my king sized bed hotel room, and last night ashore:

Temporarily reassigned teacher, and sailor at heart.

Lisa stands at the door of a streetcar, left hand hanging onto a pole. A San Francisco streetscape extends into the distance to the left side of the photo.

Scott Sperber, July 16, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 16, 2009

Weather Data from the Bridge 
Temperature: 22.64 C
Humidity: 80.6%

Science and Technology Log 

I am up very early today, 0530, the last full day at sea.  I did not make a log entry yesterday it was a very busy day. The day totaled a full 12 hour hard work day for me.  The day started out a about 0545 with the initial recovery of the old buoy.  The acoustic (sound) release mechanism was triggered and the glass balls cam up to the surface with the rope attached.  The glass balls were in a large cluster once onboard and had to be untangled.

Glass balls coming onboard (left) and popped glass ball (right).
Glass balls coming onboard (left) and popped glass ball (right).

Five of the glass balls have imploded at some time and the glass that had remained had turned into a fine white powder.  After the glass balls were brought onboard and untangled and put into their boxes the chore of bringing the 5 miles of line and cable began.  I started out in the box to flake (lay the rope down) the line as it came in.  After quite a while and a lot of rope the capstan (the vertical winch) broke. It was the only break I had since we began. A break when the brake broke. LOL. The line was cut and placed on the main winch to complete the process.  This slowed the whole procedure down because once the rope was on the winch; we had to unwind it all into its storage boxes. This had to be down 2 times and it set the whole recovery procedure behind about 2 hours. If you remember the procedure of deploying the new buoy, one chain link section at a time with the sensors attached, this procedure was now reversed for the recovery.

Scott in the box (left) and Scott on deck (right).
Scott in the box (left) and Scott on deck (right).

When the sensors came up each one was taken into the lab, photographed, videoed and a narrative was taken on to the condition of the sensor including what type of marine (ocean) growth had taken place over the year. I was given the task of taking the sensors into the lab, hanging them for photographic purposes and then bring them back outside.  A dirty job but some one had to do it. This process from start to finish, recovery of the buoy to the end of documenting the condition of the sensors took 10 hours.  After this the real fun started, cleaning the sensors. Now we are talking dirty. We had to clean off all marine growth from the sensors so Jeff could then start recovering data. 

Personal Log 

Well today I was able to put on my new steel toed boots. I should have broken them in a couple of times before this; my feet ached at the end of the day, wore a hard hat all day, a safety vest, got to climb into a box with miles of rope, got to smell like an old aquarium.  All and all a great day. Sure didn’t need to ride the bike, Carly passed on it too.

Jeff and the sensors in the lab (left) and dirty sensor with goose barnacles (right).
Jeff and the sensors in the lab (left) and dirty sensor with goose barnacles (right).

All this said and done I would really like to take the time to thank all the people who made this possible. I have done many things in my professional career to broaden my professional knowledge and this has got to be one of the best experiences of all.  First and utmost I would like to thank the NOAA Organization.  Without their desire to stress the importance of Science education through increasing the knowledge base of the educators of the world this would not have been possible. Thank you to Dr. Al Plueddemann, Chief Scientist, Dr. Roger Lukas and Dr. Fernando Santiago, both of the University of Hawaii. Not only did they share their wealth of knowledge with me but guided me through the practices of this WHOTS project and confirmed in me my beliefs of the importance of long term research in science.  Thank you to the rest of the Science Party. You all put up with me and showed me how to do what you needed.  Thank you to the Captain and the crew of the R/V Kilo Moana.

The R/V Kilo Moana (left) and Dr. Plueddeman, Paul Lethaby, Sean Whelan and Dr. Roger Lukas (right).
The R/V Kilo Moana (left) and Dr. Plueddeman, Paul Lethaby, Sean Whelan and Dr. Roger Lukas (right).

What a great experience. Thank you to my principal, Robert Weinberg, at Sherman Oaks Center for Enriched Studies and to my students. Keep it up kids, it is you that make SOCES number one.  I would also like to thank my wife.  Without her encouragement and enthusiasm towards our profession, she is also a teacher, I don’t know if I would have applied.  She is my inspiration.  Thank you one and all for allowing me to participate in this career and life enriching experience.

I see skies of blue….. clouds of white Bright blessed days….dark sacred nights And I think to myself …..what a wonderful world

~ Louis Armstrong

Folks on the ship take in the beautiful Hawaiian sunset…
Folks on the ship take in the beautiful Hawaiian sunset…

Scott Sperber, July 14, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 14, 2009

Weather Data from the Bridge 
Temperature: 23.66 C
Humidity: 76.34%

R/V Kilo Moana
R/V Kilo Moana

Science and Technology Log 

Today is another slow scientific day today. So today I am doing some other type of scientific learning, some local marine biology.  Today I am learning about how to fish in the local Hawaiian Islands style.  Breeze Simmons, research associate student level 1, is showing me all of his riggings for various types of fish and fishing conditions.  He is even rigging up something for me so I might have an opportunity to try to catch something later today or tomorrow. I have learned that Mahi has eyes like humans and they can see up to the surface.  They are a very strong food source in the ocean the world record is close 86 pounds and that only took about 18 months of growth. Mahi mahi is also known as the dolphin fish, not to be confused with “Flipper” of dolphin fame, also known as Dorado.  Ahi is tuna, Ono is Wahoo. There are also Marlin and Aku, a member of the mackerel family.

Breeze setting up gear for fishing
Breeze setting up gear for fishing

I am also sharing the Pacific Ocean with Hurricane Carlos. It’s a big ocean out here and I have not felt any effect from it and we don’t plan to.  Carlos is still off the coast of Mexico now. This is so cool to be on board this ship with all these experts and to be adding to my knowledge. The meteorologists on board say that if Carlos comes close to Hawaii its strength will die out (lose its energy). The weather balloon launches are continuing on schedule every 4 hours with Tom and me taking the 0700 and 1100 launches. Tomorrow promises to be a very hectic day aboard ship.  We will be recovering the old buoy.  Everything will begin at a 0600 and continue all day.

Mahi mahi
Mahi mahi

Personal Log 

Since today is such a mellow day I have taken this opportunity to catch up on some reading, sun, listening to music and continue by bike riding.  It has now become a bit of competition between, Carly, one of the very young interns, 25 years young from the University of Hawaii, and me as to who is riding the most miles each day. Today she rode more.

The ship has an onboard DVD system where movies and such are piped into each berth (room) along with scientific information.  I was in my berth and I put on one of the channels and what did I see that someone had put on in the main lounge? It was an episode of National Geographic and who was on the episode but my good friends from UCLAs’ Marine Biology Department, Dr. Bill Hamner and his wife Peggy. Small world, Peggy wrote one of my letters of recommendation for this expedition. They are part of the reason I am so involved in Ocean Sciences.

Today’s Task 

Look up and find a picture of all the fish that were mentioned above. 

Me and Carly
Me and Carly

Scott Sperber, July 13, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 13, 2009

Weather Data from the Bridge 
Temperature: 24.13 C
Humidity: 72%

Kuhio setting up for fishing
Kuhio setting up for fishing

Science and Technology Log 

The ship moved to the location of the old buoy last night. Visually, what a difference between the two. This one is certainly not the bright yellow color of the new one launched just 3 days ago. Yesterday I mentioned that the two thermometers on the new buoy were not reading identical temperatures and that they were about 0.4 degrees difference.  After asking a few questions I came to be informed that the importance of this particular series of expeditions, WHOTS, is that it is the accuracy of this longevity study that gives it its validity.  NOAA’s value of this study is that the study is an ongoing study not one that collects data brings it back to a lab and analyzes it and that is the end of it.

Science is not a one shot deal.  This is something I have tried to stress with my students over the years.  Good science, good data, is done with multiple sampling, either longevity study or many samples over a shorter period of time.  Any data can happen once but for it to be valid it needs to be substantiated.  For a number of years now the WHOTS study has not only brought back this type of data but has been able to note the small changes in this particular environment.  It has shown how these micro changes, shown over time, have an overall affect on a macro scale. This is the credence of this study is.  The fact that small changes do over a long period of time do show an effect.  The simple fact that the ship stayed on station for 3 days to calibrate the measurements with the new buoy, and then moved to the location of the old buoy shows the effort to make sure that even the most infinitesimal piece of data is made constant and notable.

Fresh Mahi mahi
Fresh Mahi mahi

Today, at this second location, there is being made shallow casts (samplings) with the SEABIRD at depths up to 200m every 4 hours.  These depths are the same depths as those of the instruments on the buoys.  Sometimes during the course of a years study the sensors will have a tendency to drift (change) or jump in their data.  These casts, engineering calibration casts, close to the buoys standardize the CTDs again reading temperature, conductivity, dissolved oxygen and then calculating density. These calibrations of any drifts serve as a comparison over the course of the year and are used to recalibrate the data.  With the recovery of the old buoy, one year worth of data will be downloaded and the similarities of all data with past weather conditions will be analyzed.  Again the sensors that are on the buoy are; MICROCATS, acoustic Doppler current meters and vector measuring current meters.

Personal Log 

Kuhio gave a shot at fishing this morning. Because the old buoy has been in the water for a year it has become a floating reef. So far Kuhio has hooked into and rough aboard 4 Mahi mahi. YUM, fresh fish tonight. I have been told that all over the old buoy and its sensors will be organisms of all types.  Jeff has asked be if I would help scrap off the old sensors.  OH BOY. Dirty smelly job I am sure. 

Scott Sperber, July 11-12, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 11-12, 2009

Weather Data from the Bridge 
Temperature: 24.2 C

Bringing in the SEABIRD CTD
Bringing in the SEABIRD CTD

Science and Technology Log 

Compared to yesterday today is a very slow scientific day.  After releasing the WHOTS buoy, things really calmed down.  Let me take this opportunity to tell you a bit about some of the instrumentation on the buoy itself.  The overall goal of the project is to collect data about the ocean and atmosphere over a long period of time.  These data will serve to help answer questions about such things as global warming and its impact in the tropics. On the buoy itself, pictured in a previous log, there are instruments that measure temperature, humidity, solar radiation, wind direction and speed. A GPS unit keeps track of the buoy’s location at all times. On the buoy there is also an antenna which transmits data to satellites. Each of the two buoys [explain why there are two in the ocean for this 4-day comparison period] in the water has enough slack in the lines to allow for an approximate 2-mile radius circle.

Profile of CTD on shallow casts
Profile of CTD on shallow casts

The weather balloon launching continues every four hours with teams of two or three taking each launch in shifts. Some CTD casts have been done with the small package SEABIRD CTD.  This is set over the side, lowered down by crane and yo-yoed up and down for about four hours.  During this time, data are sent directly to an onboard computer and collected by the scientists. These data include temperature and salinity. This is important information to assess changes going on in the crucial air/sea interface.

These particular locations, ones where temperature and salinity difference vary worldwide, the thermocline and halocline are dependent on variables such a currents and air temperature.  On the final assent collection bottles are closed to collect water samples for further analysis. With all of this sophisticated instrumentation onboard surface water temperature samples are still taken with the old fashioned method of lowering thermometers into the water several times to take an average reading. Some things never change. The information collected by both the oceanographic crew as well as the meteorological crew aboard is truly showing the links, the association between the interaction of the air and sky, in the crucial air/sea interface.

I found out today that the temperatures on the two thermometers on the WHOTS-6 buoy are not matching. They are off by about 0.4 degrees C; that is the level of precision necessary for this research.  The scientists are looking into which one is closest to the temperatures read on the ship before we move off to the old buoy’s location tomorrow. Apparently, this is not something that can be reconfigured so the scientists need to know which thermometer they can rely on for information. There are two of just about every instrument on the WHOTS buoys. This serves as a backup and a comparison for the same location and enables the greatest accuracy in the data.

Profile of weather balloon sonde
Profile of weather balloon sonde

Personal Log 

I’d like to share a bit more about my onboard life. I have gotten acclimated finding my way around the ship (sort of). Well, at least I don’t get lost going to the mess hall anymore.  I am in a berth on an upper bunk with Jeffrey Snyder, one of the primary researchers from the University of Hawaii. The berth is quite comfortable as berths can go since it has been years since I was in a bunk bed. Various alarm clocks go off at anytime at night so the crew can go on their watch.  There is even a ghost alarm that goes off at 01:15 that Jeff and I cannot locate.  Food is not at a shortage. It seems that every time you turn around it is time to eat, and what great food it is too.  There is fresh salad lunch and dinner, fresh fruit, at least 3 entries to choose from each mea and desserts. LA Fitness here I come. I received what I consider a gift today from Fernando Santiago, one of the principle scientists, a DVD of the procedures that are used on the Hawaii Ocean Time-series Project.

July 12, 2009 

Had some down time today after setting off another weather balloon and a great fruit and yogurt breakfast. Took a 7 mile bike ride. You may ask where in the middle of the ocean you can take a 7 mile bike ride.  They have a nice little fitness room on board.

Words of the day: Mahimahi, calibration, dissolved oxygen, interface, thermocline, conductivity, temperature, depth.

Scott Sperber, July 10, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 10, 2009

The crew readying the glass balls for deployment
The crew readying the glass balls for deployment

Weather Data from the Bridge 
Temperature:  23.83 C

Science and Technology Log 

This morning will be when the WHOTS-6 buoy will be deployed. Via the A-frame on the aft deck, the buoy will be hoisted and placed into the water. This process is done after 40m of chain and MicroCats are lowered into the water. These serve as a keel for the buoy prior to attaching the balance of the chain instruments and then thousands of feet of line which is belayed out by tension and hand over hand from many volunteers, the 80 glass balls that provide for floatation and then the massive anchor weights (air weight of 9300 lbs) to hold the whole thing down to a final depth of 4720m. Each individual section of chain with instrumentation has to me attached prior to releasing the buoy. Note the instrumentation on the top along with the large flat white “tail” to keep the buoy set with the wind.

The WHOTS-6 Buoy. Note the instrumentation on top and the wide white fin.
The WHOTS-6 Buoy. Note the instrumentation on top and the wide white fin.

Along with the oceanographic research and data collecting going on there is also atmospheric data being collected with the use of weather balloons. These helium filled balloons are to be launched every 4 hours for the entire expedition. The balloons are filled to 500 psi (pounds per square inch) of helium, the tanks of which are on board, attached to a calibrated sonde (sensing) device which reads data, temperature, air pressure and humidity and transmits the data back to the ship.  Under the careful and watchful eye of Ludovic Bariteau of CIRES and the University of Colorado, at 0730, I was able to successfully set up and launch the fourth balloon of the study. Thomas Dunn and Julie Kelly, also from the University of Hawaii research team aboard, were there to assist.

Preparing the weather balloon for launch
Preparing the weather balloon for launch

Personal Log 

I got to launch a weather balloon.  The thrills and new experiences never stop. I am very anxious to take my experiences and new knowledge back to school. I also had to practice putting on a survival suit during our safety drill. Will the fun never end?

Words of the Day: acoustics; Doppler shift; calibrate, psi

Here I am launching a weather balloon! Donning my survival suit
Here I am launching a weather balloon! Donning my survival suit

Donning my survival suit
Donning my survival suit