Meg Stewart: What’s it Like to Work on a NOAA Ship? July 18, 2019

NOAA Teacher at Sea

Meg Stewart

Aboard NOAA Ship Fairweather

July 8 – 19, 2019


Mission: Cape Newenham Hydrographic Survey

Geographic Area of Cruise: Bering Sea, Alaska

Date: July 18, 2019

Weather Data from the Bridge
Latitude: 54° 09.9 N
Longitude: 161° 46.3 W
Wind: 22 knots NW
Barometer: 1014.2 mb
Visibility: 10 nautical miles
Temperature: 55.6° F or 13.1° C
Weather: Partly cloudy, no precipitation


Careers at Sea Log, or Meet the ….

Life at sea on the Ship Fairweather, this past week and a half, with some 42  crew members, has been something I have never experienced. The closest thing that I can think of was when I was in undergraduate geology field camp, living in close quarters for weeks on end, with the same people, working together towards a goal. But I knew all of those field camp students; we were in college together. This is different. Everyone works here on the Fairweather and this is their job and their home. We’re all adults and no one knows anyone when they first come aboard. So, if you are friendly, open to people and welcoming, you can get to know some folks quickly. If you’re shy or try to ease in slowly, it may be a harder adjustment, living on a 231-foot heaving, rolling, pitching and yawing, ice-strengthened, welded steel hydrographic survey vessel. It’s a unique environment. And there are a lot of different but interesting jobs that people do here on the Fairweather. Here are but a few of the mariners on the ship.

NOAA Corps – The first group of ship crew that I’ll talk about are NOAA Corps officers.  NOAA Commissioned Officer Corps (or NOAA Corps) is one of the nation’s seven uniformed services and they are an integral part of the National Oceanic and Atmospheric Administration (NOAA). NOAA Corps support nearly all of NOAA’s programs and missions.

XO Sam Greenaway
XO Sam Greenaway, the Executive Officer on NOAA Ship Fairweather

Commander Greenaway is the Executive Officer onboard Fairweather and that work entails a variety of tasks that all function under the heading “administering the ships business.” Greenaway’s number one job is as the ship’s Safety Officer and he has additional tasks that include purchase requests from the departments, lining up contractors, making sure everyone has their training up-to-date, handling human resource issues, and accounting of the ship’s finances. On the Fairweather, Greenaway is second in command. He loves being at sea and has always liked sailing, which is one of his hobbies when not on the ship. What Greenaway least expected to be doing as a NOAA Corps officer was managing people but he finds that he loves that part of the job. Greenaway has a bachelors of science degree in Physics from Brown University and a masters degree in Ocean Engineering from University in New Hampshire. 

*************************

ENS Jeffery Calderon, Junior Officer
ENS Jeffery Calderon, Junior Officer

Ensign Jeffrey Calderon is a NOAA Corps Junior Officer and has been on Ship Fairweather for two years. Calderon was previously with the Air Force for eight years and also with the National Guard for about four years. His duties on the ship include driving small boats, doing hydrographic surveys, bridge duty on the ship, and he’s the medical officer on board. Calderon enjoys the challenges he gets with NOAA Corps and likes to manage small teams and decide priorities. He learned about NOAA Corps from his college advisor at the University of Maryland, where he earned a bachelor’s degree in Physics.

*************************

ENS Iris Ekmanis, Junior Officer
ENS Iris Ekmanis, Junior Officer

Ensign Iris Ekmanis is also a Junior Officer who recently completed her basic training for the NOAA Corps. She has been on Ship Fairweather for about a month and a half. She chose NOAA Corps because she wanted to utilize her degree in Marine Science (from University of Hawaii, Hilo) and had worked on boats for six years. She likes that she has been learning new things everyday, like how to pilot the ship from the bridge, learning to coxswain a launch, and learning to use the hydrographic software to collect bathymetric data. In fact, when we left the dock in Dutch Harbor at the beginning of the leg, Ekmanis had the conn, which means she maneuvered the ship through her orders to the helm (although she had plenty of people around her in case she needed assistance.)

_____________________________________________________________________

Survey team – The hydrographic survey team is involved in all aspects of collecting the data and generating the bathymetric surfaces that will be used to make updated nautical charts. They don’t drive the boats and ships, they run the software, take the casts that determine water salinity and temperature, tell the coxswain where to motor to next and then process the data back on Ship Fairweather.  There are six members on the survey team; here are two of them.

Ali Johnson
Ali Johnson, Hydrographic Senior Survey Technician

Ali Johnson has been a hydrographer on the Ship Fairweather for two and a half years. She told me she always knew she wanted to work in ocean science in some capacity so she earned a degree in Environmental Studies at Eckerd College in St. Petersburg, Florida.  With this job, Johnson enjoys going to places that most people don’t ever get to see and one of the highlights was surveying while dodging icebergs and seeing the interesting bathymetry as a result of glacial deposits, another was seeing an advancing glacier up close. She is the hydrographer who showed me most of the ropes on the ship, the launch surveys and in the plot room.

*************************

Michelle Wiegert
Michelle Wiegert, Hydrographic Assistant Survey Technician

Michelle Wiegert has been with NOAA Ship Fairweather since last September. Although she did not lay eyes on the ocean until she was nineteen, she always knew she would do some ocean-based work.  Wiegert earned a double major in Biology and Spanish from Metropolitan State University of Denver in Colorado and studied Applied Science Marine Technology at Cape Fear Community College in Wilmington, NC. As a Survey team member, she loves that she is working at sea and the fact that every day is different and she is always learning new things.

_____________________________________________________________________

Ship Stewards – The stewards are the crew members who make the three square meals a day. The food on Ship Fairweather has been outstanding and every meal seems like two or even three meals in one because the stewards offer so much variety, including vegetarian and vegan options.  There are four stewards on the Fairweather and they are all as nice as can be. Here is one of them.

Carrie Mortell, Acting Chief Cook
Carrie Mortell, Acting Chief Cook

Carrie Mortell has been a steward with the Fairweather for two years and with NOAA for fifteen. She has ten years of commercial fisheries experience in southeast Alaska and she loves the ocean. Mortell told me she feels more comfortable at sea than on land. She likes to keep busy in her downtime by reading, writing letters, crocheting, cooking & baking and drawing.

_________________________________________________________________________

Deck Department – The Fairweather’s Deck Department takes care of general ship maintenance, cleaning decks, painting, operating cranes, helming the ship, and coxswaining the launches. There are currently eight members of the Deck Department and I interviewed one for this post.

Eric Chandler, Able Seaman
Eric Chandler, Able Seaman

Eric Chandler has been an Able Seaman with NOAA for one and a half years. He has driven the launches, taught coxswains-in-training, been a ship medic, moved launches with a davit, repaired jammed grab samplers, and many other tasks. Chandler started working on boats in 2016 when he was a deckhand, educator and naturalist on tour boats out of Seward, AK.  He has also been a professional photographer and an auto mechanic. Chandler likes being on a ship because he sees remote places, gets to learn new skills all the time, and likes the feeling of being self-sufficient.

_____________________________________________________________________

Visitors to NOAA Ship Fairweather – I am a visitor to Ship Fairweather but I am not the only temporary person onboard. Here are two of the four of us who are “just passing through.”

Fernando Ortiz
Fernando Ortiz, Physical Scientist at NOAA

Fernando Ortiz has been a Physical Scientist with NOAA since 2008 and works out of Western Regional Center in Seattle, WA. He was visiting the Fairweather on the same leg is mine. NOAA Physical Scientists normally work in the office but will go on a NOAA ship at least once a year to support field operations. Ortiz will possibly do the quality control check on the data for the Cape Newenham project in the future. Ortiz has a bachelor’s degree in Geography from the University of Washington, Seattle WA. His advice for people looking for a similar career is to take science classes and he emphasized having Geographic Information Systems (GIS) and programming experience.

*************************

Christine Burns, Knauss Fellow
Christine Burns, Knauss Fellow through NOAA Sea Grant

Christine Burns is visiting from Washington, DC, where she is a Knauss Fellow through NOAA Sea Grant. She is on a one-year post-graduate marine policy fellowship with NOAA’s Office of Coast Survey.  She wanted to see what the hydrographic research going on so came out to Dutch Harbor as part of her fellowship. Burns has a bachelor’s degree in Environmental Science from Dickinson College in Carlisle, PA, and a masters in Marine Science from the University of Georgia in Savannah, GA. As she was visiting like I was and we were both very much observers, Burns filled me in on some scholarship and internship ideas she has for high school students and those students thinking of careers and college after high school graduation. By the way, once you’re nearing the end of college or have graduated already, don’t forget that there is usually career advisory office and your alumni network at your institution. You can make connections, seek advice, ask about positions, among other important functions those offices and groups do for you.
Hollings Scholars – for current college sophomores, this is an undergraduate scholarship and internship through NOAA
EPP/MSI Undergraduate Scholarship Program – this is the Hollings Scholarship for students attending HBCU or Minority Serving Institutions
Student Conservation Association – a good place to get work and volunteer experiences or a gap year opportunity, for people 18-35 interested in land management.
Youth Conservation Corps – a summer youth employment program that engages young people in meaningful work experiences on national parks, forests, and so on.
USAJobs – this link has summer internships for college students or recent graduates.
Rotary Clubs can help students find scholarships and volunteer opportunities
Unions – you can find paid internships or educational opportunities through unions for skills such as pipefitters, electrical, plumbing, etc.

_____________________________________________________________________

Next post: the Engineering Department of the Ship Fairweather

Personal Log

I am impressed and awed by the people who have chosen living and working on a ship. When I first came aboard the Fairweather, I felt everything was a little cramped and the space was confined. I couldn’t figure out how to get around very well. Now, I don’t get lost as often. It isn’t easy to live and work on a ship, but there are plenty of folks on the Fairweather who happily chose it.

Meg on flying bridge
On the flying bridge near Cape Newenham

I’ve enjoyed looking out at sea as we are underway. I try to spot whales and other flying and leaping sea critters. We have one more long transit before arriving back to Dutch Harbor so I am going to head up to the flying bridge and see what I can see.

Did You Know?

The Fairweather makes its own potable water. When I was shown the engine room, I was also shown the reverse osmosis water making machine that turns sea water into fresh water. The ship never runs out!

Quote of the Day

“It is not that life ashore is distasteful to me. But life at sea is better.” – Sir Francis Drake

Hayden Roberts: Santiago’s Dream (My Introduction), July 2, 2019

NOAA Teacher at Sea

Hayden Roberts

(In advance) Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 2, 2019


Introduction

“There are many good fishermen and some great ones. But there is only one you.”

–Ernest Hemingway (Old Man and the Sea)

As I sit at my home computer, my mind is racing with thoughts of what I need to do before leaving for Mississippi. My family doesn’t quite know what I am doing aboard NOAA Ship Oregon II, not that I am sure either! They vacillate between images of cramped, hot quarters portrayed in old World War II movies like Das Boot (1981), which is about a German submarine crew. In contrast to the sailors traversing icy, choppy waters as in the reality TV show Deadliest Catch, which is about King Crab fishermen in Alaska’s Bering Sea. I am not sure my time aboard Oregon II will be either, but perhaps they will think me braver if I leave that picture in their minds ahead of my trip [wink, wink].

Roberts Family
Roberts Family. From left to right: Owen, Hayden, Jackson, and Sarah.

However, before I talk about my trip, I should take a step back and talk about where I came. I am from Oklahoma, one of the most landlocked areas of North America. I grew up in Oklahoma (both Tulsa and Oklahoma City), but have had many other experiences since then. I have been teaching at the collegiate level for 15 years. I mostly instruct high school students taking concurrent enrollment classes and community college students working on undergraduate general education requirements.  I teach regional geography, folklife and traditional culture, and introduction to the humanities at Oklahoma State University—Oklahoma City (OSU-OKC) and Oklahoma City Community College. I am lead faculty in geography at OSU-OKC.

Sarah and Hayden
My wife Sarah and I at one of our favorite date night adventures, Thunder basketball games.

I earned my BA from Sarah Lawrence College in New York (1994). I studied visual arts, primarily painting and filmmaking, and cultural studies. I earned my MA in Folk Studies from Western Kentucky University, Bowling Green (1998), and I earned my PhD in Geography from the University of Oklahoma, Norman (2015). Through my education and early adult life, I lived coast to coast in seven different states. This education prepared me to work in the field of public history, historic interpretation, community development, and arts administration in addition to teaching at the collegiate level. Before teaching, I worked in Washington, DC for Ralph Nader (yes, the clean water, clean air, clean everything guy…oh, and he ran for president). I worked for several historic sites and cultural agencies, including Mammoth Cave National Park, Kentucky Museum, Historic Carnton, and the Tennessee Arts Commission. I have also worked in education administration. I served as the director the Oklahoma Center for Arts Education for the University of Central Oklahoma, as executive director of the Oklahoma Folklife Council for the Oklahoma Historical Society, and recently, as Director of Community Resources for Western Heights Public Schools. At Western Heights, I have been fortunate to work close to a younger group of students. I have been a part of the expanding arts and science curriculum at the high school. The school district is in the process of renovating the high school science wing and building a new arts and science high school building for an emerging STEAM program. STEAM stands for science, technology, engineering, arts, and math instruction. Working with community partners, I am also involved in promoting college and career readiness at the secondary level.

Students gardening
Gardening with 5th and 6th grade students during their after school STEAM program in Western Heights’ outdoor classroom.

My research interests include the cultural geography of Oklahoma, family stories and cultural expressions, and community building. However, through my research in folk studies (similar to anthropology) and cultural geography, I have studied human interconnectivity associated with occupations, which is what initially drew my interest to the NOAA Teacher at Sea (TAS) program. In the past, I have studied occupations associated with rural culture and how environment and increased urbanization have effected work settings and their relationship to identity.  My research interest aside, I am excited to learn more about the science of fishery surveys. I think learning about the maritime career opportunities associated with NOAA programs will be important to convey to the students I teach. Especially because so many of my students come from economically challenged, urban settings, and the thought of pursuing a career based on scientific research is foreign. As a geographer, I am also excited to share with students ways they can connect to geography as an influence on their career plans.  

Mayes County Fair
Mayes County Fair in Pryor, Oklahoma. Shot as part of my fieldwork on rural culture and place identity.


Mission Information

I will be part of the third leg of the Southeast Area Monitoring and Assessment Program (SEAMAP) sailing out of the NOAA Pascagoula, MS facility. SEAMAP is a State/Federal/university program for collecting, managing, and disseminating fishery-independent data in the southeastern US. The Gulf of Mexico survey work began in 1981. I have read blogs and videos from NOAA TAS alum that have been part of the similar research cruises, and I have reviewed the NOAA website under the SEAMAP pages and NOAA Oregon II pages. TAS alumni Angela Hung from the 2018 SEAMAP survey crew posted a great blog on roughly what Oregon II crew will be doing while I am sailing (see https://noaateacheratsea.blog/2018/07/03/angela-hung-dont-give-it-a-knife-june-30-2018/). However, I am still working to understand exactly what I will be doing. Coastal culture and scientific research of this nature is new to me. The closest experience I have goes back to my childhood when in the 1980s my mom built a catfish hatchery and commercial pond operation on 10 acres of farmland in southeastern Oklahoma. The “catfish farm” as we called was only in our family for a few years. The next closest experience I have to coastal fisheries is chartering boats for near shore and deep sea fishing adventures on vacation. Clearly, I am in for a lesson on the broader science of understanding and maintaining the ecology of our domestic waterways in the US. This will be an interesting trip, for sure!

Jill Bartolotta: Careers at Sea, June 8, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019


Mission
:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 8, 2019

Weather Data:

Latitude: 30°30.7’ N

Longitude: 078°11.2’ W

Wave Height: 3 feet

Wind Speed: 13 knots

Wind Direction: 150

Visibility: 10 nm

Air Temperature: 26.6° C

Barometric Pressure: 1015.9

Sky: overcast


Science and Technology Log

Throughout my blogs you have been hearing an awful lot about NOAA. But what is NOAA? NOAA stands for the National Oceanic and Atmospheric Administration. NOAA informs the public all about environmental happenings from the deepest depths of the ocean floor all the way to the sun.

NOAA was formed in 1970 as a federal agency within the Department of Commerce. It was the result of bringing three previous federal agencies together, U.S. Coast and Geodetic Survey, Weather Bureau, and U.S. Commission of Fish and Fisheries. Through research, NOAA understands and predicts changes in climate, weather, oceans, and coasts. Through outreach and education, NOAA shares the research with end users and the public with the purpose of conserving and managing coastal and marine ecosystems and resources (NOAA, 2019. https://www.noaa.gov/our-mission-and-vision).

In order to accomplish its mission, NOAA hires a whole slew of people including Commissioned Officers, administrators, career scientists, research technicians, vessel operators, educators, etc. These people may work on land or out at sea. In this blog I will focus on some of the NOAA careers at sea.


NOAA Commissioned Officer Corps (NOAA Corps)

The NOAA Corps is a descendant of the US Coast and Geodetic survey, the oldest federal scientific agency dedicated to surveying the ocean coast. Today, officers of the NOAA Corps command NOAA’s fleet of survey and research vessels and aircraft.

In order to be eligible to apply for NOAA Corps one must have a four-year degree in a study area related to the scientific or technical mission of NOAA. There are many other eligibility requirements and you can check them out here.  Once you meet the requirements, you apply to the program, and if accepted you will head to the Coast Guard Academy in New London, Connecticut where you will attend a 19-week basic officer training class. Once officers graduate, they are assigned to sea duty for two years. After sea duty, officers rotate to land duty for three years. And the pattern continues as long as the officers choose to remain in the NOAA Corps.

NOAA officers fill many roles on Okeanos Explorer. Their primary role is to safely navigate the ship. All officers stand two 4-hour watches. During these watches, they are responsible for navigating and driving the ship, taking weather, and handling the ship per the requirements needed for the science mission whether it be for a series of ROV dives, mapping project, or emerging technology cruise. When not on watch, officers are responsible for collateral duties. There are many collateral duties, some of which are described below:

  • Safety officer: responsible for the safety drills and equipment.
  • Navigations officer: maintains charts, loads routes, plots routes on paper charts, updates electronic chart, and creates inbound and outbound routes for ports of call.
  • MWR (Morale, Welfare and Recreation) officer: responsible for fun activities when at sea or in port. These activities have included ice cream socials, movie nights, and baseball games.
  • Public affairs officer: Responsible for giving ship tours to the public, maintain the ships social media presence, and performs public outreach.

There are also many officer ranks (follow the ranks of the US Navy) aboard the ship. The entry level rank is ensign or junior officer and the highest rank is admiral, allowing for 10 ranks in total. In addition to rank classes, there are varying positions. Ensigns or junior officers are recent graduates of basic officer training and on their first sea assignments. They are learning how to navigate and drive the ship, the tasks associated with standing watch, and learning about the other collateral duties. The operations officer is responsible for all mission operations while at sea and in port. They serve as the liaison between the science team and the commanding officer. If project instructions change, the Operations Officer is responsible for managing operations, understanding requests or change and then speaking with the commanding officer to approve the change. They are also responsible for all logistics when in port such as shore power, vehicles, trash, potable water, fuel, and sewer. The next highest position (second in command) is the Executive Officer who also coordinates with many of the port duties, and is supervisor of the varying departments on the ship. They are also responsible for all paperwork and pay. The highest duty on the ship is that of Commanding Officer. They are ultimately responsible for mission execution and for the safety of the ship and people aboard.

NOAA Commissioned Officers
The NOAA Commissioned Officers aboard Okeanos Explorer. From left to right: Ensign Brian Caldwell, Lieutenant Steven Solari, Lieutenant Rosemary Abbitt, Ensign Kevin Tarazona, Commander Eric Johnson, Ensign Nico Osborn, Lieutenant Commander Kelly Fath, Lieutenant Commander Faith Knighton, and Commander Nicole Manning.


Professional Mariners

Professional mariners provide technical assistance needed to support operations while at sea. They support the ship in five different expertise areas: deck, engineering, steward, survey, and electronics. More information about the professional mariners and job posting information can be found here. Some have attended maritime school to receive training or licensure to work aboard a ship at sea. Others get their training while at sea, take required training courses, and complete onboard assessments. These mariners that work their way up to leadership positions are known as hawse-pipers (for example, the Chief Boatswain, Jerrod Hozendorf, many years ago was a General Vessel Assistant and has worked up to the Department Head of the Deck Department.)

Deck

Deck hands and able bodied seamen who attend maritime school or training where they learn how to support ship operations, including but not limited to maintenance of the ship’s exterior, maintenance and operation of the ship’s cranes (places ROV (remotely operated vehicle) or CTD (conductivity temperature depth) in the water) and winches (lowers ROV and CTD into the water), and conducts 24/7 watches to ensure the safe operation and navigation of the ship. Augmenters also rotate through the fleet, while others are permanent crew on a ship.

deck crew
The deck crew aboard Okeanos Explorer. Back row from left to right: General Vessel Assistant Sidney Dunn, Chief Bosun Jerrod Hozendorf, Able Bodied Seaman Angie Ullmann (augmenting), and General Vessel Assistant Deck Eli Pacheco. Front row from left to right: Able Bodied Seaman Peter Brill and Able Bodied Seaman Jay Michelsen (augmenting).

Engineering

The engineers aboard are responsible for the water treatment, air quality systems, and machines needed to make the ship move through the water. The also oversee the hydraulics of the cranes and winches. Engineers receive a four-year engineering degree at either a maritime academy or regular college. Depending on their degree, they will come aboard at different engineer expertise levels. Engineers move into higher level positions based on their days at sea and successful completion of licensing tests.

engineers
The engineers aboard Okeanos Explorer. From left to right: General Vessel Assistant Christian Lebron, Engine Utility Will Rougeux, Acting Chief Marine Engineer Ric Gabona, 3rd Assistant Engineer Alice Thompson (augmenting), Junior Utility Engineer Pedro Lebron, and Acting First Assistant Engineer Warren Taylor.

Stewards

The stewards on board are responsible for the preparation and management of the culinary services and the stateroom services such as bed linens. Tasks include meal planning, food purchasing and storage, food preparation, and oversight of the galley and mess.

stewards
The stewards aboard Okeanos Explorer. From left to right: General Vessel Assistant Eli Pacheco (assisting the stewards for this cruise), Chief Cook Ray Capati, and Chief Steward Mike Sapien.

Survey

Survey technicians are responsible for the operation of all survey equipment aboard the ship needed for mapping, CTD deployment, and ROV operations. Equipment includes echo sounders and meteorological and oceanographic sensors. They are also responsible for data quality control and processing, disseminating data to land data centers so it can be shared with the public, and working alongside the science team to assist with other data and equipment needs. A college degree is not required for survey technicians, but many of them have one in the fields of environmental or applied science.

Electronics

Electronic technicians are responsible for all electronics aboard such as the intercoms, radios, ship’s computers and internet access, sonars, telephones, electronic navigation and radar systems, and most importantly satellite TV! Chief Electronic Technicians rotate between land and sea, typically spending 2-3 months at sea.

survey and electronic technicians
Chief Electronic Technician Mike Peperato and Senior Survey Technician Charlie Wilkins pose with the CTD.


Personal Log

We saw dolphins today!!!! It was absolutely amazing. We believe them to be Atlantic Spotted Dolphins. Spotted you say? The one in the picture to the left is not spotted because it is less than one year old. They do not receive their spots until their first birthday. Spotted dolphins are very acrobatic. They enjoy jumping out of the water and surfing on the bow waves created by vessels. To date one of the best moments of the trip so far. Yay dolphins!!!!!

Atlantic spotted dolphins
Atlantic spotted dolphins surfing the bow of the ship.


Did You Know?

Including all the NOAA officers and professional mariners aboard Okeanos Explorer, 12,000 people work for NOAA worldwide!

Andria Keene: Steaming and Dreaming in Safety, October 12, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Weather Data from the Bridge
Date: 2018/10/12
Time: 14:58:22
Latitude: 27 37.15 N
Longitude 091 23.21 W
Barometric Pressure 1015.69mbar
Relative Humidity 60 %
Air Temperature: 27.1 0C

Everyone is an explorer. How could you possibly live your
life looking at a door and not open it?  – Robert Ballard

 

Science/Technology and Personal Log

Hurricane Michael brought a three day delay to our departure. At first, I was a little disappointed that we were not setting sail right away but now I am glad because I had some extra time to explore Pascagoula, familiarize myself with the ship, and slowly meet the crew as they arrived spread out over several days. Plus, the additional time allowed me to start working on my career lesson plan and to prepare a video tour of the ship. I will upload the video to this blog page as soon as it is complete.

Photo collage

#1 – My first tour of Oregon II #2 – Hurricane Michael arrives in the center of where I am and my hometown of Tampa #3 – Exploring Round Point Lighthouse #4 – My first sunset aboard.

On Thursday, Oct 11th at 9:00am, we departed from Pascagoula and headed out into the Gulf of Mexico. I was amazed at how quickly we lost sight of land and at the vastness of this body of water with which I thought I was so familiar. My favorite part was watching the color of the water change from a dark teal to a deep blue.

 

colors of the water of the Gulf

The various colors of the water of the Gulf

On the “Plan of the Day” board under schedule it reads “Steam and Dream til Saturday Afternoon” and that is just what we are doing. Our path will lead us north of the Mexican border and south of Corpus Christi, Texas, where we will find our first station. Until then, in between steaming and dreaming, we are getting to know each other and learning about our roles and responsibilities.

 

 

 

 

 

 

Abandon ship drill

Abandon ship drill! Here I am in my survival suit.

For example, today we practiced our Fire and Abandon Ship Drills. While it is a little nerve-racking to think that something like that could actually happen, it was reassuring to see that everyone was well-trained and the operations ran smoothly.

 

 

 

 

 

 

 

 

My first lesson plan will focus on careers available through NOAA. It is amazing to see the variation in the positions and the backgrounds of the workers on this ship. Basically, on the Oregon II there are three types of employees who make up the ship’s complement.

Types of Employees

This graphic illustrates the structure of the employees aboard Oregon II.

I feel like NOAA has something to offer everyone from entry level positions that require no experience to positions requiring years of experience or advanced college degrees. The best part is that no matter where you start there is always room to advance through hard work and certification. I can’t wait to share all the opportunities with my students!

 

Did You Know?

Oregon II has a reverse osmosis system that uses salt water to create the freshwater needed aboard.  The salt that is removed is returned back to the Gulf.

 

Challenge Question of the Day
(For my students: bonus points for the first person from each class period to answer it correctly):

This picture was taken from the screen of one of the navigation systems on the bridge.

Challenge Question

Screenshot from one of the navigation systems

What do you think is represented by each of the black squares with a dot inside?

 

Animals Seen Today:

Moon Jellyfish and Flying Fish

Angela Hung: Fortitude, July 23, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 23, 2018

 

Weather Data from Home

Conditions at 2101

Latitude: 41.54°N

Longitude: 87.53°W

Temperature: 21° C

Wind Speed: N 3 mph

 

Science and Technology Log

Back at home but there’s still so much to share! I’ll wrap up my amazing experience as a Teacher at Sea by introducing three more members of the NOAA Ship Oregon II family: Alonzo Hamilton, Executive Officer Andrew Ostapenko and Commanding Officer Captain Dave Nelson. At the start of my adventure, I wrote about flexibility. The Teacher at Sea Program also stresses that cruises “require high-intensity work that demands physical adeptness, endurance, and fortitude”. These three exemplify how fortitude, the ability to endure through life’s challenges and change, brings rewards throughout life.

 

Fishery Biologist Alonzo Hamilton

Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.

Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.

Alonzo Hamilton has been a fishery biologist for 34 years! He likes to say that he stumbled into NOAA. He graduated from community college before enrolling at Jackson State University, a historically black university in Mississippi with a full scholarship. Actually, he was offered two scholarships, one for minority biomedical researchers to become a surgeon and the other for general studies. He arrived on campus to discuss his options in the science department. It turned out that the biomedical research scholarship was given to another recipient. On the bright side, it made the decision to accept the general studies funding much simpler. Now he had to make a choice of which field to pursue. As he explored the halls of the science building, he happened upon the office of the head of the marine science program and popped in to ask some questions. After learning about the program, he decided to apply his scholarship toward coursework in this field.

After college, he began working on a research project for the Navy which paid for a master’s degree. Soon after, President Reagan froze research funding for the Navy. Fortunately, Alonzo was tipped off that NOAA did very similar research with an active, albeit smaller budget. So began a 34 year career as a NOAA fishery biologist.

Being an African American scientist in the deep south came with challenges, but he reminded his supervisors and others around him that, “I won’t limit myself to your box”, which has carried him through a long and storied career. Today, he is happy that he gets “paid to play in the ocean”, which sounds like a pretty good deal to me.

 

Executive Officer (XO) Andrew Ostapenko

Andrew Ostapenko

Andrew Ostapenko

Most of the NOAA Corp officers you meet have a degree in science. I had the fortune of sailing with one of the few who doesn’t— the XO, LCDR Andrew Ostapenko. XO has a degree in political science from the University of St. Thomas in St. Paul, Minnesota. His goal was to become a lawyer, but after considering the job prospects and the lifestyle—”no one ever calls lawyers when they are happy”, and they never retire —he looked into some other options. In 2005 he applied for the NOAA Corps. Although he didn’t have a science degree, the general education requirements at the University of St. Paul, which included calculus, chemistry and physics, met the NOAA Corps requirements.

Since joining NOAA, LCDR Ostapenko has held a variety of assignments. In Maryland he managed budgets and projects for the National Centers for Environmental Prediction, a part of the National Weather Service that provides forecasts for the nation. He worked in small boat life cycle management as a Port engineer/small boat officer in Norfolk, Virginia, disseminating policies across the NOAA fleet.

His sailing experience began on NOAA Ship Thomas Jefferson which performs hydrographic surveys that map the oceans to continuously update and improve nautical charts. He was a member of the first crew on NOAA Ship Reuben Lasker, accompanying her from Wisconsin where she was built to her homeport of San Diego. Last but not least, XO has been an augmenting officer for three months on NOAA Ship Oscar Dyson, another fisheries survey vessel based in Alaska where high seas and storms are a part of a normal day’s work.

NOAA assignments are three years for shore tours and two years for sea tours. LCDR Ostapenko currently has about a year left with Oregon II. As XO shows, there is no danger of getting stuck in mundane office job as a NOAA Corps officer.

 

The Captain

Captain Dave Nelson of NOAA Ship Oregon II

Captain Dave Nelson of NOAA Ship Oregon II

“Lunch is on me!” invites the captain if you arrive to the galley after him. Captain Dave Nelson is the commanding officer (CO) of NOAA Ship Oregon II, and he’s gone a long way to realize that title. This is his 10th year as the captain of Oregon II, but he’s worked onboard since 1993. He refers to himself as a “hawsepiper”, urging me to look it up on the internet. Informally, it means to have started at the bottom as a deckhand and working up to becoming a captain. Captain Nelson is a Mississippi native and grew up shrimping and fishing with his dad. After high school he went to work on commercial boats that bring supplies to oil rigs. After over a decade, he felt that he needed a plan for the future– a stable pensioned job. He serendipitously stopped into the NOAA office as he was driving by on a day that someone had just quit and there was an opening to fill. The rest is Oregon II history.

The progression as a civilian begins with being a deckhand and progressing to Chief Boatswain. It takes 750 days at sea to qualify for the first license, the 3rd Mate license administered by the U.S. Coast Guard. It then takes 1100 more days to be eligible to test for the Masters license to become a captain. In 2008 the prospective captain lived in Seattle on a NOAA ship for 12 weeks for a prep course for the Masters exam. At this point, it’d be almost 30 years since he had been a student; not only did he have to learn the material for the test, he also had to learn how to study again.  Soon-to-be Captain Nelson committed seven days a week for the entire 12 weeks to study and reviewing material to pass. He knew he wanted it.

CO Nelson’s joking attitude belies the pressure of being the captain of a ship. It’s a tremendous responsibility because he is accountable for everything, particularly the safety of everyone onboard. Every decision is made or approved by the captain and he sends reports to his supervisors every day.

He is one of a few captains in the NOAA fleet who is a civilian; most NOAA Commissioned officers rotate between boats every two years. This means that he is always training the new officers joining Oregon II from ensigns like Andy Fullerton and Chelsea Parrish to XO’s like Andrew Ostapenko. It takes a lot of patience; everyone comes in with different strengths, weaknesses and of course, personalities. The key, he says, is to “treat people like people” no matter who they are.

 

Personal Log

I somehow made it through almost three weeks living on Oregon II without falling down any stairs or tripping and landing on my face over a bulkhead door. Sure enough, it was hard to fall asleep at home without the rocking of the boat, but I’m happy to have my own shower again.

I’m so excited to show my students photos of so many of the things that I cover in class, or that they ask about, such as starfish regenerating lost arms and a video of wiggling tube feet on a severed arm (I accidently broke it off). I imagine they’ll also get to see critters they haven’t imagined-arrow and calico crabs, triggerfish, batfish…

A sea star that is regenerating its lower right arm.

A sea star that is regenerating its lower left arm.

I can’t believe how much I learned in such a short time about life and work at sea, careers, seafood, NOAA and its online resources. What I’ve shared in blogs is such a small fraction of everything I’ve experienced. I’m extremely grateful to everyone on Oregon II for being so welcoming and friendly, and for being so willing to speak with me. Although there were some setbacks, I got the chance to visit the lab and meet the wonderful scientists who showed me around. It’s hard work, but everyone agrees that it’s meaningful, rewarding and exciting.

Since coming home, my colleagues have commented that this is a once in a lifetime opportunity; that thought has crossed my mind as well. But watching everyone work, this is the everyday life of NOAA crew. I can’t help but think how few decisions it might have taken, maybe only 2-3 different choices, that might have made this my regular life too.

 

Did You Know?

NOAA Ship Oregon II earned the Gold Medal Award for rescuing three people off the coast of Cape Canaveral on Florida’s east coast. (This is where NASA’s Kennedy Space Center is located.) In 1998 when Captain Nelson was still a deckhand, he was woken from sleep between his watches. At about 2:30pm, a small overturned boat was spotted with a man, woman, and young girl on top. Captain Nelson was a small boat driver then; he launched a boat from Oregon II to rescue them and bring them to the Coast Guard.

NOAA Ship Oregon II earned the Gold Medal Award in 1998 for rescuing three people off of the coast of Florida.

NOAA Ship Oregon II earned the Gold Medal Award in 1998 for rescuing three people off of the coast of Florida.

Captain Dave surmises that they left port in Miami almost 200 miles south and got swept up in the Gulf Stream, a strong current of water that originates in the Gulf of Mexico and flows to Canada, affecting the climate even to Europe. It can create choppy conditions that capsized their boat.

The Gulf Stream is visible in red as it carries warm water from the south into the northern Atlantic. Photo from: https://en.wikipedia.org/wiki/Gulf_Stream#/media/File:Golfstrom.jpg

The Gulf Stream is visible in red as it carries warm water from the south into the northern Atlantic. Photo from: https://en.wikipedia.org/wiki/Gulf_Stream#/media/File:Golfstrom.jpg

They were extraordinarily lucky; the ocean is vast so the chances of Oregon II coming by and being spotted were slim. Their boat was too small to be detected by radar; if it had been dark, they might have been run over. Those are three people who are alive today because of NOAA Ship Oregon II.

Anna Levy: Fish Rules, July 17, 2017


NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

IMG_1191

Lazy sea gulls hitch a ride on our trawling gear

Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain

 

Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph

Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

IMG_1177

A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map

Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP

Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.

 

Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity

Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

IMG_1235

A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.

IMG_0045

Red snapper from one catch.

 

Hypoxia Watch

CTD

Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone

A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

summer-dead-zone.adapt.885.1

Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

IMG_0092

The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!

 

Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?

 

 

 

 

Sian Proctor: Sea Sounds Visualized, July 8, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard Oscar Dyson

7/2/2017-7/22/2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 8, 2017

Weather Data from the Bridge

  • Latitude:   56° 13.6 N
  • Longitude: 156° 36.0 W
  • Time: 0600
  • Sky:Clear
  • Visibility: 10 nautical miles
  • Wind Direction: 162
  • Wind Speed: 6 Knots
  • Sea Wave Height: <1 foot swell
  • Barometric Pressure: 1015.8 millibars
  • Sea Water Temperature:  13.2°
  • Air Temperature:  11.5°
  • Sunrise: 0524
  • Sunset: 2307

sproctor_Oscar_Dyson

TAS Sian Proctor admiring the view on board Oscar Dyson in Alaska.

Where Are We Going?

We are off and running in our quest to track Alaskan pollock. The first thing I realized was the complexity of fishing operations. There are so many parts to a successful operation and one of my favorite components is all the maps and navigation.

Science and Technology Log: Using Sound to See

Once the ship is navigated to the first transect line then the scientific research begins. A down-looking echo sounder system located in the centerboard of the ship has five transducers (18, 38, 70, 120 and 200 kHz) that emit short pulses of sound. This means that energy, in the form of sound waves, is being sent out from the bottom of the ship. When sound waves encounter a change in sound speed, density, or a combination of both, some of the energy is scattered (reflected) back to the ship. The amount of sound scattered by an object in the water column is a function of its physical characteristics and the frequency of the sound. In animals, important physical characteristics that affect the amount of scattering include the presence of a swim bladder (a bubble!), bone structure, and size. Various animal types with different morphological characteristic will scatter different amounts of sound as a function of frequency, which scientists can use to aid their interpretation of the observations. The NOAA scientists know, through research, that krill scatter much more energy at 120 kHz and 200 kHz than at 18 kHz, but pollock scatter similar amounts of energy at all of the frequencies used in the survey. Ultimately, the five frequencies are used to support decisions about the types of animals that are scattering the sound in the water column, but the scientist use only the 38 kHz transducer data to derive estimates of fish abundance.

NOAA Chief Scientist Taina Honkalehto analyzing echogram.

NOAA Chief Scientist Taina Honkalehto analyzing an echogram. The echogram is color coded to represent the density of biomass within the water column. Red are areas of high concentrations of biomass and blue are areas of low concentrations. The bottom of the ocean floor shows the rainbow of colors. The NOAA scientists note GPS coordinates spot to fish based on the echogram.

All of the scatter produced by the pollock, and other animals in the water column, is processed by the ship’s computers to produce an echogram. Each column in the echogram is a view of the spatial distribution of animals under the ship at that time. By moving around the survey area and “stacking” many observations a spatial view of the biomass distribution is created. NOAA scientists in the acoustics lab analyze the echogram not only to determine what is in the water column, but also where to perform physical samples (trawls). The ship then navigates to that location and the sampling process begins.

Meet the Crew

Before starting my Teacher at Sea adventure I had no idea that there was a career called ocean acoustics engineer. Everyday I have been interacting with NOAA Acoustics Engineer Chris Bassett and University of New Hampshire graduate student Alexandra Padilla to find out why they chose this career. One thing I notice is that they build really cool instruments and they are teaching me a lot about how we study the ocean using sound.

Interview with Christopher Bassett

Ocean Acoustics Engineer

NOAA Ocean Acoustics Engineer Chris Bassett schooling me on sound.

  • Normal Job Duties
    • I study the use of passive and active acoustics in marine environments.
  • What is your current position on Oscar Dyson?
    • A combination of management of ET/IT support for survey operations and special research projects at night.
  • How long have you been working on Oscar Dyson?
    • This is my third field season. My first cruise was the summer of 2015.
  • Why the ocean? What made you choose a career at sea?
    • A series of fortunate and unfortunate events.
    • When I started graduate school I wanted to transition to working as an engineer in renewable energy. The economic conditions in 2008 resulted in the loss of funding for the project I was planning to work on. Instead I agreed to perform a short study on underwater sound in support of a tidal energy project in Puget Sound, WA. I fell in love with the work and have been studying acoustical oceanography ever since.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • Going to sea in Alaska. It’s beautiful.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • Not until I started doing ocean research. Prior to that the idea had never occurred to me. I didn’t see an ocean for the first time until I was in my teens so the idea of working in ocean science was completely foreign. I did, however, know I was interested in science and engineering from a relatively early age. Nonetheless, pursuing a career in science never occurred to me until I first worked in the field and discovered my passion for the subject.

Chris Bassett at work on Oscar Dyson.

  • What are some of the challenges with your job?
    • Working with data sets (biological or physical) obtained in the field. Working with data obtained at sea from uncooperative sources is not easy. My job also requires a variety of skills (e.g., engineering, math, coding), a willingness to learn about biology, and requires a lot of travel. Expanding my knowledge across these fields is a constant challenge.
  • What are some of the rewards with your job?
    • I learn something interesting every day.
  • Describe a memorable moment at sea.
    • Sunset at the Islands of Four Mountains while one of the volcanoes was smoking. Little more can be said. It was a beautiful day!

Interview with Alexandra Padilla

Ocean Acoustics Engineer

  • Official Title
    • Ocean Engineering PhD Student – and Sian Proctor’s awesome roommate aboard Oscar Dyson.
  • Normal Job Duties
    • I am a PhD graduate student. I usually spend my time split between courses and research. I am about to start my third year at University of New Hampshire and I will be focused mostly on taking classes, passing my qualifiers, and doing research.
  • What is your current position on Oscar Dyson?
    • I am an invited scientist.
  • How long have you been working on Oscar Dyson?
    • This is my first time aboard the Oscar Dyson! Actually, it is the first time I have ever been on a scientific cruise.
  • Why the ocean? What made you choose a career at sea?
    • Oh Boy… That is a long story actually. Life.

Alex Padilla and Chris Bassett working on an acoustic research project aboard Oscar Dyson.

What is your favorite thing about going to sea on Oscar Dyson?

My favorite thing about going to sea is learning from all of the other people that are on Oscar Dyson – from NOAA Corps officers, crew member and fellow scientist.

Why is your work (or research) important?

My research is focused on observing methane seeps in the water column and quantifying the flux of methane within the water column and at the air-sea interface. This research is important for understanding how methane release in the ocean contributes to climate change.

  • When did you know you wanted to pursue a career in science or an ocean career?
    • I knew I wanted to be an engineer since elementary school, but I only realized that I wanted to be an ocean engineer during my third year as an undergrad.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • Counting krill!
  • What are some of the challenges with your job?
    • Things don’t always work out the way you want them to and sometimes you don’t know how to fix them.
  • What are some of the rewards with your job?
    • Doing unique research. Also, getting that sense of satisfaction when you fix that one problem that you thought you couldn’t do.
  • Describe a memorable moment at sea.
    • I have yet to have a specific memorable moment at sea but I do have a memorable feeling every time I look at the horizon when on the ship. It feels like freedom.

Personal Log

I was pleasantly surprised by how much I am enjoying being at sea. I think a big reason why is the smooth ride. The sea has been calm, the weather mild, and the sunshine plentiful. The scenery within the Shelikof Strait, particularly along Katmai National Park, has been stunningly beautiful. A perk of the early morning shift is seeing the sunrise. Take a look at the weather report above for the sunrise and sunset times. You’ll notice that the amount of darkness is minimal this time of year.

Sunrise in Alaska aboard Oscar Dyson.

Sunrise in Alaska aboard Oscar Dyson.

The hardest part of the journey so far has been my schedule. We work 12 hour days and my shift is 4 am to 4 pm. Yep, 4 am!  I am not a morning person – but I am also not a late night person. So given the choice between getting up or going to bed at 4 am – I choose to wake up with the help of coffee – coffee – coffee.

TAS Sian Proctor and NOAA Chief Scientist Taina Honkalehto.

The NOAA crew are friendly, informative, and have made my adjustment to life at sea easy breezy. Every day I learn something new. The NOAA Chief Scientist is Taina Honkalehto. I was thrilled to learn that she’d be my mentor for the Teacher at Sea program because I am an advocate for women in science. I am also surrounded by other crew members, both men and women, who have taken time to teach, advise, and guide me every day. I will be trying to highlight as many of them as possible in my blog posts.

Education Tidbit

One thing I am learning is that there are so many different careers dealing with ocean science. Here is a great resources If you have students who are interested in a career in ocean or marine sciences.

There are so many things you can learn about sound and the sea. The Discovery of Sound in the Sea website is chuck full of information and educational resources.

Did You Know?

Did you know that there is a layer in the ocean where sound gets trapped and can travel across the entire basin. It is called the SOFAR Channel. Click this link to learn more: NOAA SOFAR Channel

NOAA diagram of how sound travels in the ocean.