Alexandra Keenan: Right Whales Everywhere! June 25, 2012

NOAA Teacher at Sea
Alexandra Keenan
Onboard NOAA Ship Henry B. Bigelow
June 18 – 29, 2012

Mission: Cetacean Biology
Geographical area of the cruise: Gulf of Maine
Date: June 25, 2012

Science and Technology Log:

Greetings from Canadian waters!

Bigelow flying Canadian flag

Ships must fly the flag of the nation whose territorial water they are sailing in.

Thanks to a tip from an aerial survey, we are on Georges Basin– the northern edge of Georges Bank. Incredibly, we saw around 30 right whales yesterday! The science crew quickly got to work photo-identifying every right whale we could safely approach.

Photo-identification is the process of distinguishing individuals of a species from one another using markings and other cues in photographs of an individual. It is possible to identify individual right whales by markings called callosities on their heads, scars on their bodies, and notches in their flukes.

Photographing right whales

I use a telephoto lens to photograph right whale callosities to use in identifying individuals.

taking good notes

Research analyst Genevieve Davis takes good notes on each whale that is photographed, including frame numbers and identifying characteristics. These are essential when going through the photographs later.

the chief

Chief Scientist Allison Henry knows right whales. I was amazed by her ability to recognize individuals by name or number.

Callosities are patches of rough skin on right whales’ heads that appear white because of small organisms called cyamids that inhabit these areas (a sort of “whale lice”). Like human fingerprints, each right whale has a unique callosity pattern. In order to photo-ID a whale, photographs of the animal’s head and body are taken with a telephoto lens when the animal surfaces. These photographs can later be compared to a catalog of right whale individuals to determine who has been spotted (some whales have names, some have numbers).

Scientists use unique markings on the head called callosities to identify individual whales. (graphic/photo: New England Aquarium)

The team also has “cheat sheets,” or laminated cards containing information on certain whales that are of interest or need to be biopsied. These references can help scientists quickly identify whales in the field that need to be studied further.

cheat sheets

These sheets contain photographs and drawings of individual whales’ markings and callosities.

As one of the most endangered whale species, there are only about 450 individual right whales left. We were privileged to see a little less than 10% of the entire right whale population in one day. This is amazing, but also quite disturbing.  Even though right whaling has been illegal since 1937 , right whales still face entanglement from commercial fishing gear and getting hit by vessels. They are particularly vulnerable because they seasonally migrate through world shipping lanes, are relatively slow swimmers, and closely approach vessels.

One right whale we encountered, named Ruffian, had huge scars all over his back. I asked Allison the Chief Scientist what happened to him.

Below are two videos: the first a shot of the numerous spouts (note the characteristic v-pattern of the spouts) that gives an idea of how surrounded we were by right whales, the other is a short video of a right whale surfacing near our bow.

Ellen O’Donnell: The Right Place, May 21, 2012

NOAA Teacher at Sea
Ellen O’Donnell
Onboard NOAA Ship Delaware II
May 14 – May 25, 2012

Mission: Right Whale Survey
Geographical area of the cruise: Atlantic Ocean, Georges Basin
Date: May 21 2012

Weather Data from the Bridge:  Wind at 4 knots, fog with relative humidity around 97%

Science and Technology Log:

Yesterday we started out the day in Canadian Waters. We were about 50-60 miles south of Halifax, Nova Scotia. Remember to track me using the NOAA Ship Tracker. The day started off very quickly. I was on the first shift at 7 AM and we started seeing right whales within 30 minutes. I stayed on watch while the first group went out in the little gray boat. From the flybridge, we were seeing right whale blows from west to east across our bow. It was a calm day so you could really see the indicative v-shaped blow.  The first group collected data from 11 whales and biopsied one of them. At one point we radioed the group on the boat because we had around 8 right whales within sight. They radioed back that they were working one whale and had four more close by!  Around lunchtime we switched out the crews and I got to go out again on the little boat.

It is so hard to describe my experience on that boat, but I will give it my best shot. We had right whales all around us. One swam right toward our boat and then veered off at the last minute. At one point we were trying to collect data on around 8 whales who were close to us. The majority were echelon feeding on the surface so it was easy to take pictures. It was not easy, however, to keep individuals separate as they kept swapping places or moving off to join another group close by. Allison Henry, is the biologist in charge of identifying the right whales, and she is amazing. We would come up on a whale and she would say, “Nope, already got him, he was letter H!” (We identify the whales by the alphabet as you go along. In other words, the first is A, then B, etc). So not only could she keep track of the whales we identified, but she often knew which letter we had given it! So to give you an idea of the number of whales we saw that day, our last whale was UU. Some of these whales are most likely duplicates, but that’s still a pile of whales. Peter Duley, our chief scientist dubbed this spot, “the honey pot.” Another really interesting thing was that the ocean was just full of whales where we were, but they were almost all right whales. We just saw the occasional sei whale here and there.

As I mentioned before right whales are identified by large patches of rough tissue called callosities. Calves begin to show these patches shortly after birth, and are usually well established by 7-10 months. These patches are unique to individual whales, and therefore, are used to identify them. The patches themselves are dark, but they become infected by cyamids, otherwise known as “whale lice,” which make them look lighter. I hope all you school nurses are getting a good look at this. You think you have an epidemic!

Right whale showing callosities and cyamids up close

Look at these pairs of  right whales and tell me how you would describe each in a way that you would know them if you saw them again. There is a pair of two right heads and two pictures showing left heads. They are from 4 different individuals. I have a prize for the person from DCS that gives the best description! (I think we can probably come up with another prize for those of you at Hall Memorial school in CT. Right Mrs. Rodriguez?)

To help you with this challenge you might want to play this whale identification game by the New England Aquarium

http://www.neaq.org/education_and_activities/games_and_activities/online_games/right_whale_identification_games.php

Right whale in Georges Basin (right head)

Right whale in Georges Basin (right head)

Right whale in Georges Basin (left head)

Right whale in Georges Basin (left head)

Personal Log:

Chris O’Keefe, Chief Engineer, and Grady Abney, 1st Engineer, explain to me how the ship is powered

A ship isn’t going to go anywhere if you don’t power it. I spoke with Chief Engineer Chris O’Keefe and 1st Engineer Grady Abney about how the Delaware II operates. Chris has been with NOAA for 35 years and Grady has been with NOAA for 25 years. Grady took me into the bowels of the ship and gave me a tour of the systems. It’s like another world down there, full of equipment, and loud noise with a small walkway running through. The Delaware II is run by a 125 HP engine. It uses diesel fuel and the ship carries about 28,000 gallons which will last between one or two months. On a day when we are stopped most of the time, like yesterday when we were surveying whales from the little boat it will use about 500 gallons. When we are going at a steady pace we will burn around 1200 gallons. Grady tells me that this is great fuel efficiency compared to some of the newer ships that may burn as much as 5000 gallons a day.

Chris explained one of the really cool things that the Delaware II has: a desalination unit. This is a process where filtered saltwater is brought in and boiled in an evaporator. The water is under high pressure so that it boils at 160 degrees F. The steam is collected in a condenser where it is cooled and turns back into water, but without the salt. Remember how we separated salt from water in our labs? The ship needs to be moving in order to generate the fresh water and at a steady pace the Delaware makes about 1500 gallons a day. The generation of fresh water is something that the engineers log through-out the day.

Engine control room on the Delaware II

Another interesting thing that Grady explained to me is how the ship can be run from the engine room instead of the bridge. This is a back-up in case there are problems with the ship. I had a lot of fun talking to Chris and Grady. You can see they enjoy their jobs and are very capable in what they do. Good thing for all of us!