Catherine Fuller: National Mooring Day, July 11, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 11, 2019

Weather Data from the Bridge

Latitude: 59° 00.823 N
Longitude: 148° 40.079 W
Wave Height: 1 ft, ground swell 3-4 ft
Wind Speed: 5.4 knots
Wind Direction: 241 degrees
Visibility: 5 nm
Air Temperature: 13.3 °C
Barometric Pressure: 1014.6 mb
Sky: Overcast


Science and Technology Log

At home, I regularly check information from the buoys that literally surround our islands.  They give me real time, relevant data on ocean conditions and weather so that I am informed about storm or surf events.  We also have buoys that track tsunami data, and the accuracy and timeliness of their data can save lives.  Deploying and monitoring these buoys is a job that requires knowledge of ocean conditions, electronics, rigging and computer programming. 

preparing buoy system
Pete (foreground) and Seth set up the buoy system in preparation for deployment
buoy anchors
The anchors for the buoys were made of train wheels

Pete Shipton is onboard as the mooring technician from UAF’s Seward Marine Center. This morning, he, Dr. Danielson and the crew deployed three moorings near oceanographic station GAK6i (about 60 miles offshore in the Northern Gulf of Alaska) at a depth of 230 meters. The search for the right depth required that R/V Sikuliaq do an acoustic survey of the area last night to find a kilometer-long area of the right depth and bottom slope.  The three moorings will be situated close enough to each other that for all purposes they are collecting a co-located set of readings representative of this site, yet far enough apart, with small watch circles, that they don’t overlap and foul each other.  The set of three is designed to have one surface buoy on either side with sensors at the surface and through the water column and a third buoy in the middle with sensors also distributed across all depths.

The first buoy, GEO-1, gives information on physics, optics, nutrient
chemistry and has a profiling instrument that will “walk” up and down the mooring wire from about 25 m above the seafloor to 25 m below the surface, collecting profiles four times a day. The mooring has many of the sensors that the ship’s CTD has, including an ADCP (Acoustic Doppler Current Profiler), a weather station with a GPS that measures wind speed, relative humidity, sea level pressure, and air temperature.  The buoy system was designed to withstand and operate in 8 m waves; in larger waves the surface buoy is expected to become submerged.  At one meter of depth, GEO-1 measures the temperature, salinity, chlorophyll fluorescence and photosynthetically available radiation. 

On GEO-2 (the center buoy), similar data is recorded at 22 m below the surface.  There will also be a sediment trap, mammal acoustics recorder, particle camera, and an AZFP (acoustic zooplankton fish profiler), which has four frequencies that can detect sea life from the size of fish down to the size of zooplankton. It records sound reflections from all sizes of creatures and can see fish migrations during day or night within a range of 100m (from 100m depth to the surface).

Buoy GEO-3 is the primary “guard” buoy, or marker for the whole set. It also has a real-time transmitting weather station and near-surface measurements.

Linking the mooring lines and the anchors are acoustic releases,
which are remotely controlled tethers whole sole function to listen for a “release” command that will tell them to let go of the anchor.  Since the limiting factor on the instruments is the life of the batteries, they will be picked up in a year and the acoustic release will allow the instruments to be brought back aboard Sikuliaq. These buoys will be providing real time information for groups such as the Alaska Ocean Observing System (www.aoos.org) about weather and ocean conditions, while also collecting
information about sea life in the area.

Pete and Seth on buoy
Pete (left) and Seth (right) test the stability of the buoy

Deploying the buoys was a lengthy process that required careful
coordination of parts, lines, chains and personnel.  Luckily everything
went off perfectly!  As the anchor weights for the two surface buoys deployed, they briefly pulled the buoys under, causing a bit of joking about whether the line length was calculated correctly. The brief “dunk test” was an excellent first trial for submergence during this coming winter’s storm conditions.

The second buoy briefly scares us by going under!


MarTechs:

There are opportunities for careers at sea in a wide variety of positions on board a research vessel.  One of the most interesting is the MarTech (Marine Technician), because of their dual role during a scientific cruise. 

The Marine Technicians are technically assigned to the science team although they are a part of the ship’s crew.  Bern and Ethan are the MarTechs on this cruise and both work specifically with R/V Sikuliaq. They are considered a part of whatever science team is on board at the time. The MarTechs are on 12-hour shifts, from 8:00 to 8:00.  Ethan is on at night, and Bern is on during the day, although there is some overlap.  The two men help to deploy and recover instruments for the science team and as well as helping the crew with any deck operations.  They also are responsible for the computer lab and overseeing the data displays and production from the various sensors, as well as maintaining the instruments on the ship that provide information.  Although they are always at hand to help when we need it, you will often find them also repairing and upgrading ship’s equipment and helping with engineering tasks.

Bern sets up camera
Bern setting up one of his cameras.

Bern has been a MarTech on R/V Sikuliaq since 2013, and had previous experience on other research vessels, both American and international.  Bern is also the ship’s unofficial documentation guy; he has a number of small cameras that he regularly uses to capture the action on board, whether from the vantage point of one of the cranes or on top of his own helmet. You can find examples of Bern’s camera work on R/V Sikuliaq’s Instagram site (@rvsikuliaq).

Ethan and Ana
Ethan helps Ana with the iron fish.

Like Bern, Ethan has also worked on other research vessels but has been on R/V Sikuliaq since it was built.  This is the only ship he’s been a MarTech on.  His interest in oceanography, especially marine acoustics, led him to this career.  Marine acoustics is more than just listening for large species such as whales.  There are acoustic sensors that “listen” to the ship and help ensure that it is functioning normally.  Other acoustic sensors, such as the ones based in the open keel of the ship use sound technology to map the ocean floor as we progress on our path.  Ethan was kind enough to show me the keel and explain the instrumentation. In addition, there are instruments that constantly record salinity, temperature, current strength, solar radiation and other measurements along the path we travel to provide a more complete picture of the environmental conditions existing at every point. 

open keel
The ship’s acoustic instruments are mounted in the open keel; it’s open to the sea!

The marine technicians manage the computer lab when they are not needed for operations.  This lab is the nerve center of the ship and allows the science team to work closely with the bridge to coordinate the movement of instruments and the speed of the vessel through the water to achieve optimum results.  You can find information on meteorology, navigation, engine performance, depth sounders, closed circuit monitors, ship acoustics and deck winch statistics by looking at specific screens.  In addition, the staterooms have monitors that also allow viewing of certain screens. 

computer lab
The screens in the computer lab provide all the information needed to make decisions about how and when to deploy data-gathering instruments.

By far the two displays that are followed most closely are the CTD cast screens and the AIS screen.  The AIS screen gives our course on a map, and shows our progress as well as future waypoints.  It also shows our speed and bearing to our next point as well as ocean depth and wind speed and direction.  The CTD screen shows real-time results in a number of categories such as salinity, oxygen, chlorophyll, temperature, nitrates and light as the CTD descends and ascends through the water column.  Based on the results of the down cast, the teams determine the depths from which they’d like water samples collected as the CTD rises. 

AIS screen
The OLEX or AIS screen shows our path as well as navigational information.
The CTD screen looks like spaghetti until you understand the color code for each line.


The Bridge:

The equipment on the bridge represents the pinnacle of technology as far as ship operations go.  The captain’s chair has been described by some members of the science team as the “Battlestar Galactica” or “Star Trek” chair, and it really does look like it fits in a science fiction movie.  Displays on the bridge show performance of the engines, radar returns and our bearing and range from them, and any other pertinent information to vessel performance.  Ship movement and waypoints are hand plotted by the second mate, who also oversees ship movement along with the captain, chief mate and third mate.  The ship’s officers work the bridge on a rotating watch schedule.  One of the cool features of this ship is that it operates two Z-drives, similar to what is used on tugboats.  These are propellers that can move independently of each other and turn in any direction.  They allow the ship to be maneuvered precisely, which is a great help when we need to stay on a station through multiple operations.  Various views of the bridge and the navigational instruments used by the ship’s crew are shown in the gallery below.

Captain Eric Piper
Captain Eric Piper shows off his new jacket


Personal Log

Happy Mooring Day!  It’s our self-declared “national holiday”! Because the process of deploying the moorings and buoys took up all of the morning and a part of the afternoon, most of the rest of the science team took the morning off and slept in.  So many of them ran on the treadmill that running might become a part of our “holiday” tradition.  My roommate even took bacon back to her room to eat in bed.  Gwenn brought out her Twizzlers…somewhat appropriate because they look like steel cable (even though the moorings did not use cable).  It was a nice breather for the science team, who have been working very hard to collect samples and run experiments.  Somewhere along the line, the idea of making Mooring Day a “holiday” caught on, and it’s become a bit of a joke amongst the team.  We’re down to a week to go, and everyone is beginning to think about what happens when we get in and when we all go home.  But… we’re not quite there yet, and there’s a lot of work left to do.


Animals Seen Today

stowaway
Our stowaway came to inspect today’s deployment.

We apparently have a stowaway…a small finch-like bird that flits about the ship.  It must have joined us when we were near land, and now we ARE the land. 

Julia Harvey: That’s a Mooring: June 29th, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3rd 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 29th, 2016

 

Weather Data from the Bridge

(June 29th, 2016 at 12:00 pm)

Wind Speed: 12 knots

Temperature: 26.3 C

Humidity: 87.5%

Barometric Pressure: 1017.5 mb

 

Science and Technology Log

Approaching Weather

Approaching Weather

When an anchor is dropped, forces in the ocean will cause this massive object to drift as it falls.  Last year, after the anchor of mooring 12 was dropped, an acoustic message was sent to the release mechanism on the anchor to locate it.  This was repeated in three locations so that the location of the anchor could be triangulated much like how an earthquake epicenter is found.  This was repeated this year for mooring 13 so next year, they will know where it is.  From where we dropped the anchor to where it fell, was a horizontal distance of 3oo meters.  The ocean moved the 9300 pound anchor 300 meters.  What a force!

The next morning as the ship was in position, another acoustic message was sent that triggered the release of the glass floats from the anchor. Not surprisingly, the floats took nearly an hour to travel up the nearly 3 miles to the surface.

Float recovery

A small boat went to retrieve the mooring attached to the floats

Once the floats were located at the surface, a small boat was deployed to secure the end of the mooring to the Hi’ialakai. The glass floats were loaded onto the ship.  17 floats that had imploded when they were deployed last year.  Listen to imploding floats recorded by the hydrophone.  Implosion.

Selfie with an imploded float.

Selfie with an imploded float.

Next, came the lengthy retrieval of the line (3000+ meters). A capstan to apply force to the line was used as the research associates and team arranged the line in the shipping boxes. The colmega and nylon retrieval lasted about 3 hours.

Bringing up the colmega line.

Bringing up the colmega line and packing it for shipping.

Once the wire portion of the mooring was reached, sensors were removed as they rose and stored. Finally the mooring was released, leaving the buoy with about 40 meters of line with sensors attached and hanging below.

Navigating to buoy.

Navigating to buoy.

The NOAA officer on the bridge maneuvered the ship close enough to the buoy so that it could be secured to the ship and eventually lifted by the crane and placed on deck. This was followed by the retrieval of the last sensors.

Buoy onboard

Bringing the buoy on board.

 

 

 

 

 

 

 

 

 

The following day required cleaning sensors to remove biofoul.  And the buoy was dismantled for shipment back to Woods Hole Oceanographic Institution.

Kate scrubbing sensors to remove biofoul.

Kate scrubbing sensors to remove biofoul.

 

Dismantling the buoy.

Dismantling the buoy.

 

 

 

 

 

 

 

 

 

 

Mooring removal was accomplished in seas with 5-6 feet swells at times. From my vantage point, everything seemed to go well in the recovery process. This is not always the case. Imagine what would happen, if the buoy separated from the rest of the mooring before releasing the floats and the mooring is laying on the sea floor? What would happen if the float release was not triggered and you have a mooring attached to the 8000+ pound anchor?  There are plans for when these events occur.  In both cases, a cable with a hook (or many hooks) is snaked down to try and grab the mooring line and bring it to the surface.

Now that the mooring has been recovered, the science team continues to collect data from the CTD (conductivity/temperature/depth) casts.  By the end of tomorrow, the CTDs would have collected data for approximately 25 hours.  The data from the CTDs will enable the alignment of the two moorings.

CTD

CTD

The WHOTS (Woods Hole Oceanographic Institution Hawaii Ocean Time Series Site) mooring project is led by is led by two scientists from Woods Hole Oceanographic Institution;  Al Plueddeman and Robert Weller.  Both scientists have been involved with the project since 2004.  Plueddeman led this year’s operations and next year it will be Weller.  Plueddeman recorded detailed notes of the operation that helped me fill in some blanks in my notes.  He answered my questions.  I am thankful to have been included in this project and am grateful for this experience and excited to share with my students back in Eugene, Oregon.

Al Plueddeman

Al Plueddeman, Senior Scientist

The long term observations (air-sea fluxes) collected by the moorings at Station Aloha will be used to better understand climate variability.  WHOTS is funded by NOAA and NSF and is a joint venture with University of Hawaii.  I will definitely be including real time and archived data from WHOTS in Environmental Science.

Personal Log

I have really enjoyed having the opportunity to talk with the crew of the Hi’ialakai.  There were many pathways taken to get to this point of being aboard this ship.  I learned about schools and programs that I had never even heard about.  My students will learn from this adventure of mine, that there are programs that can lead them to successful oceanic careers.

Brian Kibler

Brian Kibler

I sailed with Brian Kibler in 2013 aboard the Oscar Dyson up in the Gulf of Alaska.  He completed a two year program at Seattle Maritime Academy where he became credentialed to be an Able Bodied Seaman.  After a year as an intern aboard the Oscar Dyson, he was hired.  A few years ago he transferred to the Hi’ialakai and has now been with NOAA for 5 years.  On board, he is responsible for rigging, watch and other tasks that arise.  Brian was one of the stars of the video I made called Sharks on Deck. Watch it here.

Tyler Matta

Tyler Matta, 3rd Engineer

Tyler Matta has been sailing with NOAA for nearly a year.  He sought a hands-on engineering program and enrolled at Cal Maritime (Forbes ranked the school high due to the 95% job placement) and earned a degree in maritime engineering and was licensed as an engineer.  After sailing to the South Pacific on a 500 ft ship, he was hooked.  He was hired by NOAA at a job fair as a 3rd engineer and soon will have enough sea days to move to 2nd engineer.

 

 

There are 6 NOAA Corps members on  the Hi’ialakai.  They all went through an approximately 5 month training program at the Coast Guard Academy in New London, CT.  To apply, a candidate should have a 4 year degree in a NOAA related field such as science, math or engineering.  Our commanding officer, Liz Kretovic, attended Massachusetts Maritime Academy and majored in marine safety and environmental protection.  Other officers graduated with degrees in marine science, marine biology, and environmental studies.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.

Nikki Chappelle, Bryan Stephan and Brian Kibler on the bridge.

ENS Chappelle

NOAA Ensign Nicki Chappelle

Ensign (ENS) Nikki Chappelle is new to the NOAA Corps.  In fact, this is her first cruise aboard the Hi’ialakai and second with NOAA.  She is shadowing ENS Bryan Stephan for on the job training.  She spent most of her schooling just south of where I teach.  I am hoping that when she visits her family in Cottage Grove, Oregon that she might make a stop at my school to talk to my students.  She graduated from Oregon State University with degrees in zoology and communication.  In the past she was a wildfire fighter, a circus worker (caring for the elephants) and a diver at Sea World.

All of the officers have 2 four hour shifts a day on the bridge.  For example ENS Chappelle’s shifts are 8am to 12pm and 8pm to 12am.  The responsibilities of the officers include navigating the ship, recording meteorological information, overseeing safety.  Officers have other tasks to complete when not on the bridge such as correcting navigational maps or safety and damage control. ENS Stephan manages the store on board as a collateral assignment.  After officers finish training they are sent to sea for 2-3 years (usually 2) and then rotate to land for 3 years and then back to sea.  NOAA Officers see the world while at sea as they support ocean and atmospheric science research.

Frank Russo

ET Frank Russo

Electronics technician (ET) seem to be in short supply with NOAA.  There are lots of job opportunities.  According to Larry Wooten (from Newport’s Marine Operation Center of the Pacific), NOAA has hired 7 ETs since November.  Frank Russo III is sailing with NOAA for the first time as an ET.  But this is definitely not his first time at sea.  He spent 24 years in the navy, 10 at Military Sealift Command supporting naval assets and marines around the world.  His responsibilities on the Hi’ialakai include maintaining navigational equipment on the bridge, making sure the radio, radar and NAVTEX (for weather alerts) are functioning properly and maintaining the server so that the scientists have computer access.

I have met so many interesting people on the Hi’ialakai.  I appreciate everyone who took the time to chat with me about their careers or anything else.  I wish I had more time so that I could get to know more of the Hi’ialakai crew.  Thanks.  Special thanks to our XO Amanda Goeller and Senior Scientist Al Plueddeman for reviewing my blog posts.  And for letting me tag along.

 

Did You Know?

The buoy at the top of the mooring becomes a popular hang out for organisms in the area. As we approached mooring 12, there were several red-footed boobies standing their ground. There were also plenty of barnacles and other organisms that are planktonic in some stage of their lives. Fishing line is strung across the center of the buoy to discourage visitors but some still use the buoy as a rest stop. The accumulation of organism that can lead to corrosion and malfunction of the equipment is biofoul.

Boobies to be Evicted

Red-Footed Boobies

Biofoul prevention

Wires and line to prevent biofoul.

 One More Thing

South Eugene biology teacher Christina Drumm (who’s husband was  Ensign Chappelle’s high school math teacher) wanted to see pictures of the food.  So here it is.  Love and Happiness.

Lobster for Dinner

Lobster for Dinner

 

Last supper

Last supper on the Hi’ialakai

 

 

 

 

 

 

 

 

 

Colors of the sea

I love the colors of the sea.

Sea colors

Sea colors

Richard Jones & Art Bangert, January 16, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

flipping_2

Donut buoy

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 16, 2010

Science Log

Today was a day of odds and ends.We had planned to paint first thing after breakfast and Art and Rick got started masking off the water line on one of the orange and white buoys that needs to be painted. This one was chosen to do first because it only needed a coat of yellow and not a complete repaint. The other three buoy floats need the rust colored anti-fouling paint and the yellow. Just about the time we got the tape on, it was determined that all the buoys

would have the anti- fouling paint first so we had to wait while the tolroids or “donuts” were

flipped. In the process of turning them we discovered that a couple of the buoys were partially full of water and Alen had to drill them out to allow the water to pour out. While these were draining and drying we were put on hold for painting until tomorrow. Alen had to carefully look over the donuts and fix any cracks in the fiberglass hull and reseal the mounting brackets where they pass through the hull.

ThroughtheDonut_2

Since painting was sidetracked for a day, we got to participate in one of the necessary, but less exciting aspects of scientific research…inventory. As we mentioned yesterday, science is hard work and hopping a buoy or working on the fantail doing fairings with the ocean breaking over the deck has an element of risk and can be exciting. In order to do the exciting parts of the research safely and efficiently means that you have to have the right equipment and the right number of parts to make the instruments work and the science happen.

Flipping the buoy

Flipping the buoy

So today we counted bolts, and paintbrushes, screwdrivers, nylon zip ties and even pencils and post-it notes, everything that allows us to do the science. Today was a reminder that even the most exciting job in the world, like climbing up a swaying mast on a ship, might have to be done because you need to get the serial number off an antenna, an antenna that allows you to communicate the fruit of your research back to those who can use it to understand the world’s climate a little better.

Doing inventory

Doing inventory

About 4:30 pm today we approached a TAO buoy that needed to be visually checked for any damage. Prior to this check, the ship makes several close passes to the buoy for examinination and more importantly so the crew can fish! Six long lines were in the water as we past the buoy on four separate occasions. No one caught any fish. However, Alen speculated that this was because the buoy had been deployed fairly recently and there was not enough time for it to form a food chain of small microorganisms that eventually attract top level carnivores like Ono, Tuna and Mahi Mahi. Bummer!

Searching for the antenna serial number

Searching for the antenna serial number

The last order of business today was to deploy the last deep (3000 meter) CTD at 8 South on the 155 West Longitude line. Rick sent the remainder of the Styrofoam cups from his school, cups for Art’s wife’s school in Helena (Rossiter Elementary) and a couple for his grand kids plus two extras he had for the Ensigns down in mesh bags attached to the instrument.

Deploying the CTD

Deploying the CTD

Soon we say farewell to the 155 West line as we make our way toward Apia, Samoa and the end of our experiences aboard the Ka’Imimoana.

Richard Jones & Art Bangert, January 15, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 15, 2010

Science Log

We have our last buoy of the 155 West line in the water and the anchor is set. Today began with a ride for Rick over the old buoy where he was responsible for removing an old loop of rope in order to put on the shackle and line that the tow line would be attached to.

Readying to retrieve the buoy

Readying to retrieve the buoy

You would think that cutting a three-eights nylon line would be pretty easy, and you would be right if that line wasn’t attached to a rocking, slime covered buoy floating in the middle of an ocean that is over 5000 meters deep.

Teamwork is essential

Teamwork is essential

It would also have helped if my knock-off Leatherman had a sharper blade.Anyway, Al and I went out the buoy on the RHIB and got a pretty good spray here and there as you can see from the water drops on some of the images.

Reeling it back in

Reeling it back in

Once we were on the buoy Al removed the ‘Bird” and handed to the support crew in the RHIB.If it weren’t for these men and women we (the scientists) would not be able to collect the data.This is science on the front lines and it takes a dedicated and well-trained crew to make the endeavor of science one that produces meaningful, valid, and important data.

Barnacles and all!

Barnacles and all!

Once the ‘Bird’ is off the buoy and the towline is attached it is time to go back to the KA to pick-up the towline so that the buoy can be recovered and the next phase of the process can begin, deployment of the new buoy that will replace this one.

Zodiak returning to the ship

Zodiak returning to the ship

During the recovery Art and Rick often work as a team spooling the nylon because it takes two people to re-spool the line in a way to prevent tangles, one person to provide the turning and another to be the ‘fair lead’.
The fair lead actually has the harder job because they have to keep constant eye on the line as it spools.With seven spools of nylon all over 500 meters and the 700 meters of Nilspin recovery is a team effort by everyone.
KA from RHIB_1
Like the recovery, the deployment is a team effort and many hands make the work easier for everyone.But at this point of the cruise Art and Rick can pretty much handle the nylon line individually, but work as a team to move the empty spools and reload the spool lift with full spools. Deployment of this buoy ended just about 4:30 PM with the anchor splashing and some deck clean up then it was out of the sun and into the air-conditioned comfort of the ship for some clean clothes and good food.

Deployment is also a team effort

Deployment is also a team effort

Richard Jones & Art Bangert, January 14, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Making fish lures

Making fish lures

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 14, 2010

Science Log

After the buoy deployment yesterday, I spent the afternoon, contributing to our blog, setting up my online courses for this semester and building fishing lures. Yes, building fishing lures. I mean we are in the middle of the Pacific Ocean – why not fish? This type of fishing is very different from what we typically think of when fishing in the rivers and lakes of Montana. Most of the fish are big and require heavy tackle. I had the opportunity to help Jonathan and Doc (Helen) build a lure using multicolored rubber skits tied onto a large metal head.

These lures are then attached to a nylon line that is about 200 feet long and attached to the rear of the boat.

Fishing off the back of the boat

Fishing off the back of the boat

Catch of the day

Catch of the day

The prized fish is the yellow fin tuna (Ahi) that the crew likes to make Sashimi and Poke (Sushi). Other fish caught include Whaoo (Ono) and Mahi Mahi (Dorado). The Chief Stewart even deep fat fried the Ono to produce delicious, firm chunks of fish to supplement on of our dinner meals and tonight we had Ono baked in chili sauce that Rick said was…Ono, which is Hawaiian for ‘good’. After lunch today I launched the Rossiter/MSU Atlantic Oceanographic Meteorological Laboratory (AOML) drifting buoy. These buoys collect surface sea surface temperature and air temperature data and send this information to the Argos satellite system. The data is downloaded and used by agencies such as the National Weather Service to produce models that are used to predict weather patterns. The satellites also track the AOML buoy’s drifting path. These buoys will collect this data for approximately the next three years. You can track the Rossiter/MSU drifting buoy as soon as the information from the deployment is registered with the proper agency.

Rick had a fairly relaxed day today, preparing the
next batch of cups for the 3000 meter CTD cast at 8S: 155W and doing odd jobs on the buoy deck getting ready for our recovery-deploytomorrow at 5S: 155W and future deployments scheduled later in the cruise.

With the drifter buoy

With the drifter buoy

Cups ready for the depths

Cups ready for the depths

Continuing south

Continuing south

As you can see by the GPS, at 4:54 Hawaiian Standard time (7:54 Mountain Standard Time) we continue to move south toward our next buoy recovery and deployment at 5 latitude South and 155 West longitude.
Stay Tuned for More!

Richard Jones & Art Bangert, January 13, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

At the controls

At the controls

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 13, 2010

Science Log

Bronc Buoy Day! By 8 this morning ship time we were running out the Nielspin and slapping on the fairings from the recovery yesterday.Some of these were pretty clean, but the majority of them, the ones that the teachers got to help with were pretty slimy and even had barnacles stuck to them. The fairings are added to help the reduce shake on the wire that can be produced by currents close to the equator.

We put these airfoil shaped fairings on the first 250 meters, after that it was smooth sailing.Because the Bronc-Bobcat buoy at 0: 155W is a TAO-CO2 buoy it needed a little extra weight on the anchor, 6200 pounds of steel. Once the anchor was off the fantail and sinking we noticed that there was a ship close to the location of the buoy. The science crew commented that this must be a new record for fishermen finding one of the buoys. It seems that fishermen love the TAO buoys since they attract fish.One of the scientists said, “A buoy for these guys is like having your own private fishing hole”. It will be interesting to see if this ship leaves, or just steams away and waits for us to be clear of the area and then comes back.

Broncs buoy deployed!

Broncs buoy deployed!

Around 12:15 today, actually Rick and Art were just finishing up lunch when the call came from Survey, “Teacher’s at Sea report to the CTD deck”. The first order of business was to lower an Argo buoy over the side of the ship and then to release the buoy using a quick release. According the home page for Argo, Argo is a global array of 3,000 (3199 on Jan 13) free-drifting profiling floats that measure the temperature and salinity of the upper 2000 m of the ocean.

These buoys are unique because the sink to between 1000 and 2000 meters and then on regular intervals, generally 10 days the Argo returns to the surface to transmit and the data it has collected. This allows, for the first time, continuous monitoring of the temperature, salinity, and velocity of the upper ocean, with all data being relayed and made publicly available within hours after collection. Once the Argo was on its own a call was made to the bridge for the crew to help with the deployment of the Bronc Buoy. This AOML drifter’s data will be available in a few days from the Adopt-A-Drifter website. It will be interesting to follow the Bronc Buoy and see where it goes over the next several years.

Our afternoon will be spent sailing south, in the Southern Hemisphere for the first time this trip and devoted to teardown of the old 0: 155W buoy and set-up of our next buoy.

After the deployment of the new CObuoy we crossed the equator and entered the southern hemisphere. Our new position put us in the southern hemisphere and we officially went from the winter to the summer season. Currently (at 6:15 pm MST) we are approximately 28.5 miles (at 6:19 MST) miles south of the equator.

Minding the lines

Minding the lines

Reeling it in

Reeling it in

Those of you in Montana today experienced temperatures ranging from 30 to 40 degrees while the temperatures around the equator (regardless of north – winter or south- summer) are staying at about 84 degrees Fahrenheit. Quite a warm temperature when considering the area north of the equator is technically in the Winter season. Regardless, of your position just north or south of the equator, the deck work required to recover and deploy TAO buoys is demanding. An air temperature of 84 degrees seems mild but is really very hot when working on a deck that is painted dark gray. Everyone has to be careful to make sure they drink enough water to stay hydrated. This operation is certainly a team effort. Everyone works together to make sure the job gets done by checking to make sure those participating in deployments or recoveries are safe. This means checking for life jackets, hardhats, application of sunscreen, the need for water etc. Higher education could take a lesson from the way that this crew collaborates and works together!

The anchor sinks to the depths

The anchor sinks to the depths

Decorative spirit

Decorative spirit

The team

The team

How the buoy gathers and sends data

How the buoy gathers and sends data

Crossed the equator!

Crossed the equator!

Richard Jones & Art Bangert, January 12, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Sunrise

Sunrise

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 12, 2010

Science Log

We are almost there! We are holding station at 0 degrees 3 minutes North and 154 degrees 58 minutes West while we conduct out second deep (3000 meter) CTD. This cast began at 9:13 AM ship time (19:13 Zulu) and made it to depth at 10:10 AM ship time. The depth is 4650 meters at this location.

This cast has significance to Rick’s students (and his Daughter) because this is the first cup cast the cruise.
Rick spent about 30 minutes making sure that the mesh bags with 172 cups (a record for a single cast on the KA) and the bag with the Styrofoam head were attached on the instrument cage securely and in a way that would not interfere with the operation of the instruments on the CTD. As you can see from these pictures the results were profound.

CTD ready to go

CTD ready to go

When Rick returns to the classroom he will return all the cups to their rightful owners. The kids will then recalculate the volume, mass, height and diameter (if they can) and determine the rate of compression for the styrofoam cups. And of course the famous shrunken head his Daughter provided.

After recovery of the CTD Rick and Art spent about a 45 minutes getting the mesh bags off the CTD, untied and for a few of the cups that had nested, carefully pulling them apart so that they would dry as individual “mini-cups”. As soon as this task was completed we moved to the TAO-CO2 Buoy that we are going to replace.The new buoy will be the Bobcat-Bronc Buoy and will be deployed tomorrow since the recovery started around 2 PM and wasn’t complete until just about dark. Tonight we will remaining on station through the night, making five mile loops around the position of the new buoy so there is a very good chance that we will cross the equator 10 or more times tonight.

Cups returned from the depth

Cups returned from the depth

As Rick wrote, today we recovered a buoy designed to measure the amount of COin ocean water in addition to typical data (i.e., temperature, wind speed, humidity, rain and salinity). During the recovery I had the opportunity to ride the RHIB out to the CO2buoy to help the Chief Scientist remove some equipment before pulling the buoy onto the ship. Our ride to the buoy was phenomenal! We were told by the Coxswain to “hold on tight” to the ropes surrounding the top of the RHIB. As we pushed through the indigo waves of the ocean at the equator, I felt like a Montana bull rider holding on for dear life. While Brian was removing the anemometer and the rain gauge, I attached a short rope with a coupling to one leg of the buoy that a larger rope could be attached and bring the buoy aboard the ship. While on the buoy, I realized that the only other thing in site for miles was our mother ship, the Ka’Imimoana!

Out in the zodiak

Out in the zodiak

The RHIB returned to pick us up and then went back to the ship to retrieve the rope that would be attached to the buoy. After some concern that the anchor did not release, the buoy was hauled aboard and stowed for future use. Tomorrow the new CObuoy will be deployed.

This morning we were at 3 minutes North (3 nautical miles) of the equator, about a half hour ago we were only 3/10th of a mile North, we are really getting close. On to the Southern Hemisphere!

Retrieving the buoy

Retrieving the buoy

gettingclose_2