John Schneider, July 11, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 11, 2009

Position 
Sheet L – Shumagin Islands

Weather Data from the Bridge 
Weather System: Overcast
Barometer: 1021.4
Wind: mild and veering*
Temperature: 12.1º C

Science and Technology Log 

One of the Fairweather's launches

One of the Fairweather’s launches

Today I got to go out on launch 1010.  The two primary launches on Fairweather are 29-foot diesel-powered (Caterpillar) single-screw aluminum boats.  I was real surprised to find that 1010 is 35 years old!  It’s in great shape.  Survey equipment on board includes the multi-beam echo sounder, computers, DGPS (Digital GPS gives positional accuracy to about 6 inches!) radar, radios and Iridium satellite telephones.  For “creature comforts” there’s a microwave and mini-fridge as well as a very efficient heater/defrost system.  Oh, by the way, there are no heads on the launches. (FYI – a “head” is marine-speak for a bathroom!)

Here I am on the launch monitoring all the data that’s being collected

Here I am on the launch monitoring all the data

Knowing this in advance, I didn’t have coffee or tea or a big breakfast. Turns out that when “nature calls” the rest of the crew goes in the cabin, closes the door, and you go over the side! Seems gross at first and then you realize that the 30 and 40 ton whales go in the ocean too (besides, it’s biodegradable!) The launches are carried on the boat deck (E-deck) in custom Welin-Lambie davits made for each launch. Welin-Lambie is a company over 100 years old and made the davits for a few ships you may have heard of – the British Royal Yacht Britannia, the Queen Elizabeth 2 cruise ship and oh, yeah, the RMS Titanic!  The cradles are self-leveling so when the Fairweather is in heavy seas they remain upright and stable.  The picture on the left shows 1010 in its cradle. When it’s time to launch the boat, the securing devices are released, the boat is swung out over the side and two >3 ton winches lower the launch to the rail of D-deck.  There it is boarded by the crew and loaded with the needed gear for the day.  It is then lowered into the water and sent on its way.

Once we got to the area of our polygon (I’ll explain polygons later in the week) we began acquiring data by “mowing the lawn” – the process of sailing back and forth across a defined area collecting soundings1 (bottom depths.)  In every polygon we conduct a CTD cast (CTD = Conductivity Temperature Density.)  These three parameters determine the speed of sound in the water and are used to accurately calibrate the soundings. Once we had been working for a while with me observing – and asking what must have seemed like unending questions – PIC2 Adam Argento and AST3 Andrew Clos guided me to monitoring the data being acquired. As you can see on the left there are 4 monitors all running software simultaneously.  The picture on the right shows the keyboard and mice. The mouse in my right hand controls the windows on the three screens to the right which are data displays of received info. The left mouse controls which data are being acquired.

After a long day on the launch, it was great to see the Fairweather on this rainy day.

After a long day on the launch, it was great to see the Fairweather on this rainy day.

After lunch the coxswain4 (“coxin”) – AB Chrissie Mallory – turned the helm over to me to steer.  My first leg was headed North.  The positional displays on the Fairweather and its launches all have North being at the top of the displays.  (This is called – logically enough – “North Up”.)  I rocked! If I had to move off to the right a little, I turned right.  Need to move left, turn left. There’s a little delay between when you turn and the position as displayed on the screen.  Well, we got to the top of the section and turned around to head South.  I needed to adjust a bit to the right, so I turned right . . . BUT . . . the boat is now oriented 180º from the prior run.  So in turning right, I actually made the boat go left on the screen!  Oh NOOO!!! So I overcompensated the other way.  Then had to un-overcompensate . . . and so on.  I’m sure when they downloaded the data back on the Fairweather they were wondering what the h*** was going on. Eventually I got the hang of it and didn’t do too badly after a while, but I have a much greater appreciation of what appeared to be really simple at the outset.

After a successful 8+ hours out (by the way, our lunches contained enough food for 6 people!) we headed back to the Fairweather about 15 miles away.  To see her after a day out kind of felt like seeing home after a long day out. To the unaware, the ship looks like a mish-mash of all kinds of gear all over the place, but it’s remarkably organized.  The reason for the appearance is that the ship is capable of so many tasks that the equipment is stowed in every available space.  Fairweather is capable of deploying 7 small boats and operating independently of all of them in coordinated tasking!  I’d love the opportunity to take a class of students for an all-day field trip aboard and could do so without ever leaving the dock – there’s so much on board!

A launch returning to the Fairwweather

A launch returning to the Fairwweather

As you can see in the photo of the Fairweather above, there are two large white inflated “fenders” hanging over the starboard side.  This is where we’ll be tying alongside. (I took the next 3 shots from the Fairweather as 1010 approached on a different day.) As the launch approaches, the person on the bow will throw a line to the forward line handler.  Notice there’s not a whole lot of room up there as well as the extended arm ready to catch the line.  That bow line has a mark on it which lets the line handler on Fairweather know where to temporarily tie off the line.  Then the stern line is then thrown to another line handler. Once the launch is positioned properly (no easy task in rolling seas) the hoists are lowered to the launch where they are clamped onto lifting eyes.  Each of the clamps on the boat falls5 weighs close to 40 pounds – that’s why in deck ops everyone wears hardhats – and is controlled by both the winch operator and two more line handlers using “frapping lines6.” (in the picture to the left, as the launch approaches, you can see the boat falls, clamps and frapping lines.)  Once the clamps are secured, the launch is lifted to the deck rail and the crew gets off, and the launch is lifted back to its cradle.

Piece of cake!  Realize, however, that this simply and cleanly executed maneuver, requires: On the Fairweather: 4 line handlers The Chief Bosun 1 or 2 surveyors The bridge crew to maintain position (at least 2 people) 2 or 3 deck personnel to unload gear from the launch A Chief Scientist to task the launch The chefs to feed the launch crew On the launch: Person in charge Coxswain 1 winch operator From 14 to 16 people, all working together.  On January 1, 2008, the Fairweather was authorized to paint a black letter “S” on both sides of the ship indicating that she had gone 433 consecutive days without any injuries.  Considering the environment in which Fairweather works and the tasking which requires constant deployment and retrieval of heavy equipment, the “Safety S” is a reflection of her crew and officers.

Personal Log 

What a great day!

Vocabulary 

  1. Soundings – depths measured
  2. PIC – Person In Charge
  3. AST – Assistant Survey Technician
  4. Coxswain – (<O.Fr. coque “canoe” + swain “boy”) Individual who steers a small boat or launch
  5. Boat falls – the lines used to raise and lower boats from a davit
  6. Frapping lines – Lines used to control the boat falls

By the Way 

It’s time to do some laundry!!!  The laundry room is on D-Deck just forward of the fantail.

See you all tomorrow! 

It’s laundry day!

It’s laundry day!

John Schneider, July 8, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 8, 2009

Position 
Small boat/launch operations vicinity; Herendeen Island (Shumagin Islands Group)

Weather Data from the Bridge 
Wind: light & variable
Temperature: 12.7ºC
Sea State: 1 foot

National Ocean Service Benchmark

National Ocean Service Benchmark

Science and Technology Log 

Today I’ll be heading out on the Ambar (an aluminum hulled inflatable) to check on a tide gauge off Herendeen Island.  It might get chilly being off the Fairweather, but the weather has been fantastic since we left. Waves <1 foot, winds below 5 or 6 knots.  Weather actually got better as we went to the tide station.  (I’ll try to get a good shot of each of the launches.) The tide station is a remarkably simple in concept, yet a terribly complex operation to execute. A month ago, Fairweather personnel installed a tide station on Herendeen Island. This involved sending a launch to the island where personnel did the following setup work:

The tide gauge interface being downloaded to a weather/shockproof laptop computer

The tide gauge interface being downloaded to a weather/shockproof laptop computer

  1.  Drill a 1/2 inch hole 3” deep into a solid piece of granite and set a bronze bench mark into it.
  2. Drill 3 more holes into a huge granite boulder at the water’s edge. Construct, on that boulder, a vertical tide gauge with markings every centimeter, ensuring that the bottom of the gauge is both lower and higher than the tide should go.
  3. Precisely and accurately determine the height of the benchmark in relationship to the heights on the tide gauge.
  4. Send a diver down below the lowest tide levels and install a nitrogen-fed orifice connected to a hose and secure it to the sea floor.
  5. Connect the hose to a pressurized tank of nitrogen on shore.
  6. Install a solar power panel near the station with a southern exposure.
  7. Install the data acquisition interface. This piece of equipment forces a single nitrogen bubble out of the orifice every six minutes (one-tenth of an hour) and measures the pressure it takes to release the bubble which is then used to calculate the depth of the water (as a function of pressure.)

Collected data are automatically sent by satellite to NOAA. A month later, the survey team re-visits the site and performs a series of 10 visual observations coordinated with the automated sequences of the nitrogen bubble data recorder.  These visual observations are then compared to the automated data acquired.  If their statistical differences are within accepted parameters, the data are considered valid and will be used further.  If not, the data are discarded and collection is re-started. 

It's a little weird to see the Ambar leave after dropping us off on an island that has seen very few footprints!

It’s a little weird to see the Ambar leave after dropping us off on an island that has seen very few footprints!

Not only is the process painstaking, but the technology and Research & Development needed to design the equipment must have been extremely difficult. However, given the amount of our nation’s dependence on marine commerce and movement of goods, it is time and effort more than well spent. Once we returned to the ship, I was able to lend a hand on the fantail (that’s the aft area of the deck where a LOT of work gets done) where the survey team was collecting samples of the ocean bottom.  Bottom sapling is done at specific locations proscribed by NOAA guidelines for coastal waters.  It is important for mariners to know the type of bottom in an area in case they need to anchor or engage in commercial fishing. 

Bottom samples are collected using a Shipek Grab.  This 130-pound tool captures a 3-liter sample of the bottom. The scoop is spring loaded on the surface and when it strikes the bottom a very heavy weight triggers the scoop to close, picking up about 1/25 of a square meter of bottom. Bottom characteristics are then recorded with the position and will eventually be placed on nautical charts.  Sometimes even small animals get caught in the grab. Today we saw brittle stars, tube worms and a couple of little crabs.  However, the biggest surprise to me was finding numerous small pieces of CORAL in the samples!  I certainly did not expect to see coral in ALASKAN waters!

Personal Log 

A piece of coral on a pebble.  (It's on a 3x5 file card for scale.)

A piece of coral on a pebble. (It’s on a 3×5 file card for scale.)

Lest you think that it’s all work and no play, we anchored tonight after a 12 hour+ work day.  With sunset at around 2330 hrs (11:30) there was still time for some fishing (nothing was kept but we caught a couple small halibut) and movies in the conference room.  There are movies aboard almost every night as well as closed circuit images from 4 areas of the ship.  I’ve also started taking pictures of the menu board every night but won’t post all of them because of space limits on my file size – besides, you all simply wouldn’t believe how well we are fed on the Fairweather. Just as an example: how does blackened salmon wraps sound for lunch??? Oh yeah!!! (You have permission to be jealous!)

Coming back, the Fairweather, after being out of sight from the Ambar, is a welcome sight!

Coming back, the Fairweather, after being out of sight from the Ambar, is a welcome sight!

Animals (or other cool stuff!) Observed Today 

Saw a whale in the distance, quite far off, just before lunch. Two seals a couple hundred meters aft of the port quarter. While at the tide station we saw two whales’ spouts near the shoreline, one seal poked his big ol’ head up from the kelp bed and checked us out a couple of times, saw a bunch of loons, cormorants and puffins, and while at the tide station, Dave Francksen (a very helpful member of the survey team) caught sight of an octopus. 

This octopus was about 2 feet across from tentacle-tip to tentacle-tip and changed color when it got over the spotted light-colored rocks.

This octopus was about 2 feet across from tentacle-tip to tentacle-tip and changed color when it got over the spotted light-colored rocks.

Questions for Your Investigation 

What phylum and class are octopi?  Are Brittle Stars?

What “day shape” does the Fairweather display when anchored?  When conducting survey operations?

What do you call the kitchen on board a vessel?

Jacob Tanenbaum, October 16, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 16, 2008

Falcon

Falcon

Science Log

This bird came by for a visit. I think is a type of hawk or a falcon. Can anyone identify it for me? We have been trying but can’t seem to figure out what kid of hawk this is. In any case, it stopped by and perched on the bow just out of the blue when we were about 80 miles from shore. I wonder how it got here? Was it blown out to sea by a storm? Did it follow a ship looking for food? Is it lost? I hope it finds its way back.

It was foggy during the early morning and the ship had to blow its fog horn. I found out that ships use a code when they sail. One long blast means we are steaming ahead. One long and two short blasts means we have equipment such as nets in the water and cannot manuver as quickly. Listen by clicking here.

We found more spoon armed octopi. Can you see that one of the arms has a little spoon like object at the end? The male has an arm shaped like a spoon. Can you see it in this picture?

Octopii

Octopii

This baby skate has a yolk sack still attached to it. The baby uses the yolk as food while it grows. Usually this happens in the skate case. I wonder what happened with this little guy.

This baby skate has a yolk sack still attached to it. The baby uses the yolk as food while it grows. Usually this happens in the skate case. I wonder what happened with this little guy.

This is a red gold-bordered sea star. Isn't it amazing how many different kinds of sea stars there are in the ocean!

This is a red gold-bordered sea star. Isn’t it amazing how many different kinds of sea stars there are in the ocean!

This is a red gold-bordered sea star. Isn't it amazing how many different kinds of sea stars there are in the ocean!

This is a red gold-bordered sea star. Isn’t it amazing how many different kinds of sea stars there are in the ocean!

This is a shrimp close up. Can you guess what the blue mass is under her back end? Post your answers to the blog.

This is a shrimp close up. Can you guess what the blue mass is under her back end? Post your answers to the blog.

A sea anemone. This opens up and tenticles appear. They wave their tenticles in the water to collect food. When fish like Nemo, the clown fish, go into a sea anomone, it will sting the fish, so the clown fish backs in which helps it tolerate the sting.

Sea anemone

Sea anemone

Here is an interesting story: We were approaching a station where we were expecting to take a sample from the water with our nets. Do you see the note in the chart that says “Unexploded Ordinance?” (you can click on the chart to make it bigger). that means there are bombs from an old ship that may still be active! We decided to move our trawl to a nearby area. When we did, look what came up in the nets! Part of an old ship! The coordinates are Latitude: 42°27’23.65″N and Longitude: 68°51’59.12″E. Here is that location on Google Earth. What could have happened way out here? CLE students, tell me the story of that wreck. Be creative. Please print them out and leave them for me on Monday. Make them fun to read. I am bringing back what came up in the net for you to see. When I get back, we will see if we can do some research and find out what really happened!

Now lets meet Phil Politis, our Chief Scientist on board the Bigelow. I asked him to tell us about his job. Here is what he said:

chart2-740911The main job of a chief scientists is to meet the goals and objectives of the the scientific mission. In our case, that is, to pair up with the ship Albatross in as many stations as possible, following their route. My day to day job is to coordinate with the officers, and crew, setting the nets properly, make sure that the samples are processed properly and solving problems as they arise. Say we have an issue with the nets. It is the chief scientists job to decide what to do next. I can accept the tow, code it as a problem, or re-do the tow. I have to look at each issue individually. If we tear on the bottom, will it happen again? Is there time to re-tow? I also coordinate with the other vessel.

My title is fisheries biologist, but I am a specialist in the nets. My background is in trawl standardization. We have to ensure that our nets are constructed, maintained and that we fish same way each time. Small changes in nets can effect how the nets fish and that effects the study. That way we can compare this years catch to next years catch. Remember, this study is called a time series. Over time, you can see changes to fish population. The only way you can trust those numbers is if the nets are the same each time we put them in the water year after year, tow after tow. We have to document what we are doing now so that in the future, people know how and what we were doing. This way the time series remains standard. We have to standardize materials the nets are made of, way they are repaired. We inspect the nets each time we come on here. We train the deck crews in the maintenance and repair of our nets.

——————————-

IMG_6818-772778In answer to many of your questions, I will be back to SOCSD on Monday. I’ll be in WOS on Monday and CLE on Tuesday. See you then.

Mrs. Christie-Blick’s Class:

You asked some AMAZING questions. I’m so proud of you guys. Drl Kunkel was impressed as well. Here is what He told me:

You asked: What is your proof that these lobster shells are softer than other lobster shells? How do you measure hardness:

We have an engineering department at U Mass and one of the projects they have to do to become materials engineers is to test for hardness and they do an indentation test. Another way is to shoot x rays at shell and we can tell how hard it is by how the x rays scatter.

You asked: What is causing the harmful bacteria in the water?

We don’t know if they are harmful bacteria. My theory is that it could be the same normal bacteria that are on the backs of healthy lobsters. We think it is the weakness in the new lobster shells because of environmental influences south of Cape Cod that causes the trouble.

You asked: Can you get rid of the harmful bacteria?

It is possible to reverse the environmental conditions that have been created by us or by mother nature.

You are right about these sources of pollution. Good thinking. And yes, Dr. Kunkel believes that one or more of these factors may be hurting the lobsters. The problem area is south of Cape Cod. Look on a map today and count the number of cities between New York and Boston. Is this an area with a lot of people and pollution or is this an area that is sparsely populated?How would you expect this area to compare to areas where the lobster population is healthier off of Maine and Nova Scotia? Do the problem areas for the lobster and the pollution occur in the same area? If they match, scientists say there is a correlation between the two and they wonder if one is causing the other. What do you think?

Hag fish did gross me out a little. Interestingly, there is no way to determine the age of this fish as there are with others, so I’m not sure we can even tell you how long they live.

Several of you asked about the red dots on the lobster. They are a disease. It is called shell disease.

The lobster on the right is healthy. I just love this picture so I thought I would share it.

SR, the water temperature is about 16 degrees C last time I checked.

MF, nice to meet you. It is really cool to be a Teacher At Sea.

DTR, my favorite thing about this trip is working with you guys from the middle of the ocean.

MR, Snuggy and Zee are having loads of fun touring the ship.

CF: I will try to count the teeth of a fish and tell you what I find. Sometimes they are hard to see. I do not know if I am going back next year, but I hope so. I like being at sea. The truth is, I like being on land too. Both are nice. Thanks for writing.

BS: No, we find mostly adults, but some babies. Many creatures are small as adults.

BV: We have seen lots of jellyfish. We had so many we had to hose down the lab at the end of our session the other day. They were everywhere.

GS: We will continue to take samples here.

TL and Many Others asked how long we put the cups down for: We put the cups down for about 15 minutes. That includes the time it takes to lower the CTD to the bottom. When it gets to the bottom, it comes right back up. Thanks all for writing.

AS: Right you are!

Good job calculating all those who got 984 feet!

MM, I love the adventures I’m having here and the people I am meeting. It has been fun. I like being on land too.

JS, Dr. Kunkel took samples from some lobsters so he could help cure the disease.

KF: Could the hag fish bit us? Yes, Mel Underwood, our Watch Chief was very careful as she held the bag and backed her hands up when the fish got close to her hands. Mel is very experienced working with sea life and I have never seen her back off the way she did with this thing.

HRF: Go for it! It is a cool job!

CF: Good question. No, your bones are a lot stronger than styrofoam, so you would have to go down many miles to hurt yourself, and you could not swim that far without gear. When divers get hurt from pressure changes, it is usually something different called the bends. This happens when you are swim up to fast and certain gases in your blood stream expand as the pressure increases and form bubbles that can hurt you. Divers have to swim up slowly (the usual rule is don’t go up faster than the air bubbles next to you) in order to avoid getting the bends.

DC: Good questions: The dots are not bacteria on the lobster, they are the result of the bacteria eating away parts of the shell. The actual bacteria are too small to see. Good question about he temperature relating to growth. It is a bit more complex than that. There are many factors at work. The factor that may be causing more bacteria are chemicals like fertilizers from land getting into the water.

Dr. Kunkel came on board to study lobsters. He is a biologist, not a medical doctor. There are many scientists on board working with us, and me with them.

The quadrent is an old invention. People have been able to find their way with the stars for thousands of years. It is an ancient art. It was fun to practice it here.

SF, VF and others: The fish stayed in the bag. We made sure of that. From the bag, we put it back in the sea.

SD, sorry, I can’t help you there. I don’t think a pet skate would survive the trip back to NY.

Several of you have asked if I have gotten sick. No, I have not.

How many lobsters have we caught so far? Lots!

SS, sleeping on a boat if fun. If the waves are small, they rock you to sleep. If they are huge, however, they throw you out of bed!’

CP: bacteria infect the shells of the lobsters. This destroys the protection that the lobster should have. They grow weak and die of other causes. Good question!

Why do we work at night? Because ships work 24 hours a day so that no time is wasted. I ended up on the night shift. Why do we wear suits? To stay warm and dry on deck.

The hagfish eat shrimp and small fish, though they are scavengers and can eat large creatures as well.

Mrs. Christie Blick’s Class, you guys are doing some great work. I check on the skates for you. Some skates have protection, like thorns or spikes. They also have some interesting fins that look almost like feet. They use these to “walk” along the bottom searching for food. I know you asked about skates, but I have to mention the ray I worked with yesterday. It is related to the skate and could shock with an electrical charge for both protection and for hunting prey. Cool!

Linda Depro, August 7, 2006

NOAA Teacher at Sea
Linda Depro
Onboard NOAA Ship Albatross IV
July 31 – August 11, 2006

Mission: Sea Scallop Survey
Geographical Area: Georges Bank, New England
Date: August 7, 2006

Science and Technology Log 

It’s a small world here on the ALBATROSS IV.  Chad Meckley is a 1996 Wilson High School graduate. Wilson is in Berks County and I live in Lancaster County, less than forty minutes away.  If you want to talk to Chad, look on the bridge.

Chad earned a geography/environmental science degree from Shippensburg University and moved to Colorado to be near the mountains.  After working several years in sales, Chad happened to be talking to a friend who knew about the NOAA Corps.  He applied, was accepted, and began training in February 2006.

We are on Leg 2 of the Sea Scallop Cruise and it is Chad’s third cruise with NOAA.  He enjoys being on the ocean and plans to continue his NOAA career.  Chad has two goals: to become Officer of the Deck (so he can command the ship) and to experience his first winter at sea.

It is evident that Chad enjoys what he’s doing; you can see it in his smile.  Best Wishes, Chad!

Last watch was not quite as busy as the night before.  We had two stations that were mostly Brittle Stars, very interesting little starfish.  They are a tannish color about the diameter of a coffee mug, with long thin arms that visibly move. When they were shoveled into laundry size baskets each time we had two baskets full, and that’s a lot of Brittle Stars!

Personal Log 

Yesterday, Sunday, was an absolutely, drop dead gorgeous day on the ocean.  The sun was out and the water was calm.  Whales were sighted, but in the distance.  I did see them surfacing and took pictures. Imagine a 4×6 all bluish-green and a fourth-inch dot of black. Sunset was working on spectacular, but just as the sun reached the water it went behind a layer of clouds. We are almost at full moon and the night time was just as beautiful in its own way.

Jacob Tanenbaum, June 15 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 15, 2006

Holding up the catch

Holding up the catch

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed:19.5 miles per hour
Sea Wave Height: 4 foot
Water Temperature: 44.4 degrees
Air Temperature: 44.2 degrees
Pressure: 1018.8 Millibars

Personal Log

main_engine-702351I got to thinking the other day that the engines on this ship have been running since we left port almost two weeks ago now. I started to wonder how they could stay running for so long and so I decided to ask Chief Engineer Steve Bus to tell me more about them. So put on your ear protection, and lets go to the engine room. The engine room on NOAA Ship MILLER FREEMAN is like a small city below the deck. In addition to the 2100 horsepower diesel engine that moves the ship forward, there are generators sufficient to power a small town. A research vessel, after all, needs a lot of electricity to run all the electronics we need. In addition, the engine room has equipment to make it’s own drinking water out of sea water. We cannot drink sea water because it has too much salt for our bodies to handle. The machines in the engine room take the salt out of the water and, clean it, and make it possible for us to drink it.

sewage-793154There are boilers to heat water and make steam to keep the ship warm. There are also machines that process waste water. Finally, there is shaft alley. This is the part of the engine room where a long metal shaft connects the diesel engine to the propeller. Take a look at this video to see shaft alley. The ship burns 2100 to 2200 gallons of fuel on an average day. Who keeps it all running? Chief Engineer Steve Bus and his crew. They are responsible for the ship from bow to stern.
How do you prepare for an emergency at sea? The same way you do in school. By drilling over and over. Today, we had a fire drill where the some of the crew got into firefighting gear and practiced what they would do in an actual emergency. Want to come along? Click here for a video.

water-737525Science Log

We had some interesting returns on the echosounder this morning. Take a look at the screen. You can clearly see the top and bottom of the water column. You can clearly see the different groups of fish. The echosounders can tell us so much information. When we put the nets down near the surface, we knew exactly what to expect. We did a trawl along the bottom of the sea floor last night and brought up some of the most interesting creatures I’ve ever seen. Here are a few.

This is a basket star, a kind of sea star. Its branches are hard and are divided into many different branches. The basket star uses all of these to catch plankton. In the center is the mouth.

This is a basket star, a kind of sea star. Its branches are hard and are divided into many different branches. The basket star uses all of these to catch plankton. In the center is the mouth.

crab-726932 Next, we have a lyre crab. Have you ever seen a hermit crab without a shell? This one lost his on the way up from the bottom.

bottom-777997

This next photo includes a huge sea star, a sea urchin, a hermit crab without its shell, a tanner crab and several fish called poachers. These fish have scales that are hard, almost like bone or a shell.
h-crab-706029 This last one is my personal favorite. The fish at the top of the screen is called a big mouthed sculpin. It has the biggest mouth of any fish I’ve ever seen. This fish stays on the bottom waiting for smaller fish to come by, and then… watch out! When it came up in the net, it had a smaller fish in its mouth.

Finally, we brought up a creature called a brittle star. It is a kind of sea star with soft tentacles. It moves very fast for a sea star. The arms can break easily, but don’t worry, they grow back. That’s why they call it a brittle star. Here is a video of a brittle star moving across the lab table.

Later on the same day, our ship was visited by some dall’s porpoises. Click here for a video

Question of the Day

Look at the answer to yesterday’s question. Let’s try another one. If our ship wants to do a trawl 50 meters below the surface, how much wire would it need.

Answer to Yesterday’s Question

How much wire would the ship need to let out if it wanted to put the nets 200 feet below the surface? Make sure to watch the video on nets before you try to answer the question.

The ship must put out two feet of wire for every one foot of depth. So you have to multiply 200 x 2 which gives 400 feet of wire. Wait, we are not finished yet. Each net has, not one, but three wires holding it to the ship. So you would need 3 wires. All three are 400 feet in length. That gives us 1200 feet of wire to do our trawl.

Answers to Your Questions

Hello to all who wrote today.

The MILLER FREEMAN does seem like home to me now. I have gotten used to the constant rocking of the ship and the routines of the day. I really enjoy being at sea. By the way, they had pizza for lunch, but I asked the cook to make me some fresh pollock that we caught and filleted last night.

Do people eat jellyfish? I asked our chief cook, Mr. Van Dyke. He told me many species of jellyfish are poisonous. Even those that are safe to touch with your hands. So, no, we don’t’ eat them here, but in some countries they do. We have caught many tons of fish, but more importantly, we have seen many fish without catching them using our echosounder. This device allows us to survey fish without capturing so many.

There are 34 people on board with us for this cruise. That will change next week when we get to port.

The squid felt slimy, but not much more slimy than most fish seem. I don’t recall it spraying anything.