Christine Hedge, September 15, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 15, 2009

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

Weather Data from the Bridge 
Latitude: 730 22’N
Longitude: 1560 27’W
Temperature: 310F

Science and Technology Log 

The past few days have brought much change.  The depth of the ocean changed dramatically as we got closer to Alaska. The ocean went from depths of over 3500 meters to depths of less than 100 meters.  More birds are showing up and we are getting about 9 hours of darkness each day.  This morning at about 4 AM, the watch observed the Aurora Borealis and stars!!!  I am so jealous.

FOR MY STUDENTS: Why do you think we have more hours of darkness now? 

As we head home to Barrow, the science party is busily completing their “Cruise Reports” and making sure that their data is stored safely for the trip home.  Much has been accomplished on this trip:

  • 132 XBT deployments (measures temperature, depth)
  • 8 CTD deployments (measures conductivity, temperature, depth)
  • 5 Dredge operations and hundreds of pounds of rock samples collected and catalogued
  •  1 Seaglider deployed and retrieved
  • 2 HARP instruments retrieved and 3 deployed
  • 3 Ice buoys deployed
  • 8 Sonobuoys deployed
  • 9585.0 lineal kilometers of sea floor mapped
  • 1 METBUOY retrieved (meteorological buoy)

Coast Guard Marine Science Technicians  

MST3 Marshal Chaidez operates the winch during a dredging operation.

MST3 Marshal Chaidez operates the winch during a dredging operation.

Science parties come and go on the Healy, each doing a different type of research.  A constant for all the scientific cruises is the good work done by the Coast Guard MSTs (Marine Science Technicians). Running the winch, taking daily XBT and weather measurements, working the dredge, and helping to deploy buoys are just some of the many tasks these technicians do. The scientists could not get their experiments done without the assistance of our team of MSTs.

MST3 Daniel Purse, MST2 Daniel Jarrett, MST3 Marshal Chaidez, MST2 Thomas Kruger and Chief Mark Rieg have done a masterful job of helping the science party accomplish their goals. I asked them to tell me a little about their training for this job. Each MST attends a 10-week training school in Yorktown, VA. Most of their training involves how to clean up oil spills and inspect cargo ships which means they are usually stationed at a port. Being assigned to a ship is not the norm for an MST.  But, because the mission of the Healy is specifically science, a team of MSTs is essential.

MST2 Daniel Jarrett rigging the crane.

MST2 Daniel Jarrett rigging the crane.

Personal Log 

My commute to work is different lately. We have about 9 hours of darkness each day. It gets dark around midnight and stays dark until about 8:30 in the morning.  So, walking the deck to the science lab is a bit of a challenge at 7:45. It will be strange to drive to work in a few days! On September 16th, we will depart the Healy via helicopter if all goes according to plan.  It will be strange to be on land again.

We will be back in Barrow, AK on September 16th. I cannot believe that our expedition is almost over.  I have learned so much from the members of the science party and the crew of the Healy. They have been very gracious and patient while I took their pictures and asked questions. Now comes the task of sharing what I have learned with folks back home.  I know one thing for sure; the Arctic is no longer an abstract idea for me. It is a place of beauty and mystery and a place some people call home.  I hope to convey how important it is that we continue to study this place to learn how it came to be and how it is currently changing.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Thanks to the folks at NOAA Teacher at Sea, Captain Sommer, and chief scientists Larry Mayer and Andy Armstrong for allowing me to take part in this cruise.  You can be sure that I will be following Arctic research and the adventures of the Healy for many years to come.

Christine Hedge, August 12, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: August 12, 2009

Science Profile 

Scientist Georgette Holmes at her work station

Scientist Georgette Holmes at her work station

Most of us have never even heard of the many careers that exist today in science and technology.  I find it fascinating to learn about the career paths people take.  Georgette Holmes is a physical scientist with the National Ice Center (NIC).  Just how does a young lady from Belzoni, Mississippi end up in the Arctic analyzing ice on a Coast Guard vessel?  Georgette dreamed of becoming an architect as a child.  When the other kids were watching cartoons, she was watching “Hometime”.  In high school, Georgette says she was good at science and art and okay in math.   She attended Jackson State University, which unfortunately did not offer a major in architecture.  This meant that Georgette had to come up with a new major.  Growing up in a region prone to tornadoes, Georgette had what she called an “obsession with severe weather”. She was glued to the television when hurricanes were approaching or tornado warnings were posted. So why not put this fascination to good use and major in meteorology.  Note to Students: Discover your passions, your interests, even your fears.

We had lunch at the school’s restaurant. You can see both English and Inupiaq written above

We had lunch at the school’s restaurant. You can see both English and Inupiaq written above

Once she found her major, Georgette immediately began taking advantage of internships. Most students wait until their last 3 semesters to “try on” their careers but Georgette began interning during her sophomore year.  One of her internships was with NOAA.  Through this internship she was able to visit many different facilities and decide which type of work she would like best. Note to students: internships and “real world experience” are important. She gained lots of experience before even finishing college. In addition to interning, Georgette went to conferences and networked with people who worked in her field – another great way to learn about careers.

Georgette started her first job as a Sea Ice Analyst one week after graduating from college. She is currently finishing up a two-year internship with the National Naval Ice Center (NIC), an agency that supports the operations of the Navy, Coast Guard, and NOAA.  On the Healy, Georgette works with satellite imagery to help the crew and scientists know where the ice is and what type of ice is out there. Georgette credits her quick ascent through the internship program at the NIC to her questioning nature. Asking questions is the best way to learn new skills and gain information.  Note to students: ASK LOTS OF QUESTIONS. Anyone involved in science and technology needs to be a life-long learner.  Georgette is no exception.  She is currently working on her Masters in Earth Systems Science at George Mason University with a concentration in Remote Sensing and Geospatial Information Systems.  In fact, she is missing her first few classes while working in the Arctic.  But, knowing her, she will ask lots of questions and catch up fast! Georgette was my roommate on the Healy until a few days ago when she boarded a helicopter and flew to the Canadian Coast Guard vessel, the CCGS Louis S. St. Laurent. Once again, Georgette will be gaining new skills as she works along side a trained Canadian Ice Observer helping our two countries map the sea floor of the Arctic Ocean.

Personal Log 

One of the school district's school buses

One of the school district’s school buses

I haven’t written much about my days in Barrow and in honor of the first day of school at Carmel Middle School (August 11), I’d like to share a little about this town and education. Barrow, Alaska is located 300 miles above the Arctic Circle (latitude 660, 34’). The native people of Barrow and the NORTH SLOPE are known as the Inupiat. Their language is Inupiaq. Inupiaq language and culture classes have

been part of the school curriculum since 1972.  This complicated language is written all over town and commonly heard spoken in everyday life. We ate at the local community college, Ilisagvik College, and each sign on every building was in both English and Inupiaq. There is also a beautiful Inupiat Heritage Center which helps perpetuate the Inupiat culture, history and language.

The history of how kids went to school in Barrow is a great tale of a community reclaiming its’ culture.  In the 1890’s missionaries established the first schools. In their efforts to teach English, some teachers punished their students for speaking Inupiaq. As is often the case when native cultures meet western influences, students were encouraged to adopt western ways and to abandon their culture.

Barrow High School was built in 1983. One of the strangest sights in town is the bright blue football field. The story of how Barrow obtained this field will have to wait for another day.

Barrow High School was built in 1983. One of the strangest sights in town is the bright blue football field. The story of how Barrow obtained this field will have to wait for another day.

During the 1950’s, the Bureau of Indian Affairs funded schools on the NORTH SLOPE and the Alaska state government operated them.  Until 1969, if a student wanted to continue their education past the 8th grade, they had to leave home and travel to boarding schools thousands of miles away.  In 1975, the NORTH SLOPE BOROUGH assumed the operation of the schools and built new schools in every village. Today, classes are offered from pre-school through 12th grade in every village. Technology has helped the high school to offer a variety of classes in every village. With interactive video distance learning technology – the teachers at Barrow High School can see and be seen by students all over the NORTH SLOPE. With the help of electronic tablets, computers, and fax machines – school can happen anywhere!

Quyanaqpak! (Thank you very much) 

Christine Hedge, August 7, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Geographical area of cruise: Barrow, AK, 71°18N 156°47W
Date: August 7, 2009

Weather Data 
Cloud cover: Overcast
Temperature: 450F
Winds: E, 17 mph

Science and Technology Log 

Bringing the HARP aboard

Bringing the HARP aboard

Bringing the HARP aboard

Bringing the HARP aboard

Although the primary mission of this trip is to map the ocean floor, there are also other scientists on board doing other research. Ethan Roth is doing just such research.  He is from the Scripps Institution of Oceanography in San Diego, California.  Ethan’s specialty is ocean acoustics.  He planted two acoustic sensors on the seafloor in September of 2008 and today he retrieved both instruments.  This device is known as a HARP (High-frequency Acoustic Recording Package).  Basically, this instrument has been “listening” to the sounds of the ocean north of Barrow for almost a year.  The HARP sat at a depth of about 300 meters for all this time and today it saw daylight for the first time!  The seafloor frame sits on a steel plate, which act as ballast to keep it under the water and moored to the seafloor.  When Ethan wants it to surface, he sends it an acoustic signal to release the ballast and the HARP floats up to the surface.  A small rigid hull inflatable boat (RHIB) is used to retrieve the instrument and tow it back to the ship where it is lifted aboard.

An inside look at the HARP

An inside look at the HARP

You might be wondering why anyone would care what kinds of sounds are happening underwater in the Arctic Ocean. When the surface is frozen with sea ice, it is a very quiet place. The ice/water interface acts differently than the ice/air interface. The acoustic environment of the Arctic Ocean may be changing due to the disappearance of much of the multiyear sea ice.  In addition to losing the insulating quality the ice has for sound the amount of human activity is likely to change, as there is less ice. As the ice begins to disappear, shipping and exploration will likely increase, adding more sounds to the ocean. Less ice means more noise in the ocean environment AND less ice will mean more human activity and even MORE NOISE. It is unknown what effect this might have on marine mammals, such as whales that depend on sound for survival. Organisms in the Arctic have evolved in a certain acoustic environment.  They use sound as a tool to obtain food, migrate and communicate. If the Arctic becomes a much noisier place, how will this impact their lives?

The landing craft that took us to the Healy

The landing craft that took us to the Healy

In any science endeavor it is important to collect “baseline data”.  In other words, what were things like before one of the variables changed?  It is important data that these HARPs collect.  Knowing the acoustical environment today can help us to interpret changes in the future.

Personal Log 

Here I am in my mustang suit

Here I am in my mustang suit

The trip from Barrow, Alaska out to the USCGC Healy is usually accomplished by helicopter.  But Mother Nature was not cooperating with us. Our fresh food (delivered by plane) and the helicopter were both delayed because of weather conditions. There was heavy smoke around Fairbanks due to forest fires and fog elsewhere making flying just too risky. Being a group of problem solvers, the leaders of the science team started asking around and found a landing craft that would fit our luggage, the food cargo, and us. The Healy evaluated the plan and agreed. In a wonderful act of generosity, the Bowhead Transportation Company (a subsidiary of Ukpeagvik Inupiat Corporation) offered to take our science party and cargo to the Healy and bring the “old” science party back to shore. If we had traveled by helicopter, we would have transported a few at a time and had to make many repeat trips.  But, using the landing craft we didn’t have to worry about weight and the entire science party and cargo were able to travel at once.  Thanks to the crew of the Greta and the Bowhead Transportation Company for getting us to our destination.

Christine Hedge, August 6, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Geographical area of cruise: Barrow, AK, 71°18N 156°47W
Date: August 5, 2009

Weather Data 

Cloud cover: Overcast
Temperature: 450F
Winds: E, 17 mph

Science and Technology Log 

The ladder was too icy to climb down the ice shaft so Jesse had to repel

The ladder was too icy to climb down the ice shaft so Jesse had to repel

Wouldn’t it be amazing to find life on other worlds? Scientific evidence that Europa, one of Jupiter’s moons, has an ocean under the ice cover and that Mars may have had an ocean in the past is leading astrobiologists to wonder if these worlds have or had microbial life.  One way to determine what type of microbes could survive in such hostile environments is to look for extreme microbial life right here on Earth.  These earthly extremophiles might be similar to microbes that have the “right stuff” to exist on those other worlds. Today, I went on a short trip collecting such microbial life with Jesse Colangelo-Lillis, a graduate student from the University of Washington. Jesse is working on his PhD in Microbiology/Astrobiology.  He is interested in bacteria that are psychrophilic (cold adapted) and live in hypersaline brines (really salty water) that are trapped between ice crystals in the sea ice of the Arctic. These uper-salty fluids remain liquid down to at least 350C and some viruses and bacteria persist – and may even thrive – there.

Jesse goes down to collect samples from the brine lens

Jesse goes down to collect samples from the brine lens

We were not looking at sea ice today but at a wedge of ice under the tundra that has a brine lens (a pocket of liquid salty water). Jesse repelled down into an ice shaft and collected samples of this liquid, which he will analyze for microbes.

Understanding how Earth life survives under such cold and harsh conditions is a first step to understanding how life might thrive on other bodies in our solar system.

Personal Log 

Tools of the trade for a microbiologist

Tools of the trade for a microbiologist

I am in Barrow, Alaska and the place is teaming with scientists doing interesting work. The weather is lousy so travel to the Healy is still on hold. Meanwhile, I am staying at the ARM (Atmospheric Radiation Measurement) Climate Research Facility, which is quite cozy.  This research facility studies the effects of clouds on global climate change.

Today was the day to learn about the community of Barrow.  There is a wonderful National Park Service cultural center here to help visitors learn about this region, which is home to Alaska’s Inupiat Eskimo people. The Inupiat Heritage Center offers beautiful displays explaining the traditional and modern life and values of these people.  Hunting the bowhead whale is at the center of this life. Today I saw men carving the baleen of the bowhead whale into beautiful works of art. To learn more about the Cultural Center visit:  http://www.nps.gov/inup