Elizabeth Eubanks, July 28, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 28, 2007

Weather Data from the Bridge   
Visibility: 10 miles
Air temperature: 19.0 degrees C
Sea Temperature at 5000m: 6 degrees C; Sea Temperature at surface: 20.3 degrees C
Wind Direction: 270 W
Wind Speed:  16 kts
Cloud cover: clear –some cumulus, cirrus
Sea Level Pressure: 1013.7 mb
Sea Wave Height: 1-2 ft
Swell Wave Height: 2 ft

Blue Shark with an evertted stomach.

Blue Shark with an evertted stomach.

Science and Technology Log 

The mortality (death) rate has spiked a little – very sad. We brought in a Blue shark last night that had evertted (thrown up) its stomach. Sometimes sharks do this when they eat something bad, like a hook. Most times they just suck it back up. It isn’t a common thing to happen and obviously it is a last extreme measure to feel better. It is probably dangerous to throw up your stomach when you have all of those teeth it needs to get passed to leave your mouth. When the scientists first saw the shark, they said it would be okay. We were all hopeful, but by the time it got on the ship it had died. Of course as always when there is a mortality, paper work is filled out and researchers use so much of the shark, so that is the good part.

Bedrooms on board the DAVID STARR JORDAN -mine is the bottom bunk

Bedrooms on board the DAVID STARR JORDAN -mine is the bottom bunk

Personal Log 

Simplify, Simplify. -Henry David Thoreau 

One “simplify” would have sufficed. Ralph Waldo Emerson, in response 

Life on this ship is simple. I have not looked in full length mirror since I boarded. Actually I haven’t seen myself too much below my chest even. Well, a couple of times in a photograph I saw my full body. Makeup, jewelry, matching clothing, high fashion, hats, they just aren’t important out here. In fact I did boycott the hats for a few days, because ever since I shaved my head I felt like I looked funny in a hat – like a boy. Oh well, too bad. It is so sunny out here so I need to wear my floppy hat to protect my skin. I need to wear Rob’s knit hat, because it gets equally as cold. My shirt sleeves smell fishy some of the time. But instead of washing the whole shirt, I was the sleeves. Quite often I sleep in the clothes – hat and all I wore all day if they aren’t dirty, because for some reason it is so chilly in my room. I live in the same clothes day after day if they don’t smell fishy. We eat what we are fed and get called to eat by an extremely loud bell. We sleep in small, simple bed. I washed a batch of clothes yesterday – sheets included. It all went in one load and took me about 5 minutes to put away.

We work at certain hours and relax or help out, read or wander about the ship, watching the ocean for creatures. We aren’t at the grocery store choosing what food to buy or shopping at a mall. We aren’t talking on the phone or watching a whole lot of TV, we do have to pick movies sometimes though (500 choices – now that is complicated).  Dovi, one of the Doctoral students did not take a shower or change his clothes until yesterday (mid trip). I didn’t get too close to him, but didn’t notice him smelling from a distance. Simple life. I imagine the most extravagant thing about living on this ship is the fancy food we get to eat and the huge choice of movies—and the no-brainer—being in contact with sharks. Of course I am definitely putting some time into my hobby – photography and boy have I got thousands of interesting shots. I like it. I can easily see how people make this life style a permanent one. The hardest thing about it is missing your family and I do miss Rob and Hooch! Now my goal is to bring parts of this life style with me when I return to land, that will be the challenge and goal!  How is your life simple and how is complicated?

Question of the Day 

Make a list of things that complicate your life. Make a list of things that simplify your life.

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Elizabeth Eubanks, July 27, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 27, 2007

Weather Data from the Bridge  
Visibility: 8-10 miles
Air temperature: 17.0 degrees C
Sea Temperature at 350m: 7 degrees C
Sea Temperature at surface: 19.0 degrees C
Wind Direction: 290 W Wind Speed:  18 kts
Cloud cover: clear –some cumulus, cirrus
Sea Level Pressure: 1013.2 mb
Sea Wave Height: 2-3 ft
Swell Wave Height: 2-3 ft

Science and Technology Log 

“First, do no harm.” –Michael J. Zoghby RPT 

Today was so exciting. We caught a Mola mola, Ocean Sunfish, and 22 sharks.  Many of them were baby Blue sharks and although this team tries very hard to keep all of the sharks alive, some of them are so badly thrashed by the hook and/or line that they don’t make it. Yesterday was the first day that we had our first mortality (dead shark).  It was a baby Blue and the gills were just ripped out by the hook.  Sad, no one likes to see a dead shark. Everyone is out here to preserve them and keep them safe.

We caught many average size sharks and a few really large ones.  Watching the scientist work on the large animals has got to be one of the most thrilling things to see, especially when they have the extra challenge of wave swells coming across the platform, soaking them and giving the shark a chance to do what it does best… swim. As one of the grad students put it, the pictures and videos we have taken during these events are not ones you would want your mom to see, the mix of slippery platform, scalpel in hand, swell water pouring in and of course a HUGE SHARK, could be a deadly mixture. But safety comes first. They probably had the shark on the platform for a good 3-5 minutes. The Blue was using every bit of what it had to get off of the platform. It was so exciting that I had to video and take still shots. This shark would’ve been a great choice for the satellite tag because of its size, but they didn’t get a chance to that. They removed what they could of the hook, identified him as a male and struggled to hold him down. The Blue shark was estimated at 220cm. We never did get an actual measurement, because for one thing it appeared to be longer than the platform measuring tape and for another Dr. Kohin made a decision to “just let it go” and that is a direct quote. Safety comes first for shark and for people.

Dr. Suzy Kohin surrounded by a big Blue Shark – notice the eye, the nictitating membrane covers the eye.

Dr. Suzy Kohin surrounded by a big Blue Shark – notice the eye, the nictitating membrane covers the eye.

More safety notes: Late night we found out that there was a problem with one of the engine fans. So tomorrow morning our set is canceled. We will have to wait to see if they can fix it and if they can’t we go back to San Diego and the trip is over. Why? Because they follow the rule, the only rule you really ever need– First Do No Harm. Extra note: The Ocean Sunfish is an amazing fish. You will see them in the Pacific and at first think that they are sharks, because of their dorsal fin that sticks out of the water. They have been described as one of the most evolved fish and look like a super sized Frisbee.- A great fish to do a little personal research on, if you are into fish. (Sean Maloney – check it out!)

Personal Log 

Bet ya goin’ fishn’ all the time, I’mma goin’ fishin’ too. I bet your life, your lovin’ wife is gonna catch more fish than you, so many fish bite if ya got good bait, here’s a little tip that I would like to relate, I’mma goin’ fish, yes I’m goin’ fishn’ and my babies goin’ fishin too!” 

– Not sure who sang or wrote this little diddy first, so I can’t give credit right now – but I didn’t write this “catchy” tune. 

I am working/ living on a fishing boat. Dah! It’s a goofy realization that just hit me today. Since I got accepted for this project, I have been in a narrow mindset that I am on a shark research vessel, which I am. I broaden my mindset and hit me that I am also on a fishing vessel. Fishing is what we do when we set and haul the long line. Fishing is what we can do in our spare time. We have bait, we have hooks and we have line. We catch fish. Oh and we cook and eat fish too. We are fishing.  Funny, but now it makes my experience even cooler. I have always wanted to work on a fishing vessel.

Right out of high school my girl friend and I had done a heap of research and were planning on moving to Ocean City, MD for the summer. We had spent hours investigating different job possibilities. We had heard that sometimes you spend all your summer working to pay your bills and don’t really get to enjoy the beach, but we didn’t care. She was interested in a job as a waitress and I had sent in a ••• dozen applications to fishing vessels. That is what I really wanted to do. That was my glamour job! I dreamed that I could be the one who baits the hooks and cleans the deck. I figured if I had to spend most of my time working, it should be on the water with fish and people who liked to fish. Anyway, that dream ended with a car crash – no one was killed, just minor injuries but it sure shook up my folks enough to keep me in PA for the summer.  So after all these years – I am working and living on a fishing ship. Super cool, huh!

Scientists Suzy Kohin and Russ Vetter tag the Mola mola, Ocean Sunfish

Scientists Suzy Kohin and Russ Vetter tag the Mola mola, Ocean Sunfish

Question of the Day 

If you had to pick a research science career, what would you study? What would your problem be?

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Elizabeth Eubanks, July 23, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 23, 2007

Weather Data from the Bridge
Air temperature: 19.7 degrees C
Sea Temperature at 300m 7.9 degrees C
Sea Temperature at surface: 19.1 degrees C
Wind Direction: 350 (NW)
Wind Speed:  5.2 kts
Cloud cover: Partial – Alto cirrus
Sea Level Pressure: 1011.5 mb
Sea Wave Height 2
Swell Wave Height <1

NOAA Teacher at Sea Elizabeth Eubanks models the abandon ship suit, also known as a “Gumby” suit.

NOAA Teacher at Sea Elizabeth Eubanks models the abandon ship suit, also known as a “Gumby” suit.

Science and Technology Log 

Today has been beautiful. The lines were set at 0600 and then hauled at 1000. We only caught 3 sharks this morning, 2 Blue and 1 Mako.  We set lines again 1330 ( Do you know what time that is? – 1:30pm) While we were having a break we noticed a huge pod of Common Dolphins. They appeared to be having so much fun flying up into the air. There were at least 30+ it was so cool to see so many. Our haul this evening was a skunk – no sharks, but that is okay tomorrow is a new day. We had drills today, fire and abandon ship. The fire drill required us to move to the dry science lab, where I already happened to be. The abandon ship drill required that we put on long pants, long sleeve shirt, a hat and our “gumby” suit, as it is called. It is a dry suit, much like some divers would wear. It is big and bulky and funny looking.

I had mentioned yesterday that although the main focus of this trip is to test the J and Circle hooks, many other studies are being supported. Last night after dark some of us fished for Rockfish. Russ Vetter a NOAA scientist who is Head of Fish Ecology within the South West Fisheries Center and heads 4 teams of scientists. Those teams study small pelagics such as anchovies, egg and larvae- ichthyo-plankton, pelagic sharks which we are studying now and his personal group is molecular ecology which has been studying Rockfish for years. I got an earful last night. The Rockfish that we were fishing for were about 200 feet below the surface. So they live in very deep water, which means that they are benthic fish. There are some that are pelagic, but I will get to them later.

Various species of Benthic Rockfish

Various species of Benthic Rockfish

Dr. Vetter was telling me that there are about 130 different species of Rockfish in the Pacific, 70 of which are in the region he studies. They are one of the most sought after for commercial fishing. These fish bare live young, which is very unusual for a fish. These fish also live very long, well past 60 years and some in the tub shown above could be over 40. Scientists have a theory that the older the mother is, then the better mother she is to her live-born babies. Scientist are still learning a lot about them, but like many other fish they are becoming over fished in certain areas and greatly depleting (making vanish) populations of these fish. There are two ways to fish for Rockfish, one is to create a long line that is geared to benthic fish and the other is to simply fish the way we did last night, with deep sea rigs. We were catching them pretty quickly and probably caught 14 or so within 45 minutes.  We used rigs that had 2 hooks on them and it was common to pull up two at a time.

NOAA Teacher at Sea Elizabeth Eubanks holds a Rosie Rockfish.

NOAA Teacher at Sea Elizabeth Eubanks holds a Rosie Rockfish.

When you pull up most of these fish, their bodies and eyes are all bulged out and sometime their swim bladder is coming out of their mouth and if you notice in the photo above they are all floating although many are not dead yet. Why is this? What happens to them?  — If you can answer this question you are half way to figuring out the answer to my question of the day.  The fisheries management has now set a limit to how many fish the commercial fisherman are allowed to bring per outing and they have set a limit of only 2 hooks per rod, whereas prior to this some commercial fishermen would use up to 10 hooks. There is no size limit because once you catch these fish you can’t or have no reason to toss them back (referring to question of the day). 

The commercial fishermen are pretty easy to monitor when they fish these benthic, fish. Management can go to their boat or meet them at the docks to check on them.  Managing pelagic Rockfish is more difficult, because these fish hang out in the kelp and are easier to catch from a smaller craft, which allows for potential deception of total catch.

We catch the fish, fillet the fish, eat the fish and then Dr. Vetter will take the carcasses (bones) to his lab to study the DNA. The more you learn about a fish, the more you can protect it from being depleted (vanishing) from an area. This is good, because so many fishermen count on this fish for their lively hood. If scientist learn more about the fish and protect the fish, then we will always have that fish around. Also we know that golden rule “we are all connected – we are all affected.” So if we deplete the Rockfish, in some way we too are affected. Right? –Right!

Personal Log 

I was so excited to have the opportunity to fish last night. But I did hate that my catch was so small and I couldn’t just toss it back into the ocean, because it wouldn’t survive. So that made me feel bad, it was still alive when I caught it and it looked at me with it’s big beautiful eyes. I am getting into the groove of things here.  I was so happy to have slept well last night. I got up early even though I could’ve slept in.  It is just so nice to be here. Of course I miss Rob and Hooch. I really miss Rob, because I know he would be so interested in all that we are doing on this ship.

Now, I am in terrible trouble. I just went into the galley to get a Fig Newton and I was told to open the cooler, that there was something better in there… I really thought they could be wrong, because I am not a huge ice cream fan. I am selective about what types really suck me in….. and OH NO! Ben and Jerry’s Cherry Garcia has that capability! The have a huge carton of it. I am still amazed at all the food and well prepared meals on board.  Today, for lunch, I had black eyed pees, rice, mixed veggies and a great salad with hearts of palm and that was only the veggie stuff they offered!

Oh happy day, Elizabeth Eubanks

Question of the Day 

Why would the Rosie Rockfish not survive if I put it back into the ocean, right after I caught it and realized that it was still alive, but very small?

Why is this (the inability of the rockfish to survive after being caught) a major problem for commercial fishing industries and the population of the Rockfish?

One more for fun- What is the difference between an ice cream float and ice cream soda?

Question of the trip: Which hook, the J or Circle, will catch more sharks?

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Vocabulary 

Taken from the Sea, State, Wind and Clouds- US Department of Commerce Sea Waves are generated by the wind blowing at the time of observation, or in the recent past, in your local area. Sea waves change after they move under the wind that has created them.

Sea Swell Waves – have traveled into your area of observation, after having been generated by winds in other areas (sometimes thousands of miles away). Swell waves remain symmetrical and uniform.

Elizabeth Eubanks, July 22, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 22, 2007

Weather Data from the Bridge  
Air temperature: 18 degrees C
Sea Temperature at 250 m below: 8.6 degrees C
Sea Temperature at surface: 20 degrees C
Wind Direction: 240 (W)
Wind Speed:  7 kts
Cloud cover: Full cloud cover – Stratus
Sea Level Pressure: 1013.8 mb
Sea Wave Height 1’
Swell Wave Height 2’

Scientists Suzanne Kohin and Russ Vetter stabilize this 160cm Mako shark, while Grad student Heather Marshall brings tools to collect data.

Scientists Suzanne Kohin and Russ Vetter stabilize this 160cm Mako shark, while Grad student Heather Marshall brings tools to collect data.

Science and Technology Log 

I boarded the NOAA ship David Starr Jordan at 0800 (everything is in Military time here). Rob, my husband, was with me and he was permitted to board the ship to look around and help carry my bags into my room, so that was a nice start. We departed at 0900 and I watched the dock where Rob was, until he became a little dot. As we were leaving we passed the Naval base where they train the seals and then an area where there tons of submarines. I got a kick out of the seal lions as they relaxed on buoys. After ~ an hour at sea, I couldn’t see land anymore – very strange! We had a meeting at 10:30am, we got instructions for safety, rules and regulations and a tour of the ship. One rule is that you cannot wear open toed shoes.  We ate lunch and then set lines at 1:30pm to try to catch sharks.

Background info: NOAA Ship DAVID STARR JORDAN is on its 3rd leg of travel this summer. The first 2 legs involved study of Shark Abundance (how many sharks there are). The study that we are doing now is designed to enhance the Abundance study. The scientists are trying to determine which type of hook will catch the most sharks, the J hook or the Circle hook. – Hint a great PROBLEM for this “lab” would be: Which hook, the J hook or the Circle hook will catch more sharks? What is your hypothesis?  Although this is the main point of the experiment, they are recording other data as well, which I will list later. I mentioned earlier that we were setting lines. Setting the lines, involves as very long line – 2 nautical miles long and every 50 ft a hook is attached. And after 5 hooks are attached a buoy is attached. Can you picture this? So once all the lines are set, there are approximately 200 + hooks attached. To make this test a good one reducing variables, every other hook is J hook and then the next hook is a Circle hook. I will talk more about line setting and hook attachment later.

Tonight was so exciting. When we pulled in our lines at 5:30pm, we got 4 sharks: 2 Blue and 2 Mako and 1 pelagic Stingray. It was so thrilling to hear the crew screaming “Shark!” And instead of the traditional running or swimming to get away from the shark, the shark is pulled in and touched. Scientist Russ Vetter had his head so close to the shark’s head, it made me shiver. When I asked him how many times he had been bit, he stated that you only get bit once. The Blue sharks were absolutely beautiful and for those of you know me well, it isn’t just because they are blue! But the blue color of these sharks is absolutely spectacular—it takes your breath away. The other thing that took my breath away this evening was the 160cm Mako shark.  It got hooked in the fin, so it was harder to pull the shark in for data and boy did it give an impressive fight. Although, this part of the work is finished there is still a lot going on. We have to prep tags and lines and scientist are all around me now recording data about the ocean. Right now it is 8.6 degrees C at 250 m down. But on the water surface the temp is 20 degrees C. The surface (at the top) of the water is actually a little warmer than the air temperature right now. I also hear talk of late night fishing for rock fish and squid. 

NOAA Teacher at Sea, Elizabeth Eubanks, standing in front of the majestic NOAA ship DAVID STARR JORDAN in the San Diego Harbor.

NOAA Teacher at Sea, Elizabeth Eubanks, standing in front of the majestic NOAA ship DAVID STARR JORDAN in the San Diego Harbor.

Personal Log 

I have been at sea for a grand total of 12 hours now and so far so great! Everyone has been extremely kind and helpful. I am sure many of you are wondering if I have gotten sea sick and the answer is NO and I don’t plan on it. I took Dramamine and chewed some ginger gum before the ship left. After about an hour on the ocean I started to feel tired and little like I was floating on my legs. I am not sure if this was due to the ocean waves or the drugs! After lunch I went up to the very top of the ship and took a long snooze. One of the emails I had received prior to the cruise said to bring snacks, so I wasn’t sure what the food situation would be, but I can tell you this- I won’t go hungry! They serve buffet style with many choices and snacks in between. You will also be happy to know that they have lots of veggies on board!

Please direct your emails (questions for me and answers to my questions) to my yahoo account (so I can keep track of your questions) AND to the email address listed below. I will NOT be checking my yahoo email account until I return to land! I love being around all of these scientists and research, it reminds me of college and why I have always loved science so much. I hope everyone is having a great summer and I appreciate you spending time with me on this adventure.

Question of the Day 

What does the word pelagic mean?

Question of the trip: Which hook, the J or Circle, will catch more sharks?

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Heather Diaz, July 15, 2006

NOAA Teacher at Sea
Heather Diaz
Onboard NOAA Ship David Starr Jordan
July 6 – 15, 2006

Mission: Juvenile Shark Abundance Survey
Geographical Area: U.S. West Coast
Date: July 15, 2006

Science and Technology Log 

They did a swordfish set last night around midnight.  We hauled in the set around 5:30am. We caught 4 blues and 2 makos.  We also caught one pelagic ray.  They set a shark line out around 7:45. We were hoping to be able to finish one last set before going into port. We were scheduled to be in port around 3.

Teacher at Sea, Heather Diaz, holds up a Blue shark.

Teacher at Sea, Heather Diaz, holds up a Blue shark.

Dr. Russ Vetter explained what the different computers are used for in the aft lab.  There is one called at EK500/EQ50 which uses a split beam transponder to create a “map” of the ocean floor, so the scientists can use the data to find high spots, which sometimes are better for fishing. It also works as a sort of “fish finder” and the different things in the water show up in scale and color, so that you can see the approximate size of the animal/plant in the water.  He also explained the Navigation computer, which digitally shows the charts (with soundings), topographical features (like islands and coastline), and our course. It also provides information on other vessels that are nearby, and when available, that vessel’s name and number…the same navigation computer they also use on the Bridge. The Nav. Comp. also provides information like our latitude and longitude and our speed.

There is another computer which monitors wind speed and direction, temperature of the water (under the boat), barometric pressure, and salinity of the water.  All of these are real-time, and provide important information to the scientists.  There is also an ADCP (Acoustic Doppler Current Profiler) computer which displays a constantly changing graph of current velocity relative to the ref layer.

The very last set of this leg was a bit slower than most, which may have been a good thing, since most people were starting to get a bit tired.  We had 2 blues and 2 makos. We were very pleased to find out that we had, during the entire leg, managed to capture 80 blue sharks (78 were measured, sexed, and released), 63 mako sharks (61 were tagged and released), 23 pelagic rays (23 were released, none were tagged), 3 molas (3 were tagged and released), and 1 lancetfish (which was released but not tagged).  Everyone seemed very pleased with the results, and now Dr. Suzy Kohin (Chief Scientist) and Dr. Heidi Dewar will head back to their lab at Southwest Fisheries to analyze the data.

Personal Log 

Last night the sky was very clear, so we were able to see a lot of stars, including the Milky Way, which was very easy to see last night.  The view from the Flying Bridge (the very top of the ship) is amazing, and we felt like we could see every star in the universe, even though we know we couldn’t. We could also see the far away glow of Los Angeles, a reminder that we will soon be back in port and that our trip is nearly over.  Nearby, there was a large tanker and a container ship, which also looked neat in the dark.  The container ship was still nearby this morning when we woke up.

The sunset this morning was amazing.  There were a few wispy Cirrus clouds in the sky, which reflected the glow of the sun long before the sun made its first appearance in the sky. It was truly a beautiful sunrise, and a great way to start off our last day!  This morning after the set, everyone was a bit disappointed that we have not caught a swordfish this trip.  But, Dr. Heidi Dewar said she would consider doing another swordfish study in the future.

Everyone is busy packing and getting their gear ready to go home.  Everyone, including me, is excited to be going home to see family and friends, but I think most people will be a little sad, too. For me, this has been an absolutely amazing experience!  I have learned so much, and I have seen more in the past week than I ever could have from reading books or watching documentaries.  There is just something so special about being able to feed a sea lion, touch a shark, or come within inches of a mola to feel the power of nature and the beauty of the ocean. I am awe struck in so many ways.  The people aboard the DAVID STARR JORDAN could not have been kinder, and everyone has gone far out of their way to make me feel like part of the DSJ family.  Everyone from the captain and the officers, the boatswains, the stewards, and everyone in engineering has been friendly and helpful. I will surely miss everyone on board.  As for the scientists, they did an outstanding job of helping me to learn things and to make me feel like I was a real part of their crew. I will miss the lapping of the waves, the rolling of the ship, the camaraderie, the food, the animals, the scenery, the sunsets, and the sunsets.  And, although I cannot take any of them with me, I will have the memories of them all forever.

I want to sincerely thank Lieutenant Commander Von Saunder, the amazing crew of the DAVID STARR JORDAN, Dr. Suzy Kohin, and her wonderful team of scientists for a fantastic experience!  I never imagined it would be this incredible!  I will be grateful to you all for a long, long, long time!  Thank you for allowing me to share these past 10 days with you, and I wish you all safe travels and many more beautiful sunsets at sea to come!

Heather Diaz, July 14, 2006

NOAA Teacher at Sea
Heather Diaz
Onboard NOAA Ship David Starr Jordan
July 6 – 15, 2006

Mission: Juvenile Shark Abundance Survey
Geographical Area: U.S. West Coast
Date: July 14, 2006

The Seabird Temperature/Depth Profiler is hooked up to a computer so that the information can be converted into a graph.  The information is used to identify the thermoclines, and to determine where most of the animals will be found in the water near the ship.

The Seabird Temperature/Depth Profiler is hooked up to a computer so that the information can be converted into a graph and then used to identify the thermoclines, and to determine where most of the animals will be found in the water near the ship.

Science and Technology Log 

I had the opportunity to interview Jason Larese who is aboard for this cruise.  He works for the Southwest Fisheries Science Center in La Jolla, which is part of NOAA Fisheries Program.  For the past 5 years he has been working with marine mammal studies, especially with dolphins.  Recently, he has been working on an albacore tuna tagging project. He analyses data from special tags that record light, depth, and temperature variations which help them to track where the tuna migrate and where/what they eat.  Since they know at what depths the tuna feed, they can narrow down the possibilities of what they are eating (since things tend to stay in predictable positions relative to the thermocline in the ocean).  He has enjoyed working with the Shark Abundance Survey, but he hopes to return to marine mammal research soon.

They did a swordfish set last night around midnight.  We hauled in the set around 6am. We caught 4 makos, 14 blues, and 6 pelagic rays.  We did our first shark set around 8am.  We hauled in the set around noon. We caught 3 makos and 2 blues.  During our first shark set today, a small blue shark died on the line. When they did the dissection of his stomach, they found the vertebrae and jaws of a Lizardfish, and several squid beaks. It was very interesting to see what this shark had for breakfast before we caught him. I was able to keep them to share with my class.

We did our second shark set around 2pm.  Dr. Heidi Dewar showed me how to take a temperature reading using the Seabird Temperature/Depth Profiler. It is a small processor in the water-tight tube, which lowered over the side of the boat very slowly, to a depth of about 150 meters.  Then, it is raised very slowly. The water-tight tube is then opened in the lab and connected to a computer.  The information is then downloaded and imported into Excel, where it is translated into a graph.  They use this information to locate the thermocline, since many sea animals are restricted to the thermocline and above where there is a mix of warm and cold water (usually as a result of wind and waves). And, there are fewer animals in the colder temperatures below.

We hauled in the set around 6pm.  During this haul, we caught 3 blues and 9 makos.  One mako was badly tangled in the line, and he was not going to survive.  So, the shark (now that he has died) will be taken back to a lab at SCRIPPS Institute of Oceanography where an MRI study will be conducted to examine the shark’s anatomy and physiology.  (This is not Russ’ study but one of some scientists at SCRIPPS and UCSD Medical school.)

Personal Log 

One interesting thing that happened during the first shark set, as we were setting the line, we saw loads of dolphins in the area. They appeared to be circling up fish and then eating them.  Several of them were quite close to the ship.  We estimated that there were at least 30 dolphins in the area surrounding our ship.  We were concerned that they would try to eat our bait and end up getting hooked, but none of them did.  It is extremely rare for dolphins to get hooked since they can detect the hook in the bait and avoid it.

We discovered a large mola floating near the ship, and several people tried to catch him with a fishing rod in order to try to tag it with a satellite tag.  They weren’t able to catch him.  Everyone is very interested in the molas, and the scientists here are collaborating on a research study to monitor their behavior and movements.  I found out that the mola (an ocean sunfish) actually eat jellyfish.  They don’t actually eat our bait, so when we catch one, it’s always been because the hook got caught in their fin by accident.  They are fascinating creatures, and it’s amazing to see a fish that is that huge!

I helped wrangle a few sharks this afternoon, but the last one that I did was very strong and I had a hard time holding on to him.  At one point, he whipped his head to the side and he yanked on my arm so hard I thought he would break free.  It was truly awesome to see just how strong these sharks are, without really even trying.  I also spent some time with Natalie Spear who was doing data recording during the second set.  I’m amazed at how many pieces of data have to be recorded, and how many things the data recorder has to do at once. It is definitely a more difficult job to do, and with all the commotion of the scientists who are processing the animal and are requesting different things all the time, it takes a very level-head to keep everything straight, especially since accuracy in recording all the different tag numbers is essential.  I have been very impressed with all my fellow scientists and their ability to keep up with all the demands of that position.  And, they manage to still have fun while doing it!

Heather Diaz, July 12, 2006

NOAA Teacher at Sea
Heather Diaz
Onboard NOAA Ship David Starr Jordan
July 6 – 15, 2006

Mission: Juvenile Shark Abundance Survey
Geographical Area: U.S. West Coast
Date: July 12, 2006

Science and Technology Log 

There was no swordfish, set done last night because of our excursion to Catalina Island.  Instead, we set our first line (shark line) at 6am.  We hauled in the line around 10am.  We caught 10 makos, 4 blues, 1 lancetfish, 3 pelagic rays, and 2 molas.  I had the opportunity to videotape the entire haul, which turned out to be one of our most productive.  1 mako died today during the haul because it had swallowed the hook and most likely suffered an internal injury. He was measured, weighed, and dissected for further research.  One of the makos we caught during this set was among the largest three we caught during this entire leg, and it was really interesting to see such a large shark, so close! We set our second line at around 12 noon.  We hauled it in around 4pm. We caught 7 makos and 2 blues.  Two of the makos we caught during this set were among the largest three we caught during this entire leg.

This Mako shark didn’t survive being on the longline. The coloring of the shark is truly beautiful, and their skin is very smooth in one direction, and like sandpaper in the other.  If you look closely, you can see little spots on his nose, which are actually part of his hunting and defense mechanism, and he is able to “detect” things in the water from a long way. Makos don't have a protective “eyelid”, unlike Blue sharks. Karina and João have helped to preserve the jaw, and I cannot wait to show it to my students!

This Mako shark didn’t survive being on the longline. The coloring of the shark is truly beautiful, and their skin is very smooth in one direction, and like sandpaper in the other. If you look closely, you can see little spots on his nose, which are actually part of his hunting and defense mechanism, and he is able to “detect” things in the water from a long way. Makos don’t have a protective “eyelid”, unlike Blue sharks. Karina and João have helped to preserve the jaw, and I cannot wait to show it to my students!

Personal Log 

With our first set, things started off right off the bat with several makos.  Then, we got 2 humongous Sunfish (mola-mola)…and I mean they were huge! Then, we got a huge mako.  He was almost 2 meters long.  It was as long as the cradle itself! I couldn’t believe it.  Everyone was super excited and at that point. During the whole commotion, one mako was pulled over the side nearly dead.

We also had a lancet-fish which they hauled over the side while we were dealing with the monster mako in the cradle….and that was very much alive.  It was flipping all over the place.  Sean picked him up, took the hook out, and tossed it overboard. After we were all done and all the animals had been processed, we went over to look at the mako that they had brought on deck.  Although the mako was near death, it appeared to be still breathing a little, though it might have been a lingering reflex reaction.  After examining him on the deck, they weighed him and then started to dissect him. I have most of the dissection on tape.  It was very interesting to see where all the internal organs are located and to see how their muscle tissue is designed. Dr. Heidi Dewar explained how they use their muscle tissue design to actually preserve body heat. It was really fascinating.  I am excited to show my students her “lecture” on the muscles, and to share with them the dissection video, so that they can see what a shark looks like on the inside.  I think they will enjoy it.

During the second set, I was allowed to get down on the platform with the first two sharks…the first one, Dr. Suzy Kohin, Chief Scientist just explained everything.  The second one, I was able to get in there and actually do the stuff!  I collected the DNA sample of his dorsal fin…I put the tag in his dorsal fin…and, I gave him a shot of OTC in the ventral area. I also got to take its length measurement, which was freaky because I had to grab its tail and pull it straight. I don’t think the shark appreciated that much, and he squirmed a bit.  He was also bleeding. Dr. Suzy Kohin, the Chief Scientist, said that he was bleeding a bit because he had swallowed the hook.  I opted not to do the spaghetti tag (which involves shoving this metal tip into their skin) and I opted not to cut the hook out of its mouth,.…it just seemed really, really, really REAL…and I didn’t want to mess up and come out of it missing a hand or something…or worse, having unintentionally hurt the animal.

Anyhow, I gave my kneepads over to Daniele who jumped in and finished the haul for me on the platform while I did the gangions.  Which, turned out to be too bad, since we got some really huge makos on this haul…everyone was very excited about them.  I think the largest was about 197cm.  They put special tags in the really large makos, which they called a PAT (Pop-Up Archival Tag).  They explained that these tags, which look more like turkey basters, are used to report data on temperature, depth, and even longitude so that they can better track the makos and learn more about their behaviors. They are especially looking for information about diving behaviors and their temperature and depth preferences.  I would love to see what they find out from these fish!

They also use a SPOT (Smart POsition and Temperature) tag.  This is almost translucent and is bolted the dorsal fin (only on larger sharks).  It looks a little like a computer mouse and is oval shaped. This tag sends radio signals to a satellite whenever the animal is near the surface, and they can use this information to track precisely where the animal is in the ocean.