Ellen O’Donnell: There’s a Lot of Food in the Ocean and One More Whale to Feed! May 20, 2012

NOAA Teacher at Sea
Ellen O’Donnell
Onboard NOAA Ship Delaware II
May 14 – May 25, 2012

Mission: North Atlantic Right Whale Survey
Geographical area of the cruise: Atlantic Ocean; Franklin Basin
Date: May 20, 2012

Weather Data from the Bridge: Light winds, slightly overcast, ocean swells between 3 to 5 feet.

Science and Technology Log:

We spent the night out at sea and today and we worked the Franklin Basin. It is about 120 miles from Cape Cod. At first we didn’t see many whales, but things started picking up by lunchtime. We launched the little gray boat shortly after to get close to the right whales we were seeing. While I didn’t go on the gray boat today, many of the whales came right up to the ship. It was another amazing day and we were quite successful.

Copepod (photo: at-sea.org)

I have seen so many different ways that the whales catch their prey. I asked the question last time, “Why do sei and right whales often appear together?” This is because they like the same food. Both whales eat copepods. Copepods are tiny crustaceans that range from microscopic to a quarter of an inch. Crustaceans are invertebrates which are related to lobster, shrimp and crabs. They eat diatoms and plankton, which are even smaller! They are the most abundant species on earth and are important in many ocean food webs.

Cool Fact from the Monterey Bay Aquarium: A single copepod may eat from 11,000 to 373,000 diatoms in 24 hours!

So sei and right whales feed on these tiny abundant organisms, which is amazing given their size. Humpbacks and fin whales also filter feed, but they eat krill (another tiny crustacean), plankton and small fish. Humpbacks can consume up to 3,000 pounds of food a day.

Sei and right whale feeding in same area (photo: Genevive Davis)

All of these whales are called baleen whales because they filter their prey out of the water as they move through it. Right whales and sei whales surface feed a lot. They are close to the surface slowly moving through the water filtering out copepods. Often they are seen feeding side by side.

Sometimes right whales do what is called echelon feeding. One whale is up front and then whales along each side create a V-shape. The whales to the side of the one in front pick up prey that didn’t make it into the forward whale’s mouth. We saw a great example of echelon feeding right from the ship. There were six right whales slowly swimming in this V-shape. Every once in a while, if one got out of formation, they would swim back toward the V and turn and get back in formation.

Right Whales Echelon Feeding

Humpback whales also use a method for catching prey. When we got close to the humpback, Slumber, the other day, we noticed large bubbles rising to the surface. This is called bubble feeding. Humpbacks create large bubbles to trap and herd fish. Often they do this in groups.

Mother and new calf (photo: Jenn Gatzke)

So while watching the different whales, and how they feed was very interesting, this was not the most exciting thing. These surveys are important because they keep track of vital information needed to develop good conservation plans. Therefore, information such as where the individual whales are, which females breed, where they breed, and how many calves are born is important.

We identified around 17 whales yesterday and found one that one had not been biopsied. This whale was then biopsied so its information can go into the database. We also saw two mothers and their calves. Right whales typically give birth to their calves after a 12 month gestation period, off the coast of Georgia or North Florida.

This year only six calves were born and one died. This number is not good as biologists hope to have the number of calves born in the double digits. So you can imagine how happy everyone was when we identified a female who hadn’t been seen since 2010 with a new calf! We were able to get a biopsy from the calf as well, which will not only give genetic information from the skin, but also information on contaminants from the mother since it is still nursing. But I’m not finished yet! The icing on the cake was that the baby whale also released some fecal matter. Yes that’s right…whale poop! This may not seem important to you, but the whale biologists were ecstatic. The collected whale poop, yes it was collected in a bucket, gives a wealth of information, such as what it has been eating and the level of contaminants in the calves body.  Adult whale poop also gives hormonal information.  All in all it was a very successful day of collecting important data on right whales.

Relaxing after a hard day’s work

NOAA Scientists Peter Duley and Allison Henry scoop whale poop into a collection bag to be later analyzed

Personal Log 

NOAA is an agency that enriches life through science. Their reach goes from the surface of the sun to the depths of the ocean floor as they work to keep citizens informed of the changing environment around them. Obviously the ocean is a big part of our environment. NOAA vessels have differing focuses on the data they collect from the ocean.  The Delaware II is a fisheries vessel. It goes out on various research cruises, which collect data on different organisms within our oceans. As you know they perform right whale cruises, like the one I am on now, but they also perform other studies as well. Midwater trawling is done for studies on herring. Large nets are pulled along the boat at mid-water level, and the data collected gives information on the distribution and abundance of herring. Deep water trawls with nets are done to collect scallops and clams, and determine their relative abundance and distribution. Shark cruises collect sharks by sending out a line with baited hooks. The sharks collected are tagged and released. Lastly, the Delaware II performs ichthyoplanktic studies, which collect eggs and larvae from various species of fish.

Jim Pontz (left) and Todd Wilson (right) getting the trawl net ready (photo: Delaware II)

Herring catch (photo: Delaware II)

Clam and Scallop Survey (photo: Delaware II)

Shark Tag and Release Survey (photo: Delaware II)

It is the deck crew that helps make this possible. Acting Chief Boatswain and Head Fisherman, Todd Wilson heads up a 5-man crew, who not only take care of all ship maintenance, with the exception of the engine, but serve as night-time lookouts, and operators of the fisheries equipment. We rely on them to get the little gray boat in and out of the water, which takes a lot of coordination, and they are always there to help you if you need it.

Launching the little gray boat

Ellen O’Donnell: Whales Up Close, May 18, 2012

NOAA Teacher at Sea
Ellen O’Donnell
Onboard NOAA Ship Delaware II
May 14 – May 25, 2012

Mission: Northern Right Whale Survey
Geographical are of the cruise: Atlantic Ocean, Georges Bank
Date: May 18, 2012

Weather observations: Light and variable winds not over 5 knots. Seas with mixed swells from 4 – 7 feet. High pressure system. Partly cloudy

Last night the ship crew worked as we slept. They take conductivity, temperature and pressure readings, through the use of a CTD monitor, which ultimately gives us information on the salinity and depth of the water. The ship ran set transects through the water deploying the CTD monitor at various locations along the transect, collecting this information.

The ship was really rocking and rolling all night long and I woke up at 5:30 AM not feeling very well, and knowing I had to get some fresh air. So I went up on the fly deck, this is where we make our whale observations, and sat up there and watched the sunrise. The ocean is so beautiful and I find myself very drawn to it. It can be a beautiful place and it can be one filled with raw power. Luckily for me today it was on the peaceful side. Looking out at the horizon I can understand why people thought the world was flat. It really does look as if you will reach the end and fall off. As I was waiting for my shift, I saw three whales in the distance, either fin or sei whales, and several Atlantic white striped dolphins. I thought nothing could get better than that. Boy was I wrong!

We started our watch at 7AM and started to see whales very quickly. Even though there were large swells there were no whitecaps. We saw minke, which are small whales, because they swam along the ship. We also saw sei, fin and humpback whales. Around 11:00AM we saw our first group of right whales and that’s when the real fun began.

Today I got to go in the little gray boat and we sped across the water to get close-up shots of whales.

Me getting ready to take pictures

Biologists Jamison Smith and Jen Gatzke help direct the small boat from the flybridge (photo: Genevive Davis)

There is a list of right whales that need biopsies. A biopsy is when you shoot a dart into the back of the whale and get a small piece of skin and blubber. Typically, there is little response from the whales when you do this. You could probably equate it to a mosquito bite for us. The skin biopsy is then analyzed for the genetic code, or DNA, in a lab. This gives scientists an idea of who is related to whom, in the whale world, so to speak. Through this data they have found that there are a small number of male right whales fathering the calves. Why? At this point they don’t know but you can sure whale biologists are trying to figure this out. The blubber is immediately preserved and then it too is analyzed. However, the blubber is analyzed to determine the possible level of contaminants in the whale.

Two right whales together close to our boat

We took close up shots of both the left and right heads of each whale and checked to make sure it wasn’t one we needed to biopsy. Remember, you identify right whales by their callosities. While we didn’t find any that needed biopsies, we got close to eleven right whales! We got close to one group of three right whales who were following each other like a train. One head would come up, then the body, then the fluke went up and it would go under. Just as the first whale went under the second came up right by the first’s fluke, did the same thing, and then the third. It was fascinating. It also gets a bit confusing trying to identify all three animals and making sure you have the correct pictures. The scientists are great at sorting through the information quickly and trying to keep track of the individuals.

At one point we were tracking a right whale and it was surrounded by sei whales feeding in the same location. We had about 10 whales all around us and at times it was hard to follow our right whale because we had to wait for the sei whales to get out of our way! It was amazing we could really see how they fed close up (more on their feeding methods in the next blog). Sei whales have a very different head and of course the dorsal fin I mentioned before. They are very sleek and streamlined looking whereas, I feel the right whales look more like the hippopotamuses of the ocean!

Sei Whale (photo Allison Henry 5/18/12)

Right whale looking like a hippo

Very little is know about sei whales, which are also endangered species, so effort is being made to start biopsying them. Therefore, while we were out there, Peter Duley, our chief scientist biopsied a sei whale. He uses a cross-bow with an arrow, that is designed to cut a small piece of blubber. Pete hit the whale on the first try. It was a great shot!

Peter Duley NOAA biologist targets sei whale (photo: Genevive Davis 5/18/12)

slumber

“Slumber” Humpback whales are identified by their fin patterns

We also got very close to a humpback whale. Humpbacks are identified by the patterns on their flukes. They also have a dorsal fin, but the shape can be quite variable and sometimes is just like a knob. Therefore, they are often mistook as a right whale until you see their fluke. We took pictures of this humpback so that the scientists studying them will get an accurate sighting on where this individual is located. In fact, upon communication with one of the humpback experts we were able to identify this whale which was first identified in 1999 and is called “Slumber”.

On our way back we went near a few basking sharks. These are sharks that are also filter feeders. They just swim slowly with their mouth open and collect any krill in the water. We were just about done, finishing up with our last right whale and he breached in front of us about 30 feet from the boat. It was amazing. We were out on the little gray boat for nearly five hours. It is five hours I will never forget for the rest of my life.

And to top off one of the best days of my life, mother nature decided to give us one spectacular sunset. Life is good.

Sunset off the Delaware II

Personal Log:

Another excellent part of this trip is one I bet a lot of you are thinking about. How is the food? I had heard that the food on board NOAA ships is good, but I wasn’t ready for the exceptional meals I have been served. The food is fantastic! Every night I have had some kind of fish or seafood , although there is always a choice of chicken or beef as well. My family will tell you that although I love seafood, fish is really not my thing. OK, I have officially changed my mind! I have had haddock, swordfish and halibut and every bite was a treat, especially the blackened swordfish with a mango chutney sauce. And meals aren’t everything. There is always some tasty treat hot out of the oven, or fresh fruit, available in between meals.

So why do we have such great meals? Well the credit has to go to John Rockwell, chief steward and Lydell Reed, second cook. John is in charge of purchasing, meal planning, cooking and cleaning. He comes by his culinary ability naturally, as he was raised in the restaurant business, and has an associates degree in culinary arts. He joined the wage mariner program (more on this later) and has been with the Delaware II for six years. Lydell also grew up in the food industry and worked as a sous chef before joining NOAA’s wage mariners.  Lydell has also been with NOAA for six years, but he is in a pool which means he moves around from ship to ship filling in for the second cook slot when needed. Whatever their background, they are amazing in the kitchen and it’s fun to walk down while they’re cooking. They always seem to be having a good time, you never know what music will be playing and there is always a great smell in the air.

John Rockwell and Lydel Reed creating gourmet food

Question of the Day: Why would sei whales and right whales be eating in the same places?

Christopher Faist: Dolphins and Crossbows, July 24, 2011

NOAA Teacher at Sea
Chris Faist
Aboard NOAA Ship Henry B. Bigelow
July 20 — August 1, 2011

Mission: Cetacean and Seabird Abundance Survey
Geographical Area: North Atlantic
Date: July 24, 2011

Weather Data
Air Temp:  23 ºC
Water Temp: 21 ºC
Wind Speed: 11 knots
Water Depth: 35 meters

Science and Technology Log

Bottlenose Dolphin bowriding

Bottlenose Dolphin bowriding

Continuing our quest to count mammals and seabirds has brought us to shallower waters.  Currently we are moving in an area south of Martha’s Vineyard.  In this area we have had better visibility allowing us to sight species like the south polar skua and bottlenose dolphin.  Increased sightings bring new equipment and tools utilized by scientists to give a clearer picture of the diversity of animals in our survey area.

South Polar Skua

South Polar Skua

In addition to seeing animals through binoculars, scientists also want to learn about animal genetics and vocalizations.  Specialized equipment like a crossbow loaded with a biopsy dart or a towed hydrophone array can give scientists greater insight into the animals they are trying to study.

Pete ready to take a biopsy sample

Pete ready to take a biopsy sample

Pete, one of the marine mammal observers is also tasked with using a crossbow and biopsy dart to take a small sample of whale or dolphin tissue.  When the visual sighting team (using binoculars) spots an animal, they direct the bridge (where the ship is controlled) to steer the ship toward the animal or group of animals.  At this point, Pete begins to prepare his genetic sampling equipment.  On the bow of the ship are two raised platforms, one on each side.  With his crossbow in hand Pete harnesses himself to the ship, climbs on a platform and loads a biopsy dart.  If the animals are close enough he will then fire the dart, which is tethered to the ship, and collect a very, small piece of skin and blubber from the animal.  This tissue sample can be used by scientists to study the animal’s DNA, sex, health, diet, pollution levels and in females, check for pregnancy.

Crossbow loaded with biopsy dart

Crossbow loaded with biopsy dart

Another tool used to deepen a scientist’s understanding of marine mammals is a towed hydrophone array.  Included in a thin tube towed behind the ship are underwater microphones or hydrophones.  These are used to listen to noises in the ocean but for this cruise, the hydrophones are tuned to pick up sounds made by marine mammals.

One of the problems associated with using visual sightings to count marine mammals is they only spend a short period at the surface where they can be visually observed.  To ensure that all animals are counted, scientists like Rob and Sandra listen for animals that may be underwater when the ship passes.  Using multiple hydrophones they can use computer software to locate the noises and note the presence of animals that may be missed by visual observers.

Personal Log

Today was our first day of good weather that lasted all day.  What that means is 12 hours on deck looking for animals.  Even though I can take a break whenever I need it, I am worried that if I leave the deck I will miss something interesting.  After that many hours on deck it is great to get some dinner and head for bed.  I have been sleeping really well, making  getting up at 6am to start surveying almost enjoyable.

Next posting I will talk about the CTD/Bongo sampling device that I am helping to deploy every day at lunch.

Donna Knutson, September 12, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission:  Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 12, 2010

Pearl and Hermes

Me on the “Big Eyes”.

 

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.
Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Seabirds sittings will also be documented.

Jay, a steward, checking out the action!

Science and Technology:
Latitude: 27○ 40.6’ N
Longitude: 175○ 48.7’ W  
Clouds:  3/8 Cu, Ci
Visibility:  10 N.M.
Wind:  12 Knots
Wave height:  1-2 ft.
Water Temperature:  27.5○ C
Air Temperature:  27.0○ C
Sea Level Pressure:  1021.2 mb

A busy flying bridge.

Pearl and Hermes is the name of an atoll named after two English whaling ships, the Pearl and Hermes, which ran into the surrounding reef in 1822.  The twenty by twelve mile atoll is under water most of the time.  It has a rich history including shipwrecks, over harvesting of oysters, a military site for war practice, and finally conservation.

Atolls are the remnants of ancient volcanoes.  Over millions of years, volcanic eruptions spill magma onto the sea floor.  The lava eventually becomes higher than sea level creating an island.  With the surface exposed, the now dead volcanoes began to shrink and erode.  Over time the island becomes very flat and barely above the water.  Corals grow in shallow water around the boundaries of the island.  Eventually the island erodes away only leaving the coral reefs around them and a large lagoon in the middle.  Through the actions of wind and waves, sand and coral debris come together to make up small islands called islets in a few places where the original large island used to be.

Ernesto and Allan ready to shoot for biopsy samples.

In 2003 the Pearl and Hermes reef measured 300,000 acres.  This area is home to thirty three species of stony coral.  The islets provide a needed stopping and resting area for seals, turtles and birds.  About 160,000 seabirds of seventeen different species nest at Pearl and Hermes.
The ocean surrounding Pearl and Hermes had never been properly surveyed for cetaceans.  The HICEAS cruise discovered the water is also rich in wildlife, particularly cetaceans.  The beaked whale is one of these cetaceans.  There are twenty different species of beaked whales, but the two found in these waters were the Curvier’s and Blainville’s Beaked Whales.
One way to tell them all apart from each other is their teeth.  The males all have different sizes, shapes and positions of their teeth in their bottom jaw.  The females and juveniles do not have teeth and need to be identified by other means such as the shape of their beak (rostrum).  Curvier’s Beaked whale has virtually no beak, the melon of the head slopes smoothly onto a short thick beak. It has a sort of “fish face”.  The Blainville’s Beaked Whale has a moderately long beak.  The melon for the head is small and flat.

Yvonne and Sussanah listening in.

Blainville’s and Curvier’s Beaked Whales seem to have opposite coloring.  The Curvier’s Beaked Whale has a white face and the white coloring continues on to the top of back.  The Blainville’s Beaked Whale has the dark gray color on the back and the lighter grey on the underside.
Size is another difference between the whales.  The Blainville’s Beaked Whale is smaller with adult males measuring up to fourteen feet six inches and the Curvier’s whale at twenty three feet.  All male beaked whales are smaller than the females, but not by much and that is unusual compared to the other species mentioned in previous logs.
Personal Log:

Eddie looking at whales.

The past two days we have been circumnavigating the Pearl and Hermes Atoll.  There are only two other “land masses” before we reach the top of the Northwestern Hawaiian Islands.  This region has more animals than anticipated.  The science crew of the Sette had 16 sittings and 17 biopsy samples to report.  It was a very exciting couple of days.  The little boat was launched both mornings and was traveling around the atoll also, but at a closer distance to the coral on its own mission.

In addition to the sightings, Yvonne Barkley, Sussanah Calderan and Niky where listening attentively to the sounds picked up by the array.  The array has four mini-mircophones housed in a long rubber cable that picks up various sound frequencies.  The acousticians are inside the ship recording and  analyzing the sounds they hear.  Working together really paid off!  A lot of ocean was covered and many animals were discovered.

Beaked Whales

I brought a plastic lawn chair up on the flying bridge because even though I want to write, I don’t want to miss out on any of the action.  I wasn’t the only one who wanted a look at the animals, the second steward Jay came up to also take a look through the “big eyes”.   I can’t imagine a boat that has a friendlier, more supporting crew!

Bottlenose Dolphin

Some of the sightings included Bottlenose Dolphins, the Curvier’s Beaked Whale, the Blainsville’s Beaked Whale and Sperm Whales (mentioned in log #3), Spinner Dolphins, and Rough Toothed Dolphins (mentioned in log#2).
To me the most exciting part of the two day survey was when the Bottlenose Dolphins were swimming in front of the bow.  At one time there were sixteen abreast.  All sizes of dolphins playing and “singing” right in front of us!  Their whistles were much louder than I ever imagined!
The dolphins were jumping over each other and swimming on their sides and on their backs belly up.  It almost seemed to be a contest on silliness.  It makes your heart warm when they look you in the eye and seem to want your attention.  They had my attention the whole time they swam there!  I had to get up on tip toe just to look over the edge as they were so close to the rush of water caused by the ship.  The group was traveling and frolicking effortlessly in front of a ship going ten knots! I stayed on tiptoe until the last dolphin drifted away to join the rest of the pack.
The Bottlenose Dolphin is definitely the friendliest, playful cetacean I have seen for far!

Greta Dykstra-Lyons, August 15, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 15, 2005

Science and Technology Log

Last night I was invited to attend an early morning session in the oceanography lab with oceanographer Candy Hall. Like most mornings on this cruise, she and colleague Liz Zele were collecting water samples from 1000 meters and up with a device known as the CDT (Conductivity, temperature with depth).  These samples are used to test things like  nutrient, salt, and chlorophyll levels. Candy also runs a primary productivity test on the samples.  This test will identify the rate at which phytoplankton grow.

After a short nap, I was off to the flying bridge.  Due to the fact that the sun was shining (a first in over 2 wks) and the seas were calm, it felt like a promising day.  There was the typical early morning fin whale sighting, followed by a lull.  During this let-up it must have been decided that our time would be best spent fishing for albacore (as several trawlers were within sight). Almost as soon as the fishing lines were tossed over a blue whale appeared not far from the boat.  The sun on the whale’s back made for a beautiful sight in and out of the water.  It did not take long to get the small boat launched and on the trail of the whale for a biopsy and photographs.  The time between mammal sightings was spent watching birds. My highlight today was observing a flock of arctic terns headed to Antarctica. This I am told is the longest migration of any animal.  Today became more fruitful when four adorable Dall’s porpoises flirted with our bow for several minutes.  To top it all off…as we were beginning to enjoy our first visible sunset and the rising of a nearly full moon, observers found spunky dolphins engaging in acrobatics worthy of gold medals near the horizon.  It was not long before they graced us with their playful presence. Several of us took turns in the bow chamber and caught some underwater glances as well as auditory treats!  Smiles all around.

Yesterday, Monday, a somewhat elusive whale species showed itself despite the horrid weather. Two Baird’s beaked whales appeared around the boat for several surfacings.  Luckily, the photographers were able to get a few good head shots. And, like most days, there was the morning fin whale sighting! Due to poor visibility, observers went off effort a bit early.  Sunday also supplied us with less than perfect condition, but a fin whale was recorded before noon. The JORDAN picked up a worn-out, far from home hitchhiker in the afternoon.  The deck of the ship hosted this cowbird for the evening. She hasn’t been seen since.

Saturday’s conditions were similar to Sundays, but it was even colder.  The only sighting was…you guessed it, a morning fin whale. When there are few sighting to report and animals to observe, the members of the JORDAN become curious about floating objects. During these “slow times” the ship has collected a few things, three buoys to be exact. Two of them are your standard orange plastic fishing buoys (probably headed for the dumpster).  These buoys provided bonus entertainment because they had lines attached to them and thus “things” attached to the lines. The other buoy is a much more prized and sought after glass fishing buoy once used by Japanese fishermen.  It was given to the captain.

Tomorrow is our last full day of the cruise.  Currently we are about 60 miles from the coast. Due to our position and course, tomorrow has the potential to be an outstanding day for observing marine mammals and birds.