Karah Nazor: The Glowing Dolphins of the Channel Islands and Interview with UCSC Graduate Student Ilysa “Ily” Iglesias, May 31, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 31, 2019

Game Plan and Trawling Line: Channel Islands San Nicolas Line

I am up on the flying bridge and I just saw two humpback whales spouting, an albatross soaring and a large Mola Mola on the sea surface.  In this blog I will write about an amazing once in a lifetime experience that from last night- May 31, 2019. The first haul was called off due to an abundance of Pacific White-Sided Dolphins, Lagenorhynchus obliquidens, (as reported by the inside marine mammal watch prior to net deployment), so we motored on ahead to the second station, but dolphins chased the ship all the way there, too.  One strategy to encourage marine mammals to leave is for the ship to stop moving with the hope that the dolphins become disinterested and vacate the area. This pod was intent on having a party at the ship so Keith Sakuma encouraged everyone to just go outside to observe and enjoy the dolphins! 

Fishing on this survey takes place at nighttime (so the fish do not see the net) and Scripps graduate student Kaila Pearson and I stepped outside on the side deck into the darkest of dark nights. Kaila and I carefully placed one foot in front of the other because we couldn’t see our feet and where to step next. I was afraid I would trip. When I asked Keith Hanson if we should use a flashlight to safely make our way up to the top deck, he suggested that we stay in place for a few minutes to allow our eyes to adjust. Within 5 minutes or so objects around us started to present themselves to us within the black void.  We could eventually see our feet, each others faces, the dolphins, and even the finer features of the sea surface.

Within a few minutes Ily Iglesias reported seeing bioluminescence, a type of chemiluminescence that occurs in living things, such as the familiar green glow of lightening bugs in the Summer in the South.   This glow results from oxidation of the protein luciferin (present in photophore cells/organs) by the enzyme luciferase.  It its excited state, lucifern emits light.  This reaction is known to occur in some marine bacteria, dinoflagellates (single celled photosynthetic organisms), squid, deep sea fish, pyrosomes and jellyfish, and I am fortunate to have observed many of these creatures already on this research cruise (see photos below).  Some animals have photophore organs and generate their own luciferin, while others are hosts to bioluminescent bacteria.

deepsea longfin dragonfish
The large photo organ is a large green circle under the eye of the deepsea longfin dragonfish, Tactostoma macropus.
California lanternfish
California lanternfish, Symbolophorus californiensis, with photophores under the lateral line and the ventral surface.
California lanternfish photophores
California lanternfish photophores
Blue lanternfish
Blue lanternfish, Tarletonbeania crenularis, collected from a bongo net at 265 meters. Photophores line the ventral surface of the body.
Cranchia scabra
Cranchia scabra “baseball squid” with large photophores lining the eyes.
Chiroteuthis veranii squid
Chiroteuthis veranii squid

When dinoflagellates floating on the sea surface are agitated, they glow.  At first when I was trying really hard to see this, I noticed a couple of tiny flashes of green light, sort of like lightening bugs, but it wasn’t anything super obvious. In time, I noticed clouds of faint light, sort of like a glowing mist floating the water’s surface, that moved up and down with the swell.  I hypothesized that dinoflagellates on the sea surface were being agitated by the passage of waves through them and Ily suggested that it was caused by schools of anchovies.

Since the dolphins were intent on staying, we decided to head to the next station.  I knew that as the ship began to move that the bow would be breaking through surface water that had previously been undisturbed, and I predicted the bioluminescence would be much more intense.

As we took off, the dolphins began to bow surf and, as I predicted, the dinoflagellates were activated and this time their glow was a bright white.  As the dolphins surfaced to breath, their skin became coated with the glowing algal cells, creating an effect as if they were swimming in an X-ray machine.  The dolphins were literally glowing white swimming in a black sea! We were so entranced and excited by the beauty, we screamed in delight. I am sure the dolphins heard us cheering for them. They too, seemed excited and could see each other glowing as well.

Next we saw the faint cloud of dinoflagellates caused by Northern anchovies (Ily was right) up ahead of us. As the ship encountered the school of small (~ 3-6 inch) fish, they also started to glow really bright and it was easy to see all of the individual fish in the school. The dolphins could also see the glowing fish and split off in different directions to hunt them.  There were hundreds of fish that dispersed as they were being chased creating a pattern of short white glowing lines somewhat like the yellow lane markers on the highway.

The display was unlike anything I have ever witnessed. It was like the Aurora Borealis of the sea.  Despite our best efforts, our cell phone cameras were unable to pick up the bioluminescent signal, however, we do not need photos because the patterns of light will be forever embedded in our minds. The dolphins eventually tired from the surf and chase and departed. Ily said the experience was “an explosion of light that overwhelmed the senses” while Flora said it was “better than fireworks.”

With no marine mammal sightings at the third station, we completed a five minute haul in the deep channel and collected a huge white bin of anchovies (see photo of Keith Hanson with this catch below). In this catch we found a few Mexican lampfish, 3 king of the salmon, a lot of of large smooth tongues, a lot of salps, a few pyrosomes and one purple striped jellyfish.  The purple-striped jelly (Chrysaora colorata) is is primarily preyed upon by Leatherback turtles. Haul 2 was conducted over shallower water near San Nicolas Island and we only found salps and four small rockfish in the catch.  After these two hauls, we called it a night and wrapped up at 4:15 a.m.

Scientist Spotlight: Ilysa Iglesias, NMFS SWFSC FED/ University of California Santa Cruz (UCSC)

Ilysa “Ily” is a doctoral student who works in John Field’s Lab at UCSC.  She is studying the fish we are collecting on this cruise as part of her research. She is very knowledgeable about all of the survey research objectives. She is also one of the most positive and gregarious people I have every met. Ily grew up in Santa Cruz, CA, and enjoys surfing, hiking, gardening and raising chickens.   Ily is a fan of early marine explorer Jacques Cousteau, who often wore a red beanie/toboggan and a blue shirt. Ily came prepared and brought six red hats (that she knit herself) for each of the members of the sorting team. Ily’s favorite fish is the hatchetfish. She was thrilled when we found on in the catch!

Ilysa with hatchetfish
Ilysa Iglesias with deepsea marine hatchetfish
deepsea marine hatchetfish
A deepsea marine hatchetfish caught in the bongo which was deployed to depth of 265 meters.

Ily obtained a Bachelor’s degree from UC Berkeley in integrated biology and a Masters Degree from the University of Hawaii in Zoology with a specialization in marine biology.  Her thesis was on the function of intertidal pools as a nursery habitat for near-shore reef fish. She compared otoliths (fish bone ears) of fish reared inside and outside of tide pools and compared their growth rates.  Otoliths can be used to the age of the fish much like counting rings on a tree and stable isotope analysis reveals information about where the fish were reared.

Ily, Flora and Kristin have all used otoliths in their research and taught me how to locate and collect the sagittal otolith from anchovies and myctophids. It is a tiny ear bone (one of three) that is positioned near the hindbrain of fish.  See photos below of the otoliths we collected. This is a technique that I will definitely take back to my classroom and teach my McCallie students.

Otoliths
Otoliths we collected and observed under the dissecting microscope.
Photomicrograph of otoliths
Photomicrograph of otoliths we collected from blue lanternfish (top) and Northern Anchovy (bottom) and observed under the dissecting microscope.

After obtaining her masters degree, Ily was Conservation Fellow for the Nature Conservancy in HI and worked in octopus fisheries before returning home to join NOAA’s salmon team and then the rockfish team as a Research Associate.  Ily has just completed the first year of her doctoral work in the Field Lab and expects to complete the program within 5 years.

On this cruise, Ily is collecting small fish called Myctophids for her research. These are small bioluminescent fish that live at depths of 300 and 1,500 m in the bathypelagic zone. In this survey, we encounter these deep sea dwellers during their nightly vertical migration up to the edge of the photic zone at depths we are targeting.  They are likely chasing their prey (krill) on this upward journey. It is amazing to me they are able to withstand the pressure change. Mcytophids are also known as lanternfishes and have bioluminescent photophores dispersed on their bodies. The fish sorting team analyzes the position of these organs to help distinguish between the different species. There are 243 known species of myctophids, making these little fishes one of the most diverse vertebrates on Earth.  They are so abundant in the sea that they make up 65% of the ocean’s biomass, but most people have never heard of them!

In 2014- 2015 there was an anonymously high sea surface temperatures off of the Pacific Coast known as The Blob.  Marine scientists are still elucidating the effect of the hot water had on fish populations and ecosystems. Ily explains that “atmospheric forcing caused changes in oxygen and temperature resulting in variability in the California current.”  The water was less nutrient dense and caused a reduction in phytoplankton. This disruption of primary production propagated up the trophic cascade resulting in die offs of zooplankton, fish, marine mammals and birds.  

Ily is using the catch records and acoustics data from the rockfish survey to study changes in distribution and abundance of myctophids from before, during and after The Blob (2013-2019).  She aims to understand if and how their trophic position of myctophids was affected by the unusually high sea surface temperatures.   Using elemental analysis isotope ratio mass spectrometry to analyze the Carbon and Nitrogen atoms incorporated into fish muscle, Ily can determine what the myctophids were eating each year.

Amanda Dice: Using Light for Survival, September 13, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 13, 2017

Weather Data: Rainy, 76 F

Baltimore, MD

Science and Technology Log

Now that I am back home, I have some time to think about the variety of animals I saw on the cruise and do a little more research about them. Many of the animals we caught in our net have the ability to light up. This adaptation is known as bioluminescence. Different species use bioluminescence in different ways to help them survive.

 

Myctophids are a type of fish also known as a lantern fish. These small fish can occupy the same habitat as juvenile pollock, and we caught several of them at our sampling stations. I got a chance to look at them closely and I could see small spots, called photophores, along the sides of their bodies. In dark waters, these spots have bioluminescent properties. Lantern fish can control when to light them up and how bright the spots will glow.

 

There are many different species of lantern fish. Scientists have learned that each species has a unique pattern of bioluminescent photophores along the sides of their bodies. For this reason, it is believed that lantern fish use their bioluminescent properties to help them find a mate.

myctophid

The photophores can be seen as white spots on this lantern fish. Image courtesy of NOAA.

Lantern fish also have bioluminescent areas on the underside of their bodies. This adaptation helps them achieve what is known as counter-illumination. In the ocean, a predator can be lurking in the dark waters below its prey. Since many things feed on lantern fish, it is important for them to have a way to camouflage into the environment. When a predator looks up, during the day, a fish that is lit up on the bottom will blend in with the lighter waters above it, making it hard to see.

counterillumination 2

The camouflaging effect of counter-illumination can be seen when this bioluminescent fish lights up its underside. Image courtesy of the Smithsonian.

Lots of animals use this technique to help them hide from predators, including squid. We pulled in many small squid in with our samples that had patterns of photophores on them. Depending on the species, squid also use bioluminescence to attract mates and to confuse predators.

squid NOAA 2

The pattern of lighted photophores can be seen on this squid. Image courtesy of NOAA.

In addition to fish and crustaceans, we also pulled in a variety of jellyfish. Jellyfish also have bioluminescence characteristics. Many jellyfish use light as a way to protect themselves from predators. When a jellyfish is threatened by a predator, it flashes in a rapid pattern. This signals other fish nearby that it is being hunted. This can alert larger predators, who may be hunting the predator of the jellyfish. The larger predator will then swoop in after the jellyfish’s predator, allowing the jellyfish to escape!

Jellyfish NOAA

Many jellyfish use bioluminescence to protect themselves from predators. Image courtesy of NOAA.

Personal log

I have been home for over a week and I think I finally have my land legs back again. Looking back on the experience, there were so many little surprises that came with living onboard a ship. One thing I noticed is that I got much better at walking around the longer I was there. I learned to always have one hand available to grab a railing or brace myself during any sudden movements. However, I never quite mastered getting a decent workout in on the treadmill! Another surprise is how relaxing the rocking of the ship could be when I laid down. I thought the movement would be distracting, but it actually helped me drift off to sleep!

Did you know?

There are many superstitions surrounding life on a ship. It is considered bad luck to have bananas on board and whistling is discouraged. Whistling onboard a ship is thought to bring on wind and storms!

 

Christine Webb: August 23, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/23/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 62.1 F

Weather Observations: Partially cloudy

Science and Technology Log

For today’s science and technology log, I interviewed my roommate Tracie. You only have to talk to Tracie for five seconds to learn that she’s passionate about marine chemistry and marine biology and marine physics…all things marine. She’s the HAB (harmful algal bloom) specialist on board, and she’s been squirreled away in the chemistry lab every day collecting lots of great samples as we travel up the coast. Before we left Newport, she taught me a bit about algae by taking me to the beach to see some bioluminescent dinoflagellates. When we stomped in the water, the dinoflagellates would glow! It looked like puddles full of blue lightning bugs, and it was amazing. One of her quotes from that night was, “I imagine this is what unicorn footprints would look like if they were traipsing over rainbows.” Everyone should have the chance to see that at some point in their life. It gave me a taste of why it makes sense to be so passionate about algae. So, without further ado, here’s your chance to learn a bit more about HABs from my friend Tracie!

  1. What is a HAB, and why should we care about them?

HABs are phytoplankton that have negative consequences either for us or the ecosystem. Some can release neurotoxins that can be damaging to mammals (including humans), amongst other things. A harmful algal bloom (HAB) can also create a dead zone by a process called eutrophication. Bacteria eat the phytoplankton once they begin to die, which removes oxygen from the water.

  1. What makes it a bloom?

A “bloom” is when there is so much algae that the ecosystem can’t support it and they start to die off. There aren’t enough nutrients available in the water. Some people call this a “Red Tide.” There are certain species, such as Alexandrium spp., where even one cell per liter would be enough to create a harmful effect.

  1. What made you decide to study HABs?

During a lab in college, we were allowed to go to the beach and sample phytoplankton. When we got back to the lab with our samples, we found a huge amount of Pseudo-nitzschia spp. It releases a neurotoxin that gives mammals amnesiac shellfish poisoning. That year, we couldn’t eat shellfish and crab from our area because of this bloom. There’s no antidote to this toxin, and it affects the brain function of mammals who eat it. Whales died that year because they forgot how to breathe. This made me super interested in studying more about these types of species.

  1. What are you specifically hoping to find in your research aboard this cruise?

We’re trying to find where blooms start, how blooms begin, and follow them within the California Current system. It’s part of an ongoing study of the California Current system and how species are transported. California fisheries have been dramatically affected by HABs.

  1. Have you been finding what you need so far?

It’s been really interesting…we’ve seen quite a few Dinophysis species (which I find to be the cutest), and some really interesting Pseudo-nitzschia spp., but no blooms. Close to the coast, within 15 nm of shore, I see a lot more diversity in my samples. This is mostly due to upwelling.

  1. Has anything in your research so far surprised you?

There are very few species that I haven’t recognized, which is interesting because we’re so far north. We have fjord-like environments up here by Vancouver Island, so I expected there to be a higher abundance of phytoplankton up here than I saw.

  1. What is a common misconception about HABs?

The term “HAB” itself – they’re called harmful because they’re harmful to us as humans and to various industries, however – they provide a huge amount of support to other animals as primary producers and as oxygen producers.

They’re basically plants that can swim, and they’re all food for something. They’re not harmful for most things, so the name is kind of a misnomer. In defense of the HABs, they’re just trying to survive. Phytoplankton are responsible for around 50% of the world’s oxygen, and they’re the primary producer for marine and freshwater ecosystems.

  1. Anything else you want people to know?

There’s still a lot that we need to learn, and I would like everyone at some point in their life to see how beautiful these fragile organisms are and appreciate how much they contribute to our world.

  1. If you weren’t a marine chemist, what would you be?

I would write nonfiction about the beauty of the world around us. Or maybe I’d be an adventure guide.

  1. What are some fun facts about you that not a lot of people know?

My motto for life is “always look down.” There’s so much around us, even the dirt under our toes, that is so full of life and beauty.

My art is on Axial Seamount, 1400 m below sea level, 300 miles off the coast of Oregon! I drew an octopus high-fiving ROPOS the ROV that placed it there!

Also, I’m a high school dropout who is now a straight-A senior in environmental science at the University of Washington, Tacoma. Other people’s perceptions of you don’t control your destiny.

Here are a couple pictures of some of the HABs Tracie has seen during this trip (she took these pictures from her microscope slides):

329 D. fortii

Algae under the microscope: D. fortii. Image by Tracie.

329 hobbit house 2

Algae under microscope. Image by Tracie.

Personal Log:

Since today’s science log was about Tracie, I’ll feature her in the personal log too! She’s my partner in the ship-wide corn hole tournament, and we won our first-round game yesterday. Look at these awesome corn hole boards that were specially made for the Shimada!

IMG_20170822_153718727

Shimada corn hole board!

We mostly credit our fabulous war paint for the win. Today we play against our fellow scientists Lance and Tim. Wish me luck!

corn hole victory

Christine and Tracie celebrate corn hole victory

Another down-time activity that Tracie (and all the scientists) enjoy is decorating Styrofoam cups. The cool marine biologist thing to do is to sink them to very low ocean depths (3000+ meters). Apparently the pressure at that depth compresses the Styrofoam and shrinks it, making the cup tiny and misshapen but still showing all the designs that were put on it. I’m not kidding: this is a thing that all the marine biologists get really excited about. Tracie even decorated a Styrofoam head (the kind that cosmetologists use) in advance of this trip and brought it with her to sink. Look how cool it is – she’s an amazing artist!

IMG_20170824_171631958_HDR

Styrofoam head, decorated by Tracie, for shrinking

There are shrunken heads in the lab already from other people who have done this. Sinking Styrofoam is a legit marine biology hobby. Well, as the saying goes, “When in Rome…” so I worked on a Styrofoam cup today. I’m making a hake tessellation, which takes longer than you might think. Here’s what I’ve got so far:

IMG_20170823_051528993

Styrofoam cup decorated with hake tesselation

We’re having lots of fun at sea on this beautiful day. Someone just came over the radio and said there’s been a marine mammal sighting off the bow…gotta go!

Special Shout-out:

A special shout-out to Mrs. Poustforoush’s class in Las Vegas, Nevada! I just found out you’ve been following this blog, and it’s great to have you aboard. If you have any questions about algae (from this post) or about life on a ship, please feel free to e-mail me. I can hopefully get your questions answered by the right people. Work hard in Mrs. Poustforoush’s class, okay? She’s a great teacher, you lucky kiddos. Learn a lot, and maybe one day you can be a scientist and live on a ship too!

Cathrine Prenot: Lights in the Ocean. Thursday, July 21, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 21, 2016

Weather Data from the Bridge
Lat: 46º18.8 N
Lon: 124º25.6 W
Speed: 10.4 knots
Wind speed: 12.35 degree/knots
Barometer: 1018.59 mBars
Air Temp: 16.3 degrees Celsius

 

Science and Technology Log

The ship’s engineering staff are really friendly, and they were happy to oblige my questions and take me on a tour of the Engine Rooms. I got to go into the ‘belly of the beast’ on the Oscar Dyson, but on the tour of the Shimada, Sean Baptista, 1st assistant engineer, hooked us up with headsets with radios and microphones. It is super loud below decks, but the microphones made it so that we could ask questions and not just mime out what we were curious about.

I think the job of the engineers is pretty interesting for three main reasons.

On the way to see the bow thruster below decks

On the way to see the bow thruster below decks

One, they get to be all over the ship and see the real behind-the-scenes working of a huge vessel at sea. We went down ladders and hatches, through remotely operated sealed doors, and wound our way through engines and water purifiers and even water treatment (poo) devices. Engineers understand the ship from the bottom up.

One of four Caterpillar diesel engines powering the ship

One of four Caterpillar diesel engines powering the ship

Second, I am sure that when it is your Job it doesn’t seem that glamorous, but an engineer’s work keeps the ship moving. Scientists collect data, the Deck crew fish, the NOAA Corps officers drive the ship, but the engineers make sure we have water to drink, that our ‘business’ is treated and sanitary, that we have power to plug in our computers (the lab I am writing in right now has 6 monitors displaying weather from the bridge, charts, ship trackers, and science data) and science equipment.

I did not touch any buttons. Promise.

I did not touch any buttons. Promise.

Finally, if something breaks on the ship, engineers fix it. Right there, with whatever they have on hand. Before we were able to take the tour, 1st Assistant Engineer Baptista gave us a stern warning to not touch anything—buttons, levers, pipes—anything. There is a kind of resourcefulness to be an engineer on a ship—you have to be able to make do with what you have when you are in the middle of the ocean.

The engineers all came to this position from different pathways—from having a welding background, to being in the navy or army, attending the U.S. Merchant Marine Academy, or even having an art degree.  The biggest challenge is being away from your family for long periods of time, but I can attest that they are a pretty tight group onboard.

 

In terms of the science that I’ve been learning, I’ve had some time to do some research of some of the bycatch organisms from our Hake trawls. “Bycatch” are nontargeted species that are caught in the net.  Our bycatch has been very small—we are mostly getting just hake, but I’ve seen about 30-40 these cute little fish with blue glowing dots all over their sides. Call me crazy, but anything that comes out of the ocean with what look like glowing sparkling sapphires is worthy of a cartoon.

So… …What is small, glows, and comprises about 65% of all deep-sea biomass? Click on the cartoon to read Adventures in a Blue World 3.

Adventures in a Blue World, CNP. Lights in the Ocean

Adventures in a Blue World, CNP. Lights in the Ocean

 

Personal Log

The weather is absolutely beautiful and the seas are calm. We are cruising along at between 10-12 knots along set transects looking for hake, but we haven’t seen—I should say “heard” them in large enough groups or the right age class to sample.  So, in the meanwhile, I’ve taken a tour of the inner workings of the ship from the engineers, made an appointment with the Chief Steward to come in and cook with him for a day, spent some time on the bridge checking out charts and the important and exciting looking equipment, played a few very poor rounds of cornhole, and have been cartooning and reading.

I was out on the back deck having a coffee and an ice cream (I lead a decadent and wild life as a Teacher at Sea) and I noticed that the shoreline looked very familiar. Sure enough—it was Cannon Beach, OR, with Haystack Rock (you’ll remember it from the movie The Goonies)! Some of my family lived there for years; it was fun to see it from ten miles off shore.

Chart showing our current geographic area. Center of coast is Cannon Bean, Oregon.

Chart showing our current geographic area. Center of coast is Cannon Beach, Oregon.

View of Tillamook Head and Cannon Beach. It looked closer in person.

View of Tillamook Head and Cannon Beach. It looked closer in person.

 

Did You Know?

One of the scientists I have been working with knows a lot about fish. He knows every organism that comes off the nets in a trawl down to their Genus species. No wonder he knows all the fish—all of the reference books that I have been using in the wet lab were written by him. Head smack.

Dan Kamikawa, our fish whisperer

One of the books written by Dan Kamikawa, our fish whisperer

 

Resources

My sister (thank you!) does my multi media research for me from shore, as I am not allowed to pig out on bandwidth and watch lots of videos about bioluminescence in the ocean.  This video is pretty wonderful.  Check it out.

If you want to geek out more about Lanternfish, read this from a great site called the Tree of Life web project.

Interested in becoming a Wage Mariner in many different fields–including engineering?  Click here.

Marsha Skoczek: Who’s Driving this Ship, Anyway? July 9, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6 – 19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of Georgia
Date:  July 9, 2012

Location:
Latitude:  31.30748N
Longitude:  79.43986W

Weather Data from the Bridge
Air Temperature:  29.5C (84 F)
Wind Speed:   10.4 knots (11.9 mph)
Wind Direction:  From the SSW
Relative Humidity:  81%
Barometric Pressure:  1015.7
Surface Water Temperature:  27.88C (82.4F)

Science and Technology Log

Today, the current was too strong in the area we were going to send the ROV.  The boat and the ROV were not able to keep close enough to the assigned transect line, so the dives for today were cancelled.  Since we had some extra time until the Pisces was able to get us to our next location, I decided to spend some time on the bridge learning about how the Pisces works.

Myself and ENS Pawlishen working on the nautical charts.

Third Officer, Pete Langolis, was on duty when I got to the bridge, and he was nice enough to show me around.  After he let me ring the bell for the noon test of the master alarm system, we got started.  The Pisces is able to keep its course by using both a magnetic compass as well as a gyrocompass.  The magnetic compass has the potential for interference depending on the conditions around it such as the roof of the ship, the types of metals that make up the ship, etc.  To find the correct bearing for the Pisces to travel along, the officer on duty has to take into consideration four factors, where is true north, the variation from the compass rose on the nautical chart, where is magnetic north, and the deviation from magnetic north from the deviation card (this will be different from ship to ship).  This all calculates into the correct compass heading for the officer on the bridge to drive the ship.  Once the correct heading is calculated, it can be programmed into the ship’s tracking computers as well as the bow thruster which acts as an autopilot for the ship.  Every thirty minutes, the officer on deck has to verify with the paper nautical charts that the ship is still on the correct heading.  Any variations from the original heading can be corrected simply by changing the direction on the autopilot.  You can follow along with our current position using the NOAA Ship Tracker website.  Select Pisces from the box in the upper left.

When you are out in the middle of the open ocean, the last thing you want to do is run into another vessel.  The Pisces is equipped with two different radar systems that help look for other ships in the area.  The S-Band radar sends out a longer pulse signal which is good for locating ships that are further away and also seeing through dense fog.  The X Band radar sends out a short pulse signal which better helps to locate ships in closer proximity to the Pisces.

X band radar showing the location of ships near the Pisces

Both of these radars are tied to the Automated Information System (AIS) as well as the Global Positioning System (GPS).  The information about each ship identified on the radar screen can be pulled up and used to help steer the Pisces around other vessels such as cargo ships, commercial fishing vessels, or other military vessels. All targets located by the radar need to be visually confirmed by the officer on deck to insure that they are not on a course that will come too close to the Pisces.

Engine monitor screen on the bridge.

The Pisces has a single propeller  that is powered by two electric motors.  These motors are powered by four diesel generators.  Before we could leave port last Friday, we had to fuel up with 70,000 gallons of diesel fuel.  This took about six hours to complete.  This amount of fuel should last the Pisces several months at sea.  The whole propulsion system can be monitored electronically from the bridge to ensure that everything is running smoothly.

So, who actually drives the ship?  Three NOAA Corps officers share bridge watch in shifts of 4 hours on, 8 hours off.  This doesn’t mean they spend the other 8 hours sleeping. All of the officers on board Pisces have other responsibilities such as the Navigation Officer (NAV), the Operations Officer (OPS), Executive Officer (XO) and the Commanding Officer (CO).  Before a new junior ensign can be left on their own to be in charge of the bridge, not only do they complete a twenty-week training, they will also spend about six months shadowing a senior officer.  This lets them get hands on training and experience while still having someone watching over their shoulder double checking everything.  After all, the lives of everyone aboard the Pisces depend on them doing everything correctly.

Personal Log

Being out to sea away from land is not something I have ever done before.  I am struck by the vastness of the ocean.  Everywhere you

Lobate ctenophores are translucent and give off a bioluminescent glow. Bolinopsis infundibulum. Picture: OAR/National Undersea Research Program (NURP)
High resolution (Credit: NOAA)

look, there is nothing but blue water.  It is truly hypnotizing.  Also, knowing that there might not be another vessel within hundreds of miles of us is a little weird.  Last night I went out with my roommate, Stephanie, to see the stars.  There is no light pollution out here in the open ocean, so we were able to see every star in the sky, including the Milky Way Galaxy.  It was an incredible view.  We also could see the bioluminescent organisms as they were getting turned up in the ship’s wake, animals such as jellyfish, copepods, and ostracods.  It was really neat to see bioluminescence in action.

Ocean Careers Interview

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed NOAA Corps officers Ensign Michael Doig and Ensign Junior Officer Douglas Pawlishen.

Ensign Michael Doig

ENS Doig, what is your job title?  I am the Navigation Officer for the Pisces and an Ensign in the NOAA Corps.

What type of responsibilities do you have with this job?  I am one of the officers that has bridge duty to steer the ship.  I also keep the nautical charts up to date, maintain the ship’s inventory, and train the new junior ensigns.

What type of education did you need to get this job?  I have a Bachelors’ Degree in Zoology from University of Hawaii and a Masters’ Degree in Science Education.

What types of experiences have you had with this job?  I have been fortunate enough to travel all over the Atlantic and Gulf of Mexico on board the Pisces.  One of the coolest things I have seen is a pod of orca whales trying to kill a baby sperm whale in the Gulf of Mexico.  The baby sent out a distress call and all of the adult sperm whales encircled the baby to protect it.  The baby sperm whale was saved.

How is the NOAA Corps different from other jobs?  First, when you apply for the NOAA Corps, they look at all of the math and science courses you have taken in college.  They are looking for students with strong background in those fields.  After you are accepted and make it through training, you are assigned to a NOAA ship for two years.  After those two years, you can apply for a land assignment, but that will probably only last for about three years before you have to go back out to sea on a new ship.  You work year round and are granted thirty days of personal leave for the year.

Since your time on the Pisces is almost finished, what land assignment are you applying for at the end of your two years?  I have applied to work in the Miami NOAA branch studying coral reef restoration.

What is your best advice for a student wanting to become a scientist?  Companies are always looking for employees with strong backgrounds in science. Don’t be afraid of those upper level physics classes or upper level math classes.  Get in there and do it!!

 

Junior Ensign Douglas Pawlishen

Ensign Pawlishen, what is your job title?  I am an Ensign Junior Officer aboard the Pisces.  This is my first ship assignment in the NOAA Corps and I just started on the ship last Thursday.

What type of job responsibilities do you have on this ship? To shadow Ensign Doig so he can train me about life aboard the Pisces.

Why did you decide to join the NOAA Corps?  I wanted a job where I wouldn’t be stuck in an office all day every day doing the same thing over and over again.  With my science background, I thought the NOAA Corps offered me the opportunity to do something more hands on and different every day.

What type of education do you need to get this job?  I have a Bachelors’ Degree from University of Massachusetts  Amherst in Natural Resources and  a minor in both Criminal Justice and Wildlife Management.

What types of experiences have you had with this job?  Well, since I am brand new, I haven’t really been out to sea yet.  My best experience so far was aboard the Coast Guard Eagle, which is a massive sail boat confiscated in World War II from the Germans.  All of the NOAA Corps cadets along with the Coast Guard cadets have to spend two weeks on board sailing the Coast Guard Ship Eagle and developing our team work skills.

Andrea Schmuttermair: A Lesson in Chemistry, July 1, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3, 2012

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: July 1, 2012 

Ship  Data from the Bridge
Latitude: 2957.02N
Longitude: 8618.29W
Speed: 10 knots
Wind Speed: 9.65
Wind Direction: S/SE
Surface Water Salinity:35.31
Air Temperature: 28.2 C
Relative Humidity: 76%
Barometric Pressure: 1017 mb
Water Depth:  57.54 m

Science and Technology Log

water from CTD

Here I’m filling up the BOD jar with our salt water samples from the CTD cast.

Reminiscent of my days in high school chemistry, today I had the opportunity to work with our Chief Scientist, Brittany, on completing the daily titration. If you remember, getting readings on the dissolved oxygen in the water is an important part of this survey as we locate any hypoxic (less than 2 mg of oxygen per liter of water) zones or anoxic (no oxygen) zones. This is done with a computerized device on the CTD, but we want to make sure that our readings are accurate. Because “chemistry never lies”, this is how we ensure our readings are accurate.

With our CTD, we have the ability to collect water samples at various depths. We do not collect water samples at every CTD, but rather one or two a day during the daytime hours. We collect water from the bottom to see if there is any expansion of hypoxia.

orion meter

Using the Orion dissolved oxygen meter to measure the amount of dissolved oxygen in our sample.

When the CTD comes back up, we use an Orion dissolved oxygen meter, which is a handheld device, to get a dissolved oxygen reading from our samples. We put the probe on the end of the meter gently into the containers of water on the CTD to get our reading. We will use this number in conjunction with the information sent from the CTD to our dry lab to check against our titration results.

Once we have the reading with the probe, we are ready to take some samples for our titration. We then take the water samples in the cylinders, rinse out our 300 mL BOD (biological oxygen demand) glass bottles a few times with that water, and then fill the botttles up with the sea water from the bottom. These samples are brought back to our Chem Lab (short for chemistry, as I’m sure you figured out) where we will test the amount of dissolved oxygen.

adding manganese sulfate

Adding the manganese sulfate to our sample.

This is after I’ve added the manganese sulfate and iodide. Now we have to wait for it to settle.

We are using the Winkler method to find the amount of dissolved oxygen in our water samples. The first step in this process is to put 2mL of manganese sulfate into the bottle. After that, we also add 2 mL of azide- iodide. With those 2 chemicals added, we carefully replace the stopper and give the bottle a good shake. We then can wait about 10-15 minutes for the chemicals to settle at the bottom. Pipettes are used to add the liquids and allow us to be very precise in our measurements.

after settling 1

Here is our sample after it has settled.

After the particles have settled at the bottom, we add 2 mL of sulfuric acid (which can be a dangerous chemical if used inappropriately), replace the stopper, and shake the bottle again gently. The sulfuric acid “fixes” the solution. Finally we add 2 mL of starch to the solution, which is a blue indicator when we put it in but turns the solution a burnt orange color. Now we are ready to titrate!

adding to beaker

Our sample solution being poured into the beaker, ready for the titration. Inside the beaker is a magnetic stirrer.

finished titration

Now you can see the solution is clear in color, meaning our titration is finished. We are ready to determine the amount of dissolved oxygen.

Prepared beforehand was a burette filled with phenylarsine oxide, what we use to drip into the sample. We pour the sample into a beaker and place it on a magnetic plate. We’ve placed a magnetic stirrer in the beaker so it gently stirs the solution while we are titrating. We let the phenylarsine oxide slowly drip into the sample  until it turns clear. When it does this, we note the amount of phenylarsine oxide that we put in the sample (which is equivalent to the amount of oxygen in the water), and the number should match (or be very close) to the reading of dissolved oxygen that we received from the CTD and the Orion dissolved oxygen meter.

This process is quite simple yet yields important results and is just one of the ways scientists verify their data.

Bioluminscence

One other interesting thing happened the other night on one of our shifts. We had brought in a bongo tow and were looking into the codends to see what we got. When Alex began rinsing the sample with some salt water, the whole codend began to illuminate. Why did it illuminate? Bioluminescence.  Bioluminescence is essentially a chemical reaction that produces light. Many marine critters can produce bioluminescence, as seen below.

bioluminescence

Bioluminescence in our bongo tow.

Personal Log

One of the things I’ve probably enjoyed the most about my trip so far are the relationships I’ve formed with the people on board. As a teacher, one of my top priorities is to build and maintain relationships with my students, both past and present. That became a bit more of a challenge to me this past year as I took on a new position and began teaching 600 students rather than the 30 I was used to.

Alonzo

Our watch leader, Alonzo, waiting to weigh our next catch.

I’ve come to love working with the scientists on the night watch, as each of them brings something to the table. Our watch leader, Alonzo, has a wealth of knowledge that he gladly shares with each of us, pushing us to learn more and find the answer for ourselves. I’ve improved immensely on identifying the different fish, crabs and shrimp we find (thanks to Lindsey, who is my partner in crime for making up silly ways to remember these crazy Latin names for all our species). Where I came in knowing names of very few if any types of Gulf critters, I can now confidently identify 15-20 different species. I’m learning more about how to look for the subtle differences between different species, and Alonzo has been able to sit back and be that “guide on the side” while we work and input all of our data. His patient demeanor has allowed all of us to become more self-sufficient and to become more confident in the knowledge we have gained thus far on this trip.

Alex

Alex with a sharksucker

Alex, another one of the scientists on my watch, shows an endless enthusiasm for marine science. He shares in my excitement when a trawl comes up, and the both of us rush out there to watch the net come up, often guessing how big we think the catch is going to be. Will it fill one basket? Two? Six? It’s even more exciting when we get inside and lay it out on the conveyor belt and can really examine everything carefully. His wish finally came true today as we are now in the eastern part of the Gulf. Alex is studying lionfish (Pterois volitans) for his research, and of course has been hoping to catch some. Today we caught 4, along with a multitude of other unique critters that we have not seen yet. Alex’s enthusiasm and passion for science is something I hope my students can find, whether it be in marine science, biology, or meteorology- whatever it is they love is what I hope they pursue.

Lindsey

Lindsey and Alex, getting ready to work.

Lindsey and Renee are both graduate students. Rene wanted to gain some experience and came on the ship as a volunteer. What a better way to get a hands-on experience! Lindsey has joined us on this cruise because she is doing research on Sargassum communities. She has been able to collect quite a few Sargassum  samples to include in her research for her thesis. Lindsey, like Alex, is very passionate and excited about what she does. I’ve never seen someone more excited to pull up a net full of Sargassum (which I’m sure you remember is a type of seaweed) in order to sift through and find critters. She has a great eye, though, because she always manages to find even the tiniest of critters in her samples. Just yesterday she found a baby seahorse that couldn’t have been more than a few millimeters long! Outside I hear her giggle with glee- I know this is because she has found a Sargassum fish, which is her all-time favorite.

deck crew

Our night shift deck crew- Tim, Chuck and Reggie

Our night watch would not be complete without the deck crew, Tim, Reggie and Chuck, who are responsible for helping us lower the CTD, Neuston and bongo tows, and for the trawl net. Our work could not be done without them.

William, one of our engineers, took me down into the engine room the other day. First impressions- it was hot and noisy! It was neat to see all the different machines. The ship makes its own water using a reverse osmosis system, which takes water from the ocean and converts it into drinking water for us (this water is also used for showers and sinks on board). One interesting note is that the toilets actually use salt water rather than fresh water so that we conserve our fresh water.

reverse osmosis

Our reverse osmosis systems.

I cannot believe how fast this leg has gone and that we only have a few more shifts to go before we return to the Oregon II’s  home port of Pascagoula. As we’ve moved into the eastern waters of the Gulf, we have seen a lot of different types of critters. On average, our most recent trawls have been much more brightly colored. We are near some coral reefs too- in our trawls we have pulled up a bit of coral and sponge. The markings on some of the fish are very intriguing, and even fish we’ve seen before seem to be just a little brighter in color out here.

Due to the fact that we are finding very different critters, my list of favorites for today has greatly increased! Here are just a few:

scorpion fish

The mouth of a scorpion fish. We’ve caught a bunch of these since we hit the eastern Gulf.

sea horse

A baby seahorse we pulled out of our Neuston tow. He was hiding in the Sargassum.

red snapper

One of our biggest red snappers.

box crab

This is another type of bashful crab, also known as the flame-streaked box crab (Calappa flammea).

octopus

This octopus sure liked my hard hat!

Justin Czarka, August 16, 2009

NOAA Teacher at Sea
Justin Czarka
Onboard NOAA Ship McArthur II (tracker)
August 10 – 19, 2009 

Mission: Hydrographic and Plankton Survey
Geographical area of cruise: North Pacific Ocean from San Francisco, CA to Seattle, WA
Date: August 16, 2009

Weather Data from the Bridge 

Sunrise: 6:29 a.m.
Sunset: 20:33 (8:33 p.m.)
Weather: no significant weather (wx)
Sky: partly to mostly cloudy
Wind direction and speed: north-northwest 20-25 knots; (kt) gusts to 30 kt
Visibility: unrestricted, reduced to 1-3 nautical miles (nm) in mist
Waves: north-northwest 6-9 feet
Air Temperature: high 18°C, low: 12°C
Water Temperature: 15°C

Science and Technology Log 

Wow! I stayed up past 2:30 a.m. this morning, but it was well worth it.  I witnessed one of the most spectacular displays of nature’s beauty.  There was a bioluminescent bloom, where patches of ocean glowed as if hundreds of Halloween glow sticks floated in the ocean.  While bioluminescence happens from time to time, this display of a glowing sea was unique.  Crew and scientists aboard the McArthur II, some who have been on ships for 30+ years, say that they have never seen a bloom like this.  As far as the eye could see (12 miles in every direction), for over four hours, there were huge patches of ocean glowing blue green. As you scanned toward the horizon, it became nearly solid green-yellow.   And to think that I almost missed it!

The turbulence in the McArthur II’s wake shines blue-green during a bioluminescent bloom 175 nautical miles off the Oregon coast.  The ship was lit up as if by lamps lit underwater.

The turbulence in the McArthur II’s wake shines blue-green during a bioluminescent bloom 175 nautical miles off the Oregon coast. The ship was lit up as if by lamps lit underwater.

Scientists ad crew were in the lounge watching a movie when the XO (Executive Officer) LT John A. Crofts rushed in saying, “You have to check this out! Come up to the bridge.” We thought it was some joke, but we hurried up the stairs three levels, entering the pitch-black darkness of the Bridge.  Looking out, you could see a panoramic view of hundreds upon hundreds of floating, glowing patches on wave crests. On top of this, it was a clear, dark night where you could see the entire Milky Way galaxy and star clusters never seen near any human settlement (due to light pollution). It was a fantastic, otherworldly experience, as if we had sailed into the sunset, entered dark, and found ourselves in a new universe.  Words are insufficient.

In scientific terms, what we were spectator to was a bioluminescent dinoflaggellate bloom. Dinoflagellates are a type of plankton. When the water is disturbed, it excites the dinoflagellates, causing them to emit the colors at night.  They are often seen close to shore, but not this far out in the Pacific. Or it could be that not many observers on a regular basis get out this far to see…

Personal Log 

Justin Czarka and Morgraine McKibben try on their survival suits during drills aboard the McArthur II.

Justin Czarka and Morgraine McKibben try on their survival suits during drills aboard the McArthur II.

I had a good talk with Linda Halderman, the wiper aboard the McArthur II. A wiper is a person who does many different tasks in the engine department.  She was talking to me about Personal Protective Equipment (PPE).  She mentioned that PPE has “become really big. I’ve just started learning about it while on the job, but it would be really good for students to learn from the start.”  It was a great conversation about safety equipment required for different jobs and the relevant cleanup. Safety has been of utmost important aboard the McArthur II. Alarms are tested daily.  Life jackets, safety harnesses, and hardhats are required during “ops” on the deck.  We even practice drills in the event that a fire would occur, someone fell overboard, or we would need to abandon ship. Everyone is delegated a role in the event of an emergency.

Vocabulary 

Dinoflagellate- a marine (ocean) plankton that propels itself with two flagella (bands around the organism) that provide propulsion and steering. Bioluminescence- “bio-“ meaning life; “-luminescence” meaning light.  An organism than emits light through an internal chemical reaction.

Did You Know?   

According to Bill Peterson, chief scientist, plankton (small plant and animal organisms in the ocean) are so prolific in quantity that the Long Island Sound is actually filtered completely every three days! In order to obtain nutrients from the ocean, these small organisms either pump water through their bodies or propel themselves through the water, and consequently the water through their bodies.  One doliolid filters about a liter of water every single day!  While small individually, these organisms truly play a significant role in the ocean ecosystem.  This is why the researchers are aboard the McArthur II.