John Bilotta, Super Highways of Currents and Super Specimens from the Deep: Days 5 & 6 in the South Atlantic MPAs, June 23, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 23, 2014

Weather:

Saturday: Sunny, some clouds,  27 degrees Celsius.  6.0 knot wind from the southwest.  1-2m seas.

Sunday:  Cloudy with morning rain clearing to mostly sunny in the afternoon.  27 degrees Celsius. 13 knot wind from the west. 2-4m seas.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

Science and Technology Log

Science Part I.  The superhighway under the surface: sea currents

Until today, most everything including the weather and sea conditions were in our favor.  On the surface it just looks like waves (ok well big waves) but underneath is a superhighway.  On Sunday morning the currents throughout the water column were very strong.  The result was the ROV and its power and fiber optic umbilical cord never reached a true vertical axis.  Even with a 300lbs down-weight and five thrusters the ROV could not get to our desired depth of about 60m.  The current grabbed its hold onto the thin cable and stretched it diagonally far under the ship – a dangerous situation with the propellers.  The skill of ROV pilots Lance and Jason and the crew on the bridge navigated the challenging situation and we eventually retrieved the ROV back to the deck.  I presume if I were back home on Goose Lake in Minnesota, I certainly would have ended up with the anchor rope wrapped around the props in a similar situation.  So, where is the current coming from and how do we measure it aboard the Nancy Foster?

The Gulf Stream.  Note the direction of the current and consider that on Sunday morning we were due east of North Carolina.

The Gulf Stream. Note the direction of the current and consider that on Sunday morning we were due east of North Carolina.

Answer: The Gulf Stream is an intense, warm ocean current in the western North Atlantic Ocean and it moves up the coast from Florida to North Carolina where it then heads east.  You don’t have to be directly in the Gulf Stream to be affected by its force; eddies spin off of it and at times, water will return in the opposite direction on either side of it.  Visit NOAA Education for more on ocean currents.

Answer: Aboard the Nancy Foster, we have a Teledyne ADCP – Acoustic Doppler Current Profiler.  The ADCP measures direction, speed, and depths of the currents between the ship and the ocean floor.  It’s not just one measurement of each; currents may be moving in different directions, at different depths, at different speeds.  This can make a ROV dive challenging.

For example, at 4pm on Sunday near the Snowy Grouper MPA site off the coast of North Carolina, from 0-70 meters in depth the current was coming from the north and at about 2 knots. At 70 meters to the sea floor bottom it was coming from the south at over 2 knots.  Almost completely opposite.

Hydrphone

Hydrophone

Another indication of the strong currents today was the force against the hydrophone. Hydrophones detect acoustic signals in the ocean.  We are using a hydrophone mounted on the side of the Nancy Foster to communicate the location of the ROV to the ship.  The hydrophone has to be lowered and secured to the ship before each dive.  It ended up in my blog today because the current was so strong, three of us could not swing and pull the hydrophone to a vertical position in the water column.  It was a good indicator the currents were much stronger than the past few days.

 

Science Part II.  Discoveries of Dives in the Deep

Snowy Grouper – one primary species we are on the hunt for this mission

Snowy Grouper are one of the species requiring management due to low and threatened stock levels within the federal 200-mile limit of the Atlantic off the coasts of North Carolina, South Carolina, Georgia and east Florida to Key West.  The MPAs help conserve and manage these species.  We were excited to have a few visit the camera lens the past two days.

Pair of Snowy Groupers photographed during one of our dives on Friday, June 20.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Pair of Snowy Groupers photographed during one of our dives on Friday, June 20. Sizes are approximately 30-50cm (12-20″).Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Snowy Grouper photographed during one of our dives on Friday, June 20.   Size is approximately 40-50cm (16-20").  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Snowy Grouper photographed during one of our dives on Friday, June 20. Size is approximately 40-50cm (16-20″). Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Snowy Grouper and a Roughtongue Bass photographed during one of our dives on Friday, June 20.   Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Snowy Grouper and a Roughtongue Bass photographed during one of our dives on Friday, June 20. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

 

Scorpianfish (scorpaenidea)

Scorpianfish (scorpaenidea) photographed during one of dives on Saturday, June 21.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Scorpionfish (Scorpaenidea) photographed during one of dives on Saturday, June 21. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Eel

Eel photographed during one of our dives on Saturday, June 21.  Saw many of these peeking out of their homes in crevices.  We  were lucky to capture this one in its entirety. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Eel photographed during one of our dives on Saturday, June 21. Saw many of these peeking out of their homes in crevices. We were lucky to capture this one in its entirety. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Invertebrates – (with much thanks to my education from Stephanie Farrington)

Stichopathes, Diodogordia, & Ircinia Campana.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Stichopathes, Diodogordia, & Ircinia Campana. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Leiodermatium, Nicella, feather duster crinoids, and a Red Porgy in the far background.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Leiodermatium, Nicella, feather duster crinoids, and a Red Porgy in the far background. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Science Part III.  Rugosity- 

Rugosity is sea- bottom roughness.  Probably one of the terms and skills I will remember most about this experience.  In oceanography, rugosity is determined in addition to the other characteristics I am more accustomed to:  slope, composition, and the cover type (plants, animals, invertebrates.)  It was a little challenging for me to incorporate this into my observations the first few days so thought I would share two of the stark differences.   This compliments my strong knowledge and passion for teaching earth science with Earth AdventureI cannot wait to use this content in future Earth Balloon & Earth Walk Programs!

Rugosity Comparison. Low rogosity on the left; high rogosity on the right.  The low has a flat plain where as the high has rocks, deep crevasses, slopes, and texture.  Snowy Grouper desire high rogosity.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Rugosity Comparison. Low rugosity on the left; high rugosity on the right. The low has a flat plain where as the high has rocks, deep crevasses, slopes, and texture. Snowy Grouper desire high rugosity. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Science Part III.  Day Shapes

When a ship has restricted ability to move, the ship displays vertically (up to down) from the mast a black ball, diamond, and black ball.  This informs other ships and vessels in the area not to approach the Nancy Foster as we can’t move; the ROV is in the water.  While radio communication is an option, this is a marine standard that signals others to stay away.  If we were deploying the ROV at night, a series of lights communicate the same message.  On Sunday morning, we observed three recreational fishing boats probably a 1.5 kilometers from the ship.  It seemed one was moving towards us likely interested in what was happening aboard the giant Nancy Foster.

Day shapes displayed on the Nancy Foster ship mast;  black ball, diamond, and black ball.  The NF has restricted ability to move; the ROV is in the water.

Day shapes displayed on the Nancy Foster ship mast; black ball, diamond, and black ball. The NF has restricted ability to move; the ROV is in the water.

 

Career highlight:  

Lance Horn and Jason White are the two ROV pilots on board from the University of North Carolina Wilmington.

ROV pilots Lance Horn and Jason White.  On the left, Lance surveys the ocean 'shall we launch the ROV or not?' - or perhaps we is just thinking deep thoughts.  On right, Lance and Jason preparing the cable prior to dive.

ROV pilots Lance Horn and Jason White. On the left, Lance surveys the ocean ‘shall we launch the ROV or not?’ – or perhaps he is just thinking deep thoughts. On right, Lance and Jason preparing the cable prior to dive.

OLYMPUS DIGITAL CAMERA

John & Jason White at the ROV pilot control center.

Personal Log:

A week without television.  While I brought movies on my iPad and there is a lounge equipped with more than nine leather recliners, a widescreen, and amazing surround sound, I haven’t yet sat down long enough to watch anything.  I spend 12 hours a day being a shadow to the researches trying to absorb as much as I can and lending a hand in anything that can help the mission. Most of my evenings have been consumed by researching species we saw during the dives using taxonomy keys and well, just asking a lot of questions.  I go through hundreds of digital pictures from the ROV and try to make sense of the many pages of notes I make as the researchers discuss species, habitats, and characteristics during the dives. While I am using a trust book version as well as the multiple poster versions scattered on the walls in the lab, here is a great online key.

Sunday evening, crew members of the Nancy Foster invited me to join them in a game of Mexican Train – a game using Dominos.  Thanks Tim for including me!  I am going to have to purchase this for cabin weekends up north in Minnesota (when the mosquitoes get so large they will carry you away and we can no longer go out in the evenings).

When the Acoustic Doppler Current Profiler wasn’t working, we just called on King Neptune and his kite to help us gauge the wind speed, direction and the currents.  Wait, I thought he carried a scepter?

King Neptune collage

Tim Olsen, Chief Engineer – 11 years on the Nancy Foster and 30 years as Chief Engineer.

Espresso!  I really was worried about the coffee when coming aboard the Nancy Foster for 12+ days.  What would I do without my Caribou Coffee or Starbucks?  Chief Steward Lito and Second Cook Bob to the rescue with an espresso machine in the mess.  John has been very happy – and very awake.

I made it a little more progress reading The Big Thirst by Charles Fishman.

In 2009, we spent $21 billion on bottled water, more on Poland Spring, FIJI Water, Evian, Aquafina, and Dasani than we spent buying iPhones, iPods, and all the  music and apps we load on them.”  (p337)

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.

NOAA’s Coral Reef Watch has a great site of definitions at

http://coralreefwatch.noaa.gov/satellite/education/workshop/docs/workbook_definitions.pdf

  • Hydrophone
  • ADCP
  • Rugosity
  • Nautical knot

John Bilotta: A World of Wonder under the Waves, Days 1-4 in the South Atlantic MPAs, June 20, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 20, 2014

Weather: Sunny with clouds.  26.6 Celsius.  Wind 13 knots from 251 degrees (west).  1-2m seas from the north.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

 

Science and Technology Log

Research mission objectives – what am I doing out here?

Gathering data on habitat and fish assemblages of seven species of grouper and tilefish in the South Atlantic MPAs . These species are considered to be at risk due to current stock levels and life history characteristics which make them vulnerable to overfishing.   Information gathered will help assess the health of the MPAs, the impact management is having, and the effectiveness of ROV exploratoration to make these health assessments.

Science Part I:  Multibeam sea floor mapping  Multibeam sonar sensors — sometimes called multibeam acoustic sensors echo-sounders (MB for short)  are a type of sound transmitting and receiving system that couple with GPS to produce high-resolution maps of the sea floor bottom. See how it works by checking out this cool NOAA animation. MB mapping is occurring all night long on the Nancy Foster by a team of expert mappers including Kayla Johnson, Freidrich Knuth, Samantha Martin, and Nick Mitchell (more on them and their work and NOAA careers in a future blog).  Our Chief Scientist Stacey Harter has identified areas to map.

OK, so we aren't exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist in one of my first pictures.

OK, so we aren’t exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist Stacey Harter in one of my first pictures.

By morning, after the mappers have worked their magic on the data, Stacey is able to see a visual representation of the sea floor.  She is looking for specific characteristics including a hard sea floor bottom, relief, and ridge lines – important characteristics for the groupers, tilefish, hinds, and other fish species under protection and management.   Stacey uses these maps to determine transects for ROV exploration.  Those transect lines are used by both the scientists driving the ROV and the navigation crew aboard the Nancy Foster.  Once down on the ocean floor, the ROV pilot follows this transect and so must the ship high above it in the waves driven by the crew.  Although 3 floors apart – it’s amazing to hear the necessary communication between them.  (Watch for one of my future posts that will highlight a MB map and a sample transect line.)

Science Part II:  ROV exploration – Completion of 8 dives

By the time this posts, we will have made 8 dives with the SubAtlantic Mohawk 18 ROV from University of North Carolina. (perhaps we will have made more dives because internet via satellites is slow and I am uncertain when this will really get posted.)

JB and ROVs first date aboard the aft deck on the Nancy Foster

JB and ROVs first date aboard the aft deck on the Nancy Foster

The ROV joined the mission with its two pilots, Lance Horn and Jason White.  Pilots extraordinaire but I otherwise see them as the ROV’s parents guiding and caring for its every move.  The technology aboard the ROV is incredible including a full spectrum video camera, a digital camera, sensors to measure depth and temperature, and 4 horizontal thrusters and one vertical thruster with twin propellers.   The ROV has donned a pair of lasers which when projected on the sea floor allow the scientists to measure items.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

John receiving launch instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

John receiving ROV deployment instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

 

ROV deployment

ROV deployment

 

The ROV control station is daunting!  As one may imagine, it does include three joysticks accompanied by multiple switches, buttons, lights and alarms – all just a fingertip away from the ROV pilot.   Five monitors surround the pilot – some of them are touch screen activated adding more to the selection of options at their fingertips.  Is a Play Station a part of your daily routine?  Perhaps you should consider a career at NOAA as a ROV pilot!

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital pictures, 6.  Laptop controlling digital pictures, and 7.  Multiple DVD recorders.

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital picture technician, 6. Laptop controlling digital pictures, and 7. Multiple DVD recorders.

 

While the ROV drives and explores a set transect line, six additional scientists and assistants identify and record habitat, fish species, invertebrates, and other items that come into vision on any one of the monitors scattered around the lab located inside the ship.  Two scientists are recording fish species and a scientist accompanied by me the past two days are identifying habitat and invertebrates.

JB Invertebrate Logging

John assisting Stephanie Farrington (not pictured) with habitat and invertebrate identification and logging.

Of course, the ROV is on the move constantly, so fish and items of interest are flying by – you don’t have time to type or write so the scientists use short cut keyboards pre-coded with species and habitat descriptors.   Meanwhile another scientist is narrating the entire dive as everything is being recorded and yet another is controlling DVD video recording and centering and zooming the digital camera capturing hundreds of pictures during a dive.  You would be surprised by the number of computers running for this operation!  What is amazing is that everything will be linked together through a georeferrenced database using latitude and longitude coordinates.

Science Part III.  What have we seen and discovered?

On June 19th & 20th we completed 8 dives.  Some of the first species we saw included the shortbigeye, triggerfish, reef butterflyfish, and hogfish (Here is a good link of fish species on the reefs located here.)   We also observed a few stingrays and speckled hind.  For invertebrates, we saw a lot of Stichopathes (tagged as dominate during the dives) and fields of Pennatulacea (long white feathers).  We also saw echinoderms and solitary cap coral (a singular, white tube coral) and discovered a Demospongiae that Stephanie, one of the Research Biologists (see below) hadn’t seen yet; we called it a bubble-wrap sponge in my hand-written notes.

Dive053089 15 52 18

Dive053061 15 28 29 Cubya Dive052019 12 23 13 ???????????????????????????????

 

Things that we saw today that we wished we hadn’t seen: 

Pollution  So with much of my teaching centered around clean water and pollution prevention and mitigation, I was saddened to discover the following items on the ocean floor during the first five dives: Plastic bags, cans, a barrel, a clearly visible rubber surgical glove, and an artillery shell. Interesting – from the ROV you can easily spot what the scientists call ‘human debris’ as it often has straight lines and corners, distinctly human crafted shapes – not like mother nature engineers.

Plastic balloon found during dive #2 at about 60 meters.

Plastic balloon found during dive #2 at about 60 meters. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Black plastic garbage bag found at about 60 meters.  NOAA UNCW. Mowak ROV June 2014.

Black plastic garbage bag found at about 60 meters. NOAA UNCW. Mohawk ROV June 2014.

 Invasive species – Lionfish are everywhere!  Why are Lionfish undesirablehttp://oceanservice.noaa.gov/facts/lionfish.html 

Lionfish - multiple sitings today.  Photo credit:  NOAA UNCW

Lionfish – multiple sitings today. Photo credit: NOAA UNCW Mohawk ROV. June 2014.

 

Career highlight:  Stephanie Farrington, Biological Research Specialist

Harbor Branch Oceanographic Institution at Florida Atlantic University

Masters of Science in Marine Biology.  Bachelors of Science in Marine Science and Biology.

Stephanie’s expertise is in collecting, classifying, and mapping marine biology with emphasis in habitats and invertebrates.  She is also proficient in ArcGIS for mapping and maintaining a database of everything she sees, discovers, and observes.  During this research trip, she is the scientist charged with identifying the habitat with an emphasis on the invertebrate species that speckle the sea floor.  For the past two days I have shadowed her side – watching the video feed from the ROV and logging.  She is a wealth of information and I really appreciate sitting next to her the past two days.  She is a master in biology and a master in buttons – and a fun spirit too.

 

Personal Log

Day 2 was spent almost entirely in transit – getting north from Mayport to Georgia, almost 9 hours.  Part of that time was spent getting to know the research team and participating in safety drills.  Sorry everyone; I did not get a picture of me in my red gumby suit (aka the life saving immersion suit).  Upon recommendation from a colleague (you know who you are) I also spent two hours on a bench on the bow reading The Big Thirst by Charles Fishman

“If Earth were the size of a Honda Odyssey minivan, the amount of water on the planet would be in a single half-liter bottle of Poland Spring in one of the van’s thirteen cup holders.” 

Although I have been out on the ocean before as well as the Great Lakes, on this day I simply felt tiny in a vast sea of blue.

For those who know me during my off-work hours, I also hit the ship’s gym -yes, that’s right, I am keeping up my routine with one exception.  My Paleo diet is now nearly broken – too much great food here from the ship’s chef’s, including ice cream.

Last night, at the end of Day 3 (Thursday) I spent the evening on the beach!  Well actually, what they call steal beach – a platform aft (behind) the ship’s bridge equipped with lounge recliners to watch the sunsets.  I sat up for seemingly hours trying to write all my excitements and discoveries in a log I am keeping.  Don’t worry though, I won’t make you read it all; my blog readers will only see a small snapshot of all I have been seeing and discovering!

 

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  NOAA’s Coral Reef Watch has a great site of definitions HERE.  

  • Immersion suit
  • Transect
  • MPA
  • Invertebrates
  • Rugosity
  • Multibeam mapping
  • Bathymetry
  • Dominate species
  • Habitat
  • Echinoderms
  • CTD probe