Sue Zupko: 9 Under the Sea

NOAA Teacher at Sea: Sue Zupko
NOAA Ship: Pisces
Mission: Study deep water coral off the east coast of FL
Geographical Area of Cruise: SE United States from off Mayport, FL to Biscayne Bay, FL
Date: June 3, 2011

Weather Data from the Bridge
Position: 29.1°N 80.1°W
Wind Speed: Light and variable
Wind Direction: 112 true
Visibility: 10 n.m.
Surface Water Temperature: 28.6°
Air Temperature:28.2°
Barometric Pressure:1015.3
Water Depth: 82 m
Salinity: 36.5
Wet/Dry Bulb: 28.2/24.5

Red fish called Big Eye hovering over a rough sand bottome with a small fish below it.
Big Eye

Before reading further, vote on the survey above.

I was reminded on this voyage that colors change at depth in the ocean.  If you were swimming at 60 feet, you wouldn’t see reds.  Jana said she cut her leg while diving a few years ago at 60 feet.  She watched the blood coming from the cut and it was black to her eye.  Knowing it was probably wise to come to the surface with a cut like that in the open ocean, she started ascending (coming up).  At 30 feet she stopped to look at her cut.  The blood was green.  Is Jana a Vulcan?  As she rose to the surface, she continued to watch her blood flow from the cut.  At the surface, finally, the blood was red.

Light is interesting.  The white light we see has all the colors coming from it.  When you think of the rainbow, red has the longest wavelength, and the lowest energy.  When your friend is wearing a red shirt, you are actually seeing the red wavelengths reflecting (bouncing) back to hit your eye.  So, your mind sees red.  It doesn’t mean you’re angry (Get it? That’s a joke).  However, in water, particles, such as detritus and plankton,and the water itself, get in the way and block or absorb the wavelengths.  Since red has low energy, it gets interfered with quickly.   The shorter, higher-energy blue wavelengths can reach down farther.  Now, think back to our Big Eye example.  He’s red.  However, at depth he looks black and is camouflaged against the background of dark rocks and shadows.

Try this at home.  Take a red or blue transparent bottle.  I have a red water bottle that I can see through.  Put a blue object behind it such as an internet cable or a shirt.  What color does the object appear to be now?  I’ll bet a really dark purple or a black.  You might try a blue transparency over a red picture.  One of my students, Kaci, was creating a PowerPoint slide show.  His background was patriotic with red, white, and blue stripes.  He wanted to pick a contrasting color to continue the patriotic theme of red, white, or blue.  As a solution, he chose a transparent rectangle as a background to dark blue letters.  The colors turned out a bit strange in the background and he had to fiddle with his transparency a bit.  That is similar to the fish color being distorted by the water when there is little light at depth.

When the ROV (Remotely Operated Vehicle) shines its light on the fish, we see the real color of the Big Eye. There is very little distance for the water and particles in the water to distort the red color.  The LED (Light Emitting Diode) headlights on the ROV have a powerful beam so we can see the real color of the fish.

To read more on how color works in water, click here.

Pink hogfish swimming away from the camera.
Hogfish
A red coral with a little scorpion fish next to it on the left
Soft coral called a gorgonian

Michele Brustolon, July 7, 2010

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)
Date: July 7, 2010

Weather Data from the Bridge

Time: 1500
Latitude: 56.30N
Longitude: 172.05W
Cloud Cover: 100% (8/8)
Wind: 16 knots
Air Temperature: 8.00 C/ 460 F
Water Temperature: 7.30 C/ 450 F
Barometric Pressure: 1011.8 mb

Science and Technology Log

Where am I?
Life aboard a ship is difficult to comprehend until you have experienced it first hand. If you forget something, oh well, and you live with what you have for the duration of your leg. Planning ahead is huge for a mission to the Bering Sea! (Sound familiar students?!) Life at sea can be much slower than I think people believe it to be. On this particular type of cruise, much of the day is spent waiting, watching, and analyzing information. While everyone has their job, some of those jobs require patience and flexibility.

NOAA Ship Oscar Dyson anchored in Dutch Harbor

What happened?

Ever have that moment when a demonstration fails, the cool lab you worked so hard on doesn’t work, there’s a schedule change thrown into your day, or maybe that special dinner you were planning didn’t taste right? It happens on the boat too! You have to be prepared and understand that it is going to happen. Equipment failure, human error; they all happen on board. I arrived in Dutch Harbor on June 26th and we were scheduled for departure on June 27th. There was a broken crank shaft in one of the large generators so our departure from Dutch Harbor was an educated guess at best. Without the generator, we would be in short supply of fresh water for a ship holding 39 people until July 16th. There wasn’t anything that we could do so we took advantage of being in Dutch Harbor for a couple of extra days until we departed on June 29th. Maybe the copper wire was cut before it reached the bottom on an XBT or there was a hole in the trawl net that needed to be mended. That part of life on board is no different than any other environment.

It’s an albatross, an orca, a tree?

Talk about patience…the mammal observers have lots of it. They are on watch constantly looking along the horizon for blowholes and other signs of mammalian life. When observations are slow, anything in the water can become exciting. Earlier this week while I was on the bridge, the mammal observers called down from their observation deck to the bridge because there was an object in the water that we were getting closer to. You could feel the excitement from everyone growing as this magnificent object grew closer. We got our cameras ready because this could be “the” picture of the trip and positioned ourselves to take the shot of our lives. As we approached this rather large piece of unidentified matter, we realized that it was a piece of driftwood with murres hanging out on it. At this point, the adrenaline rushed out of me and laughter took over. None of us could believe how excited we became and how let down we were to find out it wasn’t a mammal at all. Back to the observation deck!

Looking toward the horizon through the “Big Eye”

You can’t force the fish!

My primary job on this boat is to help with the fish surveying. Using the acoustics helps decide when the trawl nets are deployed for fishing. In order for fishing to occur there needs to be at least 2-3 miles of pollock showing up on the transducer screens. Weather also plays a role on what we see on the transducers. We have been very pleased with the weather so far; although it has been foggy, that usually means calmer seas. Later in the week, the weather is supposed to get dicey. When this happens there is a chance that it will be too rough to fish even if we do see the pollock. Look for my journal on weather after the weekend! Since the start of our journey we have fished three times during my shift and deployed the Methot a few times. When we are not fishing we find other things to keep us busy. Some people are analyzing data, checking equipment, or if you are a teacher at sea, you may be documenting all of your experiences. I have never taken so many pictures! The down time gives me a chance to talk to others on the boat to see what other operations are happening. As my friends and family know, I have a hard time sitting still. This is the perfect place for me to be because I have no choice but to slow my pace! It’s REALLY hard, but I think I am doing a pretty good job!

What shift are you working?

Aside from the flexibility needed to work on the ship, you also need to be flexible and patient just to live on board. Remember, you can’t just leave the ship when you need a break! The boat runs 24/7 so there are lots of shifts on the boat. To give you an idea you may be on watch for 4 hours in the dead of the night, or you may be observing mammals from sunrise to sunset. I was lucky to land the 12 hour shift from 0400-1600, but the other fisheries crew comes on for the remaining 12 hours of the day. I say this because with a full crew of 39 people on board and with everyone working different shifts, there is etiquette on board a vessel. If you and your roommate do not have the same shift, it is the unwritten rule not to enter the room while they are sleeping. That means you need to take everything with you for that shift. Not everyone eats during the allotted times that the mess hall is open so food is often set aside so everyone can have their meals regardless of what shift they work. Taking showers need to be short because everyone would like to take a hot shower after 12 hours of working. Appropriate volume is important because there may be people sleeping in the stateroom next to you and you don’t want to wake them while they are trying to sleep when off shift (remember inside voices!). It makes you very aware of your surroundings. I absolutely lucked out because Rebecca (the other TAS) and I have the same shift and same schedule. We have it much easier than most people on the boat that have opposite shifts.

TAS shift- 0400-1600
TAS stateroom (where we sleep)
TAS stateroom (where we sleep)

Can anybody hear me?

Need time away from the hustle and bustle of life back on land? Need to take a break from your TV, cell phone, blackberry, I phone, and the internet…the Bering Sea is the place for you! Even though there is a phone on board that allows you to call off the ship, it is extremely expensive so it is definitely not for everyday use. Phones don’t work here so you can save the batteries in your cell phone or I phone for home. Most of them actually don’t even work on Dutch Harbor either. As far as the internet is concerned, that’s a little trickier. As you may have noticed, my journals took a while to be posted. It is very difficult to send information via internet from the Oscar Dyson. If we are traveling on a northern transect, we may not get internet the entire time. The transect itself could take 2 days to complete running at 12 knots! If we are turning or heading south, we may get lucky for a while. Therefore it takes time to get all the information and pictures sent just to be posted. It is very hard to be patient because I want everyone to know what’s happening and all the cool things we have been doing. Internet is sporadic at best, but keep the emails coming! It is nice to hear from everyone back home!

Transects for Legs I-III for 2010

Animals seen
murres
fulmars
brittle stars- Ophiura sp.
basket star
sand dollars
hermit crabs
2 types of cockles- Clinocardium sp. and Serripes sp.
Tanner crab
Aleutian moonsnail
Arctic moonsnail
jellies- Chrysaora melanaster
krill- euphausiids
amphipods
Dall’s porpoises
flounder- Kamchatka flounder
spiny lumpsucker

Basket star

Word of the day
Dupe: to deceive, fool

New vocabulary
Head: bathroom
Mess hall: cafeteria, where you eat your meals

Karen Matsumoto, April 19, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: Friday, April 16, 2010

Science and Technology Log

The research mission for this cruise is to follow a transit from Guam to O‘ahu, Hawai‘i via Wake Island, and conduct an acoustic (hearing) and visual (seeing) survey of cetaceans (whales and dolphins) along the way. A transit is similar to a transect line you use to monitor our beaches in our nearshore studies! This transit study will be conducted from April 19 to May 4, 2010. This project represents important and groundbreaking research for whale biologists, since very little is known about the distribution and vocal behavior (the sounds made by whales) of baleen whales in this part of the Pacific.

Our research mission has several objectives:

  • Collect data on the presence of whales/dolphins and their abundance (how many)
  • Collect tissue samples from whales/dolphins for genetic studies
  • Collect photo identification on any whales/dolphins observed
  • Collect acoustic (sound) data on whales/dolphins to help in species identification and understanding their vocalizations
  • Collect acoustic data on fisheries to understand the distribution of prey species along the transit line
  • Recover and install underwater acoustic monitoring equipment, called a HARP (High-frequency Acoustic Recording Package), near Wake Island that will remain there for a year.

The research team consists of 12 scientists who are trained in visual observations of cetaceans and acoustic monitoring. I am part of the research team, and will fill in for staff conducting the visual observations and routinely conduct the acoustic monitoring.

The visual observation team consists of eight biologists rotating between four stations: Two “big eye” (25 x 150) binocular stations, one on the port (left) side and one on the starboard (right) side; one station forward observing with the naked eye and 7X binoculars; and one station rear-facing looking behind the ship with naked eye and 7X binoculars. Scientists work on 2-hour shifts and rotate among the scientists.

Visual observation station on flying bridge.
Research team member Adam on a “Big Eye”.

The acoustic team monitors whale vocalizations using two different methods. One method uses a hydrophone array towed behind the ship 24 hours a day (mostly to monitor toothed cetaceans, including dolphins). This hydrophone array is similar to the ones installed at Seattle Aquarium, Neah Bay, and other locations to monitor orcas and other whales in Washington State.

The other acoustic monitoring method uses Navy surplus sonobuoys (which were originally developed to detect submarines) that are launched three times a day at 0900, 1300, and 1700. The sonobuoys have a wide range in frequency response. They are able to pick up sounds between 5 Hz (cycles per second) and 20,000 Hz. Although humans have a hearing range of about 20 Hz to 20 kHz (20,000 Hz), our hearing is most sensitive between the frequencies of 1 kHz (1000 Hz) and 10 kHz (10,000 Hz). So, we can hear some of the clicks, whistles, and ‘boings’ of some dolphins and whales (‘boings’ are made by minke whales), but we have to “visually hear” others that are too low for humans to hear. The vocalizations of some baleen whales are not audible to the human ear, but are detected by the sonobuoy and are visible on the computer with the use of special software. We visually monitor from a range of 10 Hz to 240 Hz, to detect the presence of baleen whales, while listening for higher frequency vocalizations. Signals picked up from the sonobuoys are transmitted to a radio receiver on the ship. All data, including measurements of a vocalization frequency range and duration are recorded on a computer program and also logged in a hand-written journal and rerecorded on an Excel spreadsheet. All data collected will be carefully analyzed in a lab at a later date.

So far on the research cruise, there has been very little cetacean activity observed by visual observers or the scientists conducting acoustic monitoring. These waters have not been widely surveyed for cetaceans, so any data will add to the collective knowledge base of this area. As a scientist, it is important to remember that “the absence of data is data” in understanding the presence/absence and abundance of cetacean species in these deep, low productivity ocean waters.

Personal Log

The Oscar Elton Sette received its sailing orders to leave at 1500 on Monday, April 19, 2010. The generator part we were waiting on finally arrived (by way of Japan!) and we set sail promptly at sailing time. I am finally getting used to using the 24-hour clock!

Sailing orders.
Leaving the dock at Guam.
Sette’s colors flying!

We left Guam with fairly calm seas, but the winds picked up and we were soon rockin’ and rollin’! We had our “Welcome Aboard” meeting, where we learned about ship protocols and safety, as well as getting to know some of the ship’s crew. Of course, a large part of sailing preparation is the “safety drill” and I had my first “close encounter” with a survival suit! The Safety officer, Mike promptly provided me with a survival suit that actually fits much better…the first one could have accommodated two of me!

Karen in survival suit made for 2 Karens.
…and out of the survival suit! Whew!

I was ill prepared for what was to come. With high seas, and no “sea legs” I was struck by seasickness, which sent me right to my bunk to sleep—in fact that was about all I could do! We are fortunate to have a wonderful Doc on board, who provided me with the right meds and advice to be able to recover and feel human again! The greatest comfort I’ve gotten in a long time was to know that “the survival rate for seasickness is 100%!”

Doc Tran who took care of all of the seasick scientists!
My bunk, where I spent most of two days recuperating!

New Term/Phrase/Word of the Day: sonobuoy

Question of the Day: Did you know that sonobuoys were first developed by the U.S. Navy, made to be dropped from aircraft, and designed to locate submarines during WWII?

Something to Think About:

Whales migrate to tropical waters to give birth in winter and spring, and travel to colder, food rich waters for feeding during the summer.

Animals Seen Today:

• Spotted dolphin (Stenella attenuata)

Did you know?

…that scientists take tissue biopsy samples from cetaceans by using a crossbow to shoot a special dart with a metal tip that penetrates the skin and blubber then pops out. The dart has a float and string attached to one end so that it can be retrieved easily with the tissue sample (about the size of a pencil eraser) still inside the tip. Whale research scientists have to be good archers! Don’t worry, the animals rarely notice when they are darted!