David Altizio May 24-26 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Dates: Monday, May 24 and Tuesday, May 25,
Wednesday, May 26

Weather Data from the Bridge

Position: Hassler Harbor
Time: 0800 on 5/24
Latitude: 550 13.06’ N
Longitude: 1310 27.15’ W
Clouds: Light drizzle
Visibility: 8 miles
Position: Inside Passage
Winds: Light with variable directions
Time: 0800 on 5/25
Waves: Less than one foot Latitude: 52024.5’N
Dry Bulb Temperature: 11.20C
Longitude: 128030.0’W
Wet Bulb Temperature: 10.00C
Clouds: Mostly Cloudy
Barometric Pressure: 1006.4 mb
Visibility: 10 + miles
Tides (in feet):
Winds: 10 knots from the NE
Low @ 0439 of 0.1
Waves: One to three feet
High @ 1055 of 13.1
Dry Bulb Temperature: 11.00C
Low @ 1637 of 2.2
Wet Bulb Temperature: 10.10C
High @ 2254 of 16.4
Barometric Pressure: 1009.1 mb
Sunrise: 0422
Sunset: 2105

Science and Technology Log

On Monday we were testing one of the multi‐beam sonar transmitters that had not been working properly on the Fairweather, in Hassler Harbor near Ketchikan, AK. In order to verify that the device is working properly the ship went back and forth over an area that has previously been mapped from all different directions. This is called patch testing. Ideally you are looking for no difference in the data from one test to another test.

Me,at the helm,driving the Fairweather.
Me, practicing using the line throwing device.

While on board Monday, we also practiced using a line throwing device. This piece of equipment can be used for ship to ship rescue operations, or to get a line onto a pier if needed, or for other rescue operations. The device is powered by 3000 lbs. of compressed air. Today we only fired a test line, but the real one can travel almost 200 meters. Being prepared and knowing what to do in the case of an emergency is extremely important while out at sea. Not only was I allowed to use the device, but so was anyone else on board who had not learning how to use it properly.

Marine aneroid barometer measures air pressure.
Digital anemometer showing wind speed and wind direction.

I have also been collecting and recording the weather data from the bridge of the ship. These observations are made every hour. There are many different meteorological instruments on the Fairweather. The atmospheric pressure is recorded using an aneroid barometer. The dry and wet bulb temperature readings were taken off of a sling psychrometer, just outside of the bridge. The wind direction and wind speed were taken from a digital anemometer and verified using the vectors of the wind direction and the heading of the ship. The visibility, wave height and the cloud cover are estimated visually by observing them from the bridge of the ship.

One of the ship’s officers, tracking our plot by hand on the chart.
Me taking the temperatures off of a psychrometer outside of the bridge.

I was also given the opportunity to man the helm and drive the Fairweather, for about 10 minutes as we headed south towards British Columbia, Canada. The bridge of the Fairweather has a many different screens, monitors, sensors and gauges. In order to see where we are going there are digital charts, which have our path projected on them. Also, some of the ship’s officers will verify our position along our course by hand. The depth to the bottom is determined by a fathometer, which works by using SONAR, not as complex as the multi‐beam mapping but more similar to a fish finder. In many maritime activities the depth is measured in fathoms. One fathom is approximately 1.8 meters or 6 feet. Knowing where you are and where other vessels are is extremely important.

Some of the Fairweather’s navigation systems.
Digital fathometer, measuring depth to the bottom using SONAR

The Fairweather has enough beds to hold a maximum of 58 crew members. The ships personnel is divided between: NOAA Corps officers, survey, deck, engineers, stewards,  electronics technician and visitors. There are almost 15 NOAA officers on the Fairweather, including the CO (commanding officer), XO (executive officer), FOO (field operations officer), and all the way thru captain lieutenant commander, 3rd mate, lieutenant, and ensigns. The survey group has approximately 10 people including the chief survey technician, senior, regular, and assistants.

More of the Fairweather’s navigation systems.

Digital readout of ship’s GPS (global positioning system) for precise latitude & longitude, speed in knots, and heading in degrees.

The deck group has 12 people and they help to maintain the deck areas, drive the launch boats, and help out in the anchoring and docking processes. There are 10 engineers who  make sure the ship is running properly. There are three stewards (cooks) who are amazing and make sure everyone is fed very well. There are 2 electronics technicians, and anywhere from two to five visitors, such as teachers at sea, technology support, mission/NOAA related personnel.

My stateroom on the Fairweather’s.
Fairweather’s store.

The Fairweather was originally commissioned in October 1968, deactivated in 1989 but a critical backlog of surveys for nautical charts in Alaska was a motivating factor to reactivate it in August 2004. The home port for the Fairweather is Ketchikan, AK and it operates mostly in Alaskan coastal waters. It is designed and outfitted primarily for  conducting hydrographic surveys in support of nautical charting, but is capable of many other missions in support of NOAA programs. The ship is equipped with the latest in hydrographic survey technology – multi‐beam survey systems; high‐speed, high‐resolution side‐scan sonar; position and orientation systems, hydrographic survey launches,  and an on‐board data‐processing server. It is 232 feet long, with a beam of 42 feet. It weighs 1,591 tons and the hull is made of welded steel. The Fairweather has a range of 6,000 autical miles, can stay at sea for 30 days, and has an average cruising speed of 12 knots.

The galley (kitchen) on the Fairweather.
Dish washing station on the Fairweather.
Mess hall (dining area) on the Fairweather.
One of the food storage areas on the Fairweather.

The staterooms on the Fairweather are fine for two people to live in. There is a bunk bed, dresser/desk area, closets, sink, small refrigerator, and a TV. The food on the Fairweather is really good, not just for being at sea, but really good with a lot of different options. There is also a small store where you can buy candy, soda and clothing with logos and images of the ship. There is a small workout room that people do use to keep active. There are three different food storage areas, one for dry goods, a refrigerated area, and a freezer. The Fairweather also has laundry facilities and a sick bay.

Laundry room on the Fairweather.
Fairweather at Customhouse Cove.

Personal Log

It is hard to believe that we are already heading south towards Seattle, WA. I have really enjoyed my time onboard the Fairweather and will never forget these experiences. Being a Teacher at Sea is amazing and I highly recommend it. I have seen so many different and new things that I can now add to my “teacher toolbox”.

On Monday, being able to learn how to use the line throwing device was very cool, but that was not the highlight of my day. I was also given the opportunity to man the helm, and drive the Fairweather for about 10 minutes. It is amazing that a ship this big is so responsive to small changes in the angle of the rudders. It was sort of like driving a really big car, in the sense that when you turn the wheel right the ship goes right and turning left makes the ship go left. There is a lot to do when at the helm. You have to make sure that we are following the correct heading, going the proper speed, not heading towards any other vessels or obstructions such as logs or other debris, and in water that is deep enough for the ship. As much fun as it was it was a little nerve racking, my palms were definitely sweaty.

Along the Inside Passage

I did have the help of four other NOAA officers to assist me and help me know what to do. It is not only up to the person at the helm to make decisions about what to do or which course to follow. The Fairweather is definitely a place where the junior officers are being trained and learning what to do in all types of situations. This aspect of helping and learning was prevalent in many aspects of what I observed while onboard the Fairweather and was great to see.

A while after I manned the helm, the seas got a little rougher as we went through Dixon entrance which marks the boundary between SE Alaska and British Columbia Canada. Here we were exposed to ocean swell from the Pacific Ocean/Gulf of Alaska. I was very glad this did not go on for too long. I made the mistake of trying to write this log while the ship was rocking and rolling a little bit. Not such a good idea. One of the officers told me to put down the computer, go out on the stern (back) of the ship, and look at land along the horizon. Being outside in the fresh air, while looking at land made me feel much better.

The sick bay on the Fairweather.

The rest of the trip towards Seattle has been very nice. The seas have not been too rough, and I am really enjoying the scenery as we go through the inside passage of British Columbia, Canada. Coming home and going back to New Rochelle High School will definitely be a change from the last two weeks. I will never forget the places, people and the science I have been exposed to in my time on the Fairweather in SE Alaska. We are now in the Puget Sound, and Seattle is almost in sight and I am ready to be home, back in New York.
Signing out, David Altizio Teacher at Sea

Jessica Schwarz, June 22, 2006

NOAA Teacher at Sea
Jessica Schwarz
Onboard NOAA Ship Rainier
June 19 – July 1, 2006

Mission: Hydrographic Survey
Geographical Area: Alaska
Date: June 22, 2006

Assistant Engineer Kelly Baughman at the center console in the engine room onboard the RAINIER.  Kelly fired up the engines to get the ship underway this morning!
Assistant Engineer Kelly Baughman at the center console in the engine room onboard the RAINIER. Kelly fired up the engines to get the ship underway this morning!

Science and Technology Log 

This morning the RAINIER changed locations from Kanga Bay to Hot Springs Bay. I had an opportunity to go down in the Central Engine Room Control (CERC) and see how the engines are fired up to get the ship moving again.  Kelly Baughman, the ship’s Third Assistant Engineer (3AE), took some time to explain what I was observing down there before she got the engines going. Being in the engine room was really cool.  I was completely surrounded by buttons to push and knobs to turn and although very tempting, I didn’t touch any of them. The RAINIER has two main engines to motor her, one on the port (left) side of the ship and one on the starboard (right) side of the ship.  There are two generators that put out a total of 400 kilowatts of electrical power to the ship.  An additional smaller emergency generator is also a part of the ship, but it puts out significantly less energy than the two main generators.

On the bridge, Vessel Assistant, Kelson Baird is logging the ships position from four points on the radar screen.  The position of the points is recorded every half hour to monitor the effectiveness of the anchor.
On the bridge, Vessel Assistant, Kelson Baird is logging the ship’s position from four points on the radar screen. The position of the points is recorded every half hour to monitor the effectiveness of the anchor.

Kelly also explained how the bow thruster works on the ship.  It basically looks like a fan and helps to maneuver the ship from the bow.  There are several other things that are monitored at the center console, but we weren’t able to get to all of them.  Kelly said tomorrow morning will be a better time to go over some of the other things in the engine room since we’ll be anchored in the bay. After visiting with Kelly, I had a nice afternoon talking with crew and soaking up ship life. I made my way up to the bridge where General Vessel Assistant (GVA) Kelson Baird was monitoring weather data. He was excellent at explaining all the different instruments used in collecting weather data onboard the ship. Every hour, on the hour, Kelson recorded weather information.  He started by logging the ship’s position (latitude/longitude).  Next he recorded an overall weather condition such as cloudy, rainy, drizzle etc. Today was cloudy and rainy. Kelson then stepped outside the bridge and looked to see what point of land was the furthest he could clearly see from the ship.  Once he found his point of land he came back inside the bridge and used the radar screen to determine a distance in nautical miles that point of land was from the ship.  This gave Kelson a visibility reading. Other information Kelson recorded was wind speed in knots, using the ship’s anemometer, as well as wind direction.  Wind direction (measuring from the direction the wind is coming from) can be measured using a gyrocompass, which is an electronic compass measuring to true north.

Dry bulb and wet bulb used to record air temperature from the RAINIER.
Dry bulb and wet bulb used to record air temperature from the RAINIER.

If the ship were underway he would have also had to record wave height, swell wave height, and sea wave height. Kelson said this would be done by a very scientific method called “eye balling it”…or as I like to say, EBI. Another measurement taken while at anchor was water temperature, which, by the way, was 49° F while I was in the bridge this afternoon.  Just as a quick side note: crew of the RAINIER surf in this water and are very excited to surf in the break off of Kodiak Island when we arrive in port.  I think they are crazy, but I’d love to watch them! The last weather measurements Kelson recorded were air temperature and atmospheric pressure. Two air temperature measurements are taken: one from what is called a wet bulb and one from a dry bulb.  Then he recorded sea level (atmospheric) pressure measured by a barometer.

Kelson went on to explain about “Big Weather”, which is an ongoing data collection project where weather information is sent every six hours via satellite to be used by NOAA’s National Weather Service.  Pretty amazing all the work that is being done on the RAINIER!

Personal Log 

I am seriously impressed by how well I am being fed on the ship.  Each meal I have several hot meal options to choose from and there is always a vegetarian option for those who do not eat meat.  The soup has been excellent!  There’s a full salad bar directly next to a freezer fully stocked with Haagen-Dazs ice cream!  I think that’s pretty good.  Coffee is available all day long as well which makes me very, very happy.  I won’t indulge on hydrographic survey days. We’ve already talked about that…

Calling All Middle Schoolers–We Need Help Answering a Few Questions! 

Third Assistant Engineer Kelly Baughman explained to me today that the ship can carry up to 16,800 gallons of freshwater. She went on to say that on average the ship’s crew uses anywhere between 1,500-2,000 gallons per day.

If the RAINIER were to be at sea for 21 days without coming into port to replenish its fresh water supply, how many days would it take for the ship to run out of fresh water?

How would the ship be able to produce more fresh water without having to go into port?