Heidi Wigman: Fisheries Sciences, June 8, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015

Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico (24°29.956’N 083°320.601’W)
Date: June 8, 2015

Weather: 83° @ surface, E-SE winds @ 10-15 knots, seas 2-3 ft, average depth 123m

Science and Technology Log:

NOAA’s mission is three-fold: science, service, and stewardship.  By utilizing fisheries, hydrographic, and oceanographic scientists in the field, NOAA’s goal is to understand and predict changes in climate, weather, oceans, and coasts, while also putting forth a conservation effort towards coastal and marine ecosystems. This knowledge is shared with businesses, communities, and people, to inform on how to make good choices to protect our fragile earth.

sunset on the Gulf
Sunset on the Gulf
sunrise
Sunrise on the Gulf

The specific mission, for our current voyage, on the Pisces, is to survey fisheries at pre-determined sites throughout the Western portion of the Gulf of Mexico. The data from these surveys will be brought back to the lab in Pascagoula, Miss. and analyzed. Then determinations will be made for future surveys and studies. According to Chief Scientist, Brandi Noble, “These fishery independent surveys increase our knowledge of natural reefs in the Gulf of Mexico. We get a better picture of what’s down there and work with outside agencies to determine how to maintain the health of the fisheries.  Data gathered will be used in future stock assessments for the Gulf of Mexico.”

DSC_1071
Bottlenose dolphins in the Gulf

The methods used to gather data on this cruise are through the use of the camera array and the bandit reels.  The camera arrays are deployed at sites that have been mapped and sit at the bottom for a total soak time of 40 minutes.  This footage is analyzed and processed by scientists to determine what the conditions of the reef are and the species of fish present in the area and their abundance.  This gives a partial picture, but to get a complete and accurate report, fish need to be studied more closely.  The “Bandit Reels” provide a more hands-on approach and allow the scientists to get data on sex, maturity stage, and age of species.  Some of the fish are released after some initial measurements, but the commercially important species are dissected and samples are taken for further lab analysis.  Initial measurements made with anything brought aboard include total length (TL), fork length (FL), standard length, SL (from nose to caudal fin), and weight.

Removing the otolith to determine the age of the fish
Removing the otolith to determine the age of the fish
removing organs to determine sex and maturity
Removing organs to determine sex and maturity

A closer look at the data allows scientists to make predictions on fish populations and growth over time.  Some of the data we got on this trip were for the Lutjanus campechanus (red snapper) and for the Pagrus pagrus (red porgy).

sheet1
Lutjanus campechanus “Red Snapper”
sheet2
Pagrus pagrus “Red Porgy”

There are several ways to disaggregate the data to determine differences and similarities based on region, time, species, etc.  For our purposes, we’ll make some observations involving probability, proportion, and statistics.

Math Problem of the day: You are a scientist and have brought data back from the Gulf of Mexico to analyze in your lab.  You have three tasks: a) to get an average fish size based on weight (species specific) b)  to determine what the proportion is of the Standard Length to the Total Length of each species (hint: ratio of SL/TL; find average) c) determine the theoretical probabilities that the next Red Snapper will be  >1,100g, and that the next red Porgy will be <1,000g (hint: how many times does this happen out of the total catches?)

Coming Soon . . . Meet some of the crew behind the Pisces

Previous Answers:

Trigonometry of Navigation post: 18 m/s @ 34°SE

Bandit Reels post: about 14.6 nautical miles

The STEM of Mapping post: layback = 218m, layback w/ catenary = 207m

Underwater Acoustics: about 163 sq. meters

SCUBA Science: letter group A

Heidi Wigman: Underwater Acoustics, June 4, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015


Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico (26°33.512’N 083°43.064’W)
Date: June 4, 2015

Weather: 82° @ surface, NE winds @ 5-10 knots, seas 0-2 ft, chance of showers and Tstorms, average depth 75m

Science and Technology Log:

The science behind underwater acoustics play a huge role in the operations of the Pisces.  Each of the five survey types (CTD, camera rig, sidescan, bandit reels and AUV) need accurate data about the depth and contours of the ocean floor.  Most people are familiar with the idea of how radar sends out a “ping” and waits for a return in order to determine a distance of an object.  This is not a new, or even a human invented design — bats, dolphins, and some whale classes use “echo location” to get information on food sources and predators.  As a pulse is emitted from the transmission source, it travels through the water at a certain speed, and as it encounters objects, returns as an echo.

ping transmit and return
“ping” transmit and return provided by C. Thompson

 As data is received, it can be read as a function of voltage output to time in seconds, but this type of information generally is not useful for operational purposes.  This two-way travel data needs to be converted to provide a graphical representation of the contour of the ocean floor, and the location of objects in the water. An algorithm turns all of this into usable data, that gives the viewer a depiction of what is under the vessel, and at what depth.

sonar imagery provided by Charles Thompson
sonar imagery provided by C. Thompson
echosounder depth measurement, provided by C. Thompson
echosounder depth measurement, provided by C. Thompson

In order to get depth (Z), you need to know about how fast sound travels (c) – and this can vary with environmental factors such as temperature, salinity, depth, turbidity, etc. The third variable is the time (t) in seconds that it takes from ping to return. The formula that is used to calculate the depth is Z = c*t/2.

speed of sound graphDuring our cruise, the sound speed value we are using (1540 m/sec) is the mean value of the measured sound speed vs. depth profile, with slight margin of error on the minimum values.  Therefore, any miscalculations based on the constant will provide a reading more shallow, rather than more depth.

The EK60 echosounder emits a frequency of 18kHz, with most of the power in an 11° conic sector directed downward(see diagram).  In order to find the area covered by the pulse, we first need to find the diameter (d) and the vertical depth (Z) or the max beam range (R).

sonar effective area; provided by C. Thompson
sonar effective area; provided by C. Thompson

Math question of the day: What is the area covered by one sonar ping from the Pisces? If you know that your vertical depth is 75m, and the bisect on the beamwidth (11°) angle, use some trigonometry to help find your radius. [Tan 5.5 = r/75].  Once you have the value of r, use the formula for area [A=3.14(r*r)]

Previous Answers:

Trigonometry of Navigation post: 18 m/s @ 34°SE

Bandit Reels post: about 14.6 nautical miles

The STEM of Mapping post: layback = 218m, layback w/ catenary = 207m

Coming soon . . . A trip underwater – A closer look at NOAA dive tables