Wes Struble: Science Research in the Bahamas? Sign me up! February 27, 2012

NOAA Teacher at Sea
Wes Struble
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: February 27, 2012

Weather Data from the Bridge

Position: 26 degrees 31 minutes North Latitude & 76 degrees 48 minutes West Longitude / 9 miles east of the Bahamas
Windspeed: 8 knots
Wind Direction: East by Southeast
Air Temperature: 24.8 deg C / 76.5 deg F
Water Temperature: 24.2 deg C / 75.5 deg F
Atm Pressure: 1025 mb
Water Depth: 3830 meters / 12,770 feet
Cloud Cover: Approximately 60%
Cloud Type: Some altostratus and cumulostratus

Science/Technology Log:

The temperature has become quite warm and it has been a delight to walk around the deck in the sunshine in a t-shirt and shorts (the current weather back home is between 10 and 20 deg F and snowing). As you can see from the photo below the weather continues to be clear with some fair weather cumulus clouds and a light breeze.

A view of the wide western Atlantic off the Ron Brown's bow from the weather deck several days after leaving the port of Charleston, SC
The Ron Brown's wake trailing off into the west as we head toward our first CTD station
NOAA research scientist, Dr. Molly Baringer, Chief Scientist during the cruise, catches up on some computer work and reading in the shade of the bridge on the "lifeguard chair" on the "steel beach" (the weather deck) of the NOAA research vessel Ronald H Brown
A drifter buoy arrives prepackaged and ready for deployment
Removing the plastic packaging and recording the coordinates and serial number of the drifter buoy before deployment
A drifter buoy ready for deployment by Dr. Aurelie Duchez
Dr. Aurelie Duchez tosses the drifter over the stern of the Ron Brown. This cruise is a continuation of a long period of study (over 30 years) of the Gulf Stream and the Western Boundary currents in and around the region of Florida and the Bahamas. This region is of particular interest because of the impact these currents have on the weather and climate patterns of the northeastern North America and Northern Europe. The Gulf Stream current helps transport large amounts of heat energy derived from the equatorial Atlantic to the northern latitudes of America and Europe. An image of the Gulf Stream current from space - NASA photo. The Gulf Stream is the orange colored current that passes on the east coast of Florida and flows north along the eastern seaboard of the US

This phenomenon helps to moderate the climates of those areas by producing milder temperatures than would normally occur at these latitudes. Changes in the characteristics of these currents could potentially have a profound affect on the climates of these regions and it would be of particular interest to understand in detail the nature and interaction of these mobile bodies of water. To study these currents a combination of techniques have been employed. We should all be familiar with the concept of induction – the process of producing a current in a conductor by moving it through an electromagnetic field. This was one of the more important discoveries of Michael Faraday and is one for which we should be very grateful since most of our modern world depends upon the application of this scientific discovery.

Michael Faraday - the great British Scientist

As an example think of what modern life would be like without electric motors or generators. Well, it just so happens there exist old communications cables on the seafloor under these very currents between south Florida and the Bahamas. These cables are affected by a combination of the earth’s magnetic field and the motion of the seawater (a solution composed primarily of dissolved ions, charged particles, of Na+ and Cl). This combination of charges, motion, and the earth’s magnetic field causes a weak electrical current to be induced in the cable – a current which researchers have been able to measure.

A schematic showings the induction of an electric current in the underwater cable by motion of the sea water current (NOAA Image)

The electric current in the cable can be related mathematically to the strength of the ocean currents flowing over them. In addition to the data produced by the cable, the NOAA scientists are also deploying moored buoys below the surface that measure the characteristics of the seawater (temperature, density, etc) and use an Acoustic Doppler array to measure the relative motion of the current.

ADCP (Acoustic Doppler Current Profiler) and two other types of buoys - image from Grand Valley State University
An ADCP (Acoustic Doppler Current Profiler) buoy - Image from SAIC
A buoy deployment operation on the Ron Brown. Notice the large orange spherical ADCP buoys in the right foreground on the deck of the ship
These two data acquisition systems (in addition to the drifter buoys and CTD sampling) provide the data used to analyze the dynamics of the currents. As more data is collected and analyzed the nature and impact of these currents is slowly unraveled. Consider visiting the following website for a more detailed explanation:


Vince Rosato and Kim Pratt, March 20, 2006

NOAA Teacher at Sea
Vince Rosato & Kim Pratt
Onboard NOAA Ship Ronald H. Brown
March 9 – 28, 2006

Mission: Collect oceanographic and climate modeling data
Geographical Area: Bahamas, West Indies
Date: March 20, 2006

Deploying the ARGOS buoy!
Deploying the ARGOS buoy!

Science and Technology Log

On Saturday, we deployed two buoys. A buoy is a floating object that sends science information to scientists.  They can have numbers, colors, lights, or whistles on them.  The buoys we sent off are a drifting buoy and an ARGO buoy.

A drifting buoy is the size of a basketball and sends its position in the ocean to a satellite where scientists can measure current speed by using its location and by tracking it around. Because it has a sock on it, it’s a good measure of current and it is not affected by the wind. The buoys can last a long time unless they are damaged or destroyed by a ship, run into land, or are stolen by a pirate. There are currently 1,468 drifting buoys worldwide and they cost more than $1500 each. Cabello, Searles and Key Biscayne Community School jointly adopted two of the buoys deployed. Students signed stickers that were attached to the buoy and sent out to sea. To track the buoy, here.

The second buoy that was deployed was an ARGO buoy. The ARGO is interesting because it acts like a little submarine.  The ARGO is launched off the ship, floats on the surface, then sinks to certain depth, gathering information on temperature, pressure, salinity, latitude and longitude. The ARGO, acting like a submarine, stays at a certain depth for a while, gathering information, then fills its bladder and rises to the surface, collecting information on the way up.  At the surface, the ARGO sends all the information to a satellite for the scientists to use in their labs.  To picture a bladder, think of “Professor” from Sponge Bob. Professor fills up with air and floats (like the bladder filling), exhales his air and sinks (like the bladder emptying). This ARGO was special because it had a large sticker from the New Haven Unified School District. So New Haven is literally traveling all over the ocean! To track the ARGO buoy go here.


Interview with Lieutenant Commander, Priscilla Rodriguez, US Public Health Service 

On the RON BROWN you will find the Medical Officer, Lieutenant Commander (LCDR), Priscilla Rodriguez. Officer Rodriguez actually is a part of the United States Public Health Service that overlooks the public health system for the whole country and sets the standard for health care.  LCDR Rodriguez is a Physician Assistant and her assignment onboard the RON BROWN will last for two years.  The most common illness on board a ship is seasickness and LCDR Rodriguez is on the lookout for crew or scientists who are not showing up for meals or who look a little “green.” She explains that your brain and inner ear need to get used to the movement of the ship and once they do you’re okay. In the meantime you may feel nauseous or tired. LCDR Rodriguez has a lot of responsibility on board the ship. She’s responsible for the health care of everyone and if someone gets extremely ill, she has to advise the Captain on whether to go into shore, or get a Coast Guard helicopter to come out and pick him or her up, which is very expensive.  LCDR Rodriguez was born in the Dominican Republic, grew up in New York City and presently calls New York City her home where she has just made a cooking video.  When she’s not working on the ship, she enjoys playing the guitar or flute, drawing and making videos. She’s currently developing “podcasts” for the Internet and has been interviewing subjects on the ship.  In the future, she would like to return to work with AIDS patients in underdeveloped countries and do everything she can to help the world.


Assignment: Draw a picture of what the ARGO buoy does. (How it acts like a submarine).  Label each movement – sinks, stays at the same level, and rises.  Draw a picture of what you think the ARGO buoy looks like.  (Hint: Long, thin, black tube).

Personal Log – Kimberly Pratt 

It’s good to be writing logs again. I’ve been having amazing conversations with all the scientists onboard. They’ve been very generous with their time.  A special thanks to Dr. Molly for our “up top” chats. Today the scientists from the United Kingdom are working on recovering a sub-surface mooring, so we’ve got time to work on logs, interviews and answer e-mail.  Last night I saw squid in the moonlight: one was approximately 1.5 ft, and another was approximately 2.5 ft.  They were chasing and eating flying fish!  Also fish that look like little swordfish were jumping around.  It was a virtual circus!  Hello to everyone! Students, keep writing!  Make it a good day!

Relaxing after a day of hard work
Relaxing after a day of hard work

Personal Log – Vince Rosato 

New Haven Unified School District,  Searles 4th graders and Cabello 5th graders got some press recently.  Thanks to fellow teachers for the article and to the Argus newspaper and Educational Service Center Information Officer, Rick LaPlante, for the favorable text. We’ll have another chance to thank ANG for newspapers in education and for the many businesses that sponsor Book Bucks.  I’m glad so many in the class are participating in this reading reward program.  I also heard the bus is confirmed for our “Reading is Cool” Sharkie field trip to the Hewlett Packard HP Pavilion, home of the Sharks hockey team.  It’s always good hearing from you so keep those emails coming and good luck with Book Bucks!  In my spare time I’m getting pictures with Juliet around the ship and reading John Climatus’, The Ladder of Divine Ascent.

Deploying the Argos buoy
Deploying the Argos buoy
Lieutenant Rodriguez
Lieutenant Rodriguez