Roy Moffitt: Life on a LEGO, August 14-15, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 14-15, 2018

 

Current location/conditions:

Evening August 15 – North- Northwest of Wainwright, Alaska

Air temp 35F, sea depth  47m , surface sea water temp 32.2F

 

Life on a LEGO

The LEGO is a nickname given to the large green plastic pallet-like mooring. Their retrieval from the sea floor is pictured here.  This equipment was retrieved after being deployed for a year on the sea floor in about 40 meters of water.  The mooring is called a DAFT (Direction Acoustic Fish Tracker).  On the DAFT there are instruments that measure ocean temperature, salinity, and pressure.  The primary instrument is an echo sounder that records any schools of fish that may pass overhead.

Lego Retrieval

Retrieval of the “Lego,” a large plastic mooring that has spent the past year collecting data at the ocean bottom

What the DAFT was not designed to do, but does well, is catch sea life. The fiberglass pallet has 1 1/2″ square holes in it that allow water to pass through on retrieval and it also catches sea life as if it were a net. Yesterday we pulled two of these “Legos” from the sea and they were covered with marine life. The most remarkable sight were the large blue king crabs, (around half dozen on one pallet). Here I am holding one of the bigger ones– such awesome looking creatures!

Roy and crab

TAS Roy Moffitt holding a blue king crab

On the smaller size, we found a hermit crab (shown here hiding in a shell).

Hermit Crab

Hermit Crab

Also on board were many sea stars. Most were the Brittle Stars. This is the picture of the sea star with the small legs. I think they are called the Brittle Stars because when I tried to gently remove them from the mooring, sadly their legs kept breaking off. There were dozens of these on the mooring.

Sun Star

Sun Star

There was another sea star with nine legs. It was very pretty and looks like a drawing of the sun. Not surprising, I found out this one is called the “Sun Star.”

Some not-so-pretty items on the moorings I like to call “mooring acne” are called tunicates. These are filter feeders and come in many different forms.

The one on my hand looks like a giant pimple and when you try to take it off the mooring it squirts you in the face. Not surprisingly this tunicate is called the “Sea Squirt.”

 

Think about it…

All of the life on the Lego mooring was sent back to the sea to hopefully find a new home.  The Lego pallet mooring mentioned above is not large, about 4 ft by 6ft.  The mooring in this story was only in the ocean one year and became the home of the above mentioned marine animals – crabs, sea stars, tunicates, and also thousands of barnacles!  One tiny piece of the sea floor contained all this life! Imagine how rich in life the entire unseen ecosystem is in the Chukchi Sea!

 

Today’s Wildlife Sightings

For the last two days, I saw several walruses. Pictured below is one that popped up by a piece of ice.   Teaser – look for a future blog focusing on walrus and their habitat.

Walrus by ice

A walrus pops its head up above water near a piece of ice

 

Now and Looking forward

We are now seeing small bands of pack ice and individual pieces of ice called “growlers”.   Sea ice has not interrupted science operations, as of today. There is plenty of open water so far. We should see ice of different concentrations for the rest of the trip as we continue to head north.  Look for future pictures and some of the science on sea ice coming soon. For now here are a couple pictures from August 15.

Growlers in fog

“Growlers” – the view looking from the deck of USCGC Healy down into the fog

Walrus broken ice

Another view of the walrus, swimming near broken up ice

 

Roy Moffitt: Catching the Tiny Fish in the Big Sea, August 10, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 10, 2018

 

Current location/conditions: mid day August 10

Air temp 45F, sea depth 59 m , surface sea water temp 44F

 

Catching the Tiny Fish in the Big Sea

For the past two days, I helped out Robert Levine, PhD Student of Oceanography at the University of Washington, working with NOAA Alaska Fisheries Science Center.  We sent out a Methot net to catch juvenile fish today. In the below picture, taken yesterday, I am helping Robert assemble the Methot net.

assembling Methot net

Teacher at Sea Roy Moffitt helps assemble the Methot net

For catching fish a centimeter or two long, the net seems huge.  The opening of the net is approximately 2.2 meters by 2.2 meters or 5 square meters.  The net itself is approximately 10 meters long.  The holes in the net are only 2 mm. This means anything bigger than 2 mm will be caught up in the net.

 

Echogram

Example of an Echogram

Before sending the net into the sea Levine takes an echogram survey.  He lowers the recorder overboard and the attached cable sends the results back to the computer on board.  Two different wavelengths are sent out and bounce off anything in the sea column.  The smaller wavelengths will show where any of the smaller fish are hanging out.  The results give an accurate depth measurement of the ocean and shows small organisms at about 28 meters in depth.  The net is then lowered into the sea and trawled at that depth for about 15 minutes.

 

 

 

 

Inclinometer

Inclinometer

My task during the net deployment was to measure the angle of the cable entering the water by using a hand held inclinometer.   It is important to keep the angle around 45 degrees to keep the proper depth.

 

 

 

 

 

 

today's catch

Photos of today’s catch: at top left, a view of the unsorted bucket; top right, a petri dish with fish sorted by species; bottom, juvenile fish displayed on measuring tape

Today was not considered a high population area, but we were still able to catch some fish and more marine life.  All contents end up in a canister at the end of the net in a big slurry of sloppy stew.  In the picture of the bucket the fish are hidden within moon jellyfish and all the little black dots that are crab megalopa.  Crab megalopa is the second life stage of a crab before transformation into juvenile crabs to start their life on the sea floor. For fish today what was caught in the net were juvenile Cod, juvenile flat fish, and Sculpin.  (Shown in picture with the round dish.)

The goal of this fish collection is to verify the presence of juvenile fish and better understand the geographic range of fish during their life cycle. The exact identification of each will take some time and many of the tiny fish are frozen and sent out to labs for further identification. Levine will also be releasing several bottom-moored echo sounders during the trip.  These instruments will be able to monitor the presence of fish and record that data over the year.

 

Now and Looking forward

Future specimen collections on this trip will be happening using the Methot net to verify distribution and seasonal movement of fish population in the Chukchi Sea.

Christine Hedge, September 15, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 15, 2009

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

Weather Data from the Bridge 
Latitude: 730 22’N
Longitude: 1560 27’W
Temperature: 310F

Science and Technology Log 

The past few days have brought much change.  The depth of the ocean changed dramatically as we got closer to Alaska. The ocean went from depths of over 3500 meters to depths of less than 100 meters.  More birds are showing up and we are getting about 9 hours of darkness each day.  This morning at about 4 AM, the watch observed the Aurora Borealis and stars!!!  I am so jealous.

FOR MY STUDENTS: Why do you think we have more hours of darkness now? 

As we head home to Barrow, the science party is busily completing their “Cruise Reports” and making sure that their data is stored safely for the trip home.  Much has been accomplished on this trip:

  • 132 XBT deployments (measures temperature, depth)
  • 8 CTD deployments (measures conductivity, temperature, depth)
  • 5 Dredge operations and hundreds of pounds of rock samples collected and catalogued
  •  1 Seaglider deployed and retrieved
  • 2 HARP instruments retrieved and 3 deployed
  • 3 Ice buoys deployed
  • 8 Sonobuoys deployed
  • 9585.0 lineal kilometers of sea floor mapped
  • 1 METBUOY retrieved (meteorological buoy)

Coast Guard Marine Science Technicians  

MST3 Marshal Chaidez operates the winch during a dredging operation.

MST3 Marshal Chaidez operates the winch during a dredging operation.

Science parties come and go on the Healy, each doing a different type of research.  A constant for all the scientific cruises is the good work done by the Coast Guard MSTs (Marine Science Technicians). Running the winch, taking daily XBT and weather measurements, working the dredge, and helping to deploy buoys are just some of the many tasks these technicians do. The scientists could not get their experiments done without the assistance of our team of MSTs.

MST3 Daniel Purse, MST2 Daniel Jarrett, MST3 Marshal Chaidez, MST2 Thomas Kruger and Chief Mark Rieg have done a masterful job of helping the science party accomplish their goals. I asked them to tell me a little about their training for this job. Each MST attends a 10-week training school in Yorktown, VA. Most of their training involves how to clean up oil spills and inspect cargo ships which means they are usually stationed at a port. Being assigned to a ship is not the norm for an MST.  But, because the mission of the Healy is specifically science, a team of MSTs is essential.

MST2 Daniel Jarrett rigging the crane.

MST2 Daniel Jarrett rigging the crane.

Personal Log 

My commute to work is different lately. We have about 9 hours of darkness each day. It gets dark around midnight and stays dark until about 8:30 in the morning.  So, walking the deck to the science lab is a bit of a challenge at 7:45. It will be strange to drive to work in a few days! On September 16th, we will depart the Healy via helicopter if all goes according to plan.  It will be strange to be on land again.

We will be back in Barrow, AK on September 16th. I cannot believe that our expedition is almost over.  I have learned so much from the members of the science party and the crew of the Healy. They have been very gracious and patient while I took their pictures and asked questions. Now comes the task of sharing what I have learned with folks back home.  I know one thing for sure; the Arctic is no longer an abstract idea for me. It is a place of beauty and mystery and a place some people call home.  I hope to convey how important it is that we continue to study this place to learn how it came to be and how it is currently changing.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Thanks to the folks at NOAA Teacher at Sea, Captain Sommer, and chief scientists Larry Mayer and Andy Armstrong for allowing me to take part in this cruise.  You can be sure that I will be following Arctic research and the adventures of the Healy for many years to come.

Christine Hedge, September 14, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 14, 2009

Dr. Hall standing by the hovercraft before it is inflated

Dr. Hall standing by the hovercraft before it is inflated

Weather Data from the Bridge 
Latitude: 720 46’N
Longitude: 1580 24’W
Temperature: 350F

Science and Technology Log 

Doing science in the Arctic is challenging.  The weather is difficult, the ice is ever changing, and the expense of operating an icebreaker, aircraft, or helicopter is quite high.  So, how else can people get out onto the ice to study the ocean and the geology of the seafloor? One interesting project uses a hovercraft (think air hockey), which skims over the ice on a cushion of air. Using a hovercraft to study the most inaccessible places in the Arctic is not a new idea. But, Dr. John K. Hall, a member of our science party has taken this idea and run with it.   John has a long history of polar exploration under his belt. Including 13.5 months floating around the Arctic on a 90 square kilometer, 60-meter thick ice sheet known as Fletcher’s Ice Island (T-3) during the 1960’s. His latest project has been to purchase and equip a hovercraft to go where icebreakers cannot (areas of VERY thick ice).

Norwegian students parked on the ice doing research. The white tent protects the scientists while they collect data through a drill hole in the ice.

Norwegian students parked on the ice doing research. The white tent protects the scientists while they collect data through a drill hole in the ice.

The hovercraft was completed in 2007.  She is called the R/H Sabvabaa, which is the Inupiaq word for “flows swiftly over it.”  This hovercraft was designed specifically for doing science in Arctic conditions. It is equipped with all the comforts of home and all the latest technology.  From this research platform scientists have access to echosounding and seismic equipment to study the sea floor.  They can also park the Sabvabaa easily on a floe, get out on the ice to drill, photograph, and collect samples from under the ice.  This small 40-foot vessel (it fits in a semi-truck container) has great potential as a way for scientists to collect data in heavy ice conditions.  For more information about the Sabvabaa check out this website.

Classroom on the Ice 

Could you imagine being one of the first people to ride the hovercraft over the pack ice?  Since 2008, 16 lucky Norwegian high-school students have had that honor.  A competition was held as part of the Norwegian International Polar Year (IPY) program.  This competition set out to find Norwegian students ages 14-18 who are interested in careers in polar geophysics. A pair of students and a pair of researchers worked from the Sabavaa for one-week intervals. During their time on the Sabvabaa, the winning students participated in geophysical, geological, and oceanographic studies on drifting ice. They also had 4 encounters with polar bears!  What a great opportunity for these students. If you are interested in the student blogs from these trips (which are written in Norwegian) do a Google search for Sabavaa and have Google translate them.

FOR MY STUDENTS: Remember, not all scientists work in labs wearing white lab coats!  Many researchers lead exciting and adventurous lives. 

Paul Henkart teaching Nikki Kuenzel and Christina Lacerda.

Paul Henkart teaching Nikki Kuenzel and Christina Lacerda.

Personal Log 

As an educator, one of the best parts of this expedition has been to watch the mentoring that goes on. The scientists and professors in the science party have decades of research experience to share. It is not unusual to find one of these veteran Arctic explorers sharing their expertise with graduate students from the University of New Hampshire. Not only do these “mentor scientists” have great technical expertise. They are also really good at explaining complex ideas in a very simple way.   This has been wonderful for me since my background is in biology – so geophysics has been a challenge. The graduate students on board are not only learning science from the masters – they are hearing great adventure stories about past polar adventures before we had helpful technologies such as GPS and multibeam echosounders. Everyone on the Healy is in “learning mode”.  The Coast Guard crew, teachers at sea, scientists, and students are constantly asking questions and sharing expertise.

Christine Hedge, September 13, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 13, 2009

Weather Data from the Bridge 
Latitude: 720 44’N
Longitude: 1560 59’W
Temperature: 350F

A Seasonal Ice buoy with a thermistor chain is deployed from the Healy. This buoy starts in open water and later may

A Seasonal Ice buoy with a thermistor chain is deployed from the Healy. This buoy starts in open water and later may freeze into the ice. This instrument collects ocean and air temperature data, barometric pressure data, and location data.

Science and Technology Log 

Buoys and Moorings And Gliders, Oh My!!! 
Exploring the oceans has a lot in common with exploring space.  NASA can send manned or unmanned missions into space.  Sending manned vehicles into space is more complicated than launching a probe or a telescope. The same is true for exploring the Arctic Ocean.  We can collect data on an icebreaker, manned with Coast Guard and science personnel or use instruments that can send back data remotely.  On this mission, many instruments have been deployed to send back data about the conditions in the Arctic. These instruments continue to do their work after the crew and scientists from the Healy have moved on.  Ice buoys, which float or freeze into ice floes, are one example.  The HARP instruments (High-frequency Acoustic Recording Package), which sit on the sea floor, are another.

A United States Navy team, under the supervision of Navy Commander William Sommer, has launched a very interesting instrument from the Healy called the Seaglider. We have been tracking its movements since it was launched on August 8th. The Seaglider collects information about the salinity, temperature, and optical clarity of the ocean. The Navy is interested in how sound travels through the oceans and this glider is an important tool for doing just that.

CDR Bill Sommer, AG1 Richard Lehmkuhl, and MST3 Marshal Chaidez deploy a Seaglider from the Healy in the Chukchi Sea. Data from the Seaglider will improve the performance, and aid in the evaluation, of the effectiveness of the ocean models in the Arctic. Photo courtesy of PA3 Patrick Kelley, USCG.

CDR Bill Sommer, AG1 Richard Lehmkuhl, and MST3 Marshal Chaidez deploy a Seaglider from the Healy in the Chukchi Sea. Data from the Seaglider will improve the performance, and aid in the evaluation, of the effectiveness of the ocean models in the Arctic. Photo courtesy of PA3 Patrick Kelley, USCG.

What makes the Seaglider unique is that instead of just drifting, it can be driven.  In fact, this instrument is directed via satellite from a computer lab in Mississippi!  The glider moves up and down in the water column and like an air glider it uses this up and down motion to move forward. It has a GPS and a radio so that it can communicate its location. The Seaglider deployed from the Healy in August was picked up today.

Final check of the Seaglider before it was launched.

Final check of the Seaglider before it was
launched.

The green dots indicate the path of the Navy Seaglider as it collected data in the Chukchi Sea.

The green dots indicate the path of the Navy Seaglider as it collected data in the Chukchi Sea.

Coast Guard and Navy personnel work together to retrieve the Seaglider on September 13.

Coast Guard and Navy personnel work together to retrieve the Seaglider on September 13.

Christine Hedge, September 9-11, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 9-11, 2009

Positions 
From Latitude: 790 6’N/ Longitude: 1550 47’W
To Latitude: 780 3’N/ Longitude: 1590 41’W

Alex Andronikov labels and bags rock samples for further study.

Alex Andronikov labels and bags rock samples for further study.

Science and Technology Log 

Exploring the Unknown 
Geologically speaking, parts of the Arctic Ocean are some of the least explored areas on earth because they are often covered with thick ice. Geologists know there is an ultra-slow spreading center (where seafloor pulls apart) called the Gakkel Ridge.  They know where major features such as abyssal plains, plateaus, and ridges are, but the story of how this area formed is still the subject of much discussion. Where exactly are the plate boundaries in the Arctic?  Which direction are they moving?  Which forces formed the Arctic Basin?  These are great questions that geologists continue to investigate. In 7th grade we study plate tectonics.  Our textbooks contain maps showing where the plates are pulling apart (divergent boundaries), pushing together (convergent boundaries), and sliding past one another (transform boundaries). I had never noticed before this trip that clear plate boundaries are not shown under the Arctic Ocean.

FOR MY STUDENTS: There are some great animations showing plate movements at this site.

Looking Back in Time with Rock Samples 

Kelley Brumley and Alex Andronikov are geologists on board the Healy. They have been analyzing the data collected by the echosounding instruments to better understand the forces at work here. But what they have really been looking forward to is seeing what type of rock the seamounts, ridges, and plateaus below the Arctic Ocean are made of, and how these features were created.

Our first 2 dredge sites brought up muddy sediment and lots of:

  • Ice rafted debris: These are rocks that are frozen into ice that breaks from shore and carried out to sea. They can come from glaciers, or river deltas or any shoreline.  Some show glacial striations (scratches left behind by glaciers).
  • Coated sediments: These are crumbly, compressed mounds of sediment coated with a dark precipitate.
Dredge #2 was a muddy affair.  Using the hose, I helped separate the sediment from the rocks.  That’s me in the turquoise gloves!

Dredge #2 was a muddy affair. Using the hose, I helped separate the sediment from the rocks. That’s me in the turquoise gloves!

The next 3 dredges broke off rock samples from the steep slopes over which they were dragged. This was what the geologists were hoping for – samples of bedrock.  The rock samples that were dredged up show us that the geological history of the region is very complex.  Analyzing the chemistry and mineral composition of these rocks will help to answer some of the questions Kelley, Alex, and other Arctic geologists have about this part of the Arctic Ocean.  The rocks are cleaned, carefully labeled, and shipped to Stanford University, the University of Michigan, and the USGS (United States Geological Survey) for further study. Who knows, maybe the rocks that were collected today will help to clarify models for the geologic history of this part of the Arctic Ocean.

Personal Log 

On September 11, I was able to call my students in Indiana. Jon Pazol, (ARMADA teacher at sea) has an Iridium satellite phone that he graciously allowed me to borrow.  How fun to stand on the helicopter pad of the Healy and field questions from Carmel, Indiana.

Rock samples from a successful dredge operation

Rock samples from a successful dredge operation

Dredges sometimes bring up more than rocks and sediment. This arthropod came up with one of the dredge samples.

Dredges sometimes bring up more than rocks and sediment. This arthropod came up with one of the dredge samples.

Calling my students.  You can see in the background that there is much more ice than a few days ago.

Calling my students. You can see in the background that there is much more ice than a few days ago.