Chelsea O’Connell-Barlow: To Fish Or Not to Fish?…A Question of Sound, September 4, 2017

NOAA Teacher at Sea

Chelsea O’Connell-Barlow

Aboard NOAA Ship Bell M. Shimada

August 28 – September 13, 2017

 

Mission: Pacific Hake Survey

Geographic Area of Cruise: Northern Pacific Ocean

Date: 9/04/2017

 

Weather Data from the Bridge:

Latitude: 53.59.372N

Longitude: 133 32.484W

Temperature 59 F

Wind 12.5 knots

Waves 1-2 feet

 

Science and Technology Log

After spending a few days observing what happens in the Acoustics lab and listening to our Chief Scientist Rebecca (RT) Thomas and acoustician Julia Clemons brainstorm aloud, I had one overriding question…”How do you decide when to fish?”

I asked RT this question and it is a multi-factored decision for sure, but seems like the decision could be broken down into 3 parts: what we see, what we know and what is currently happening.

What they see when deciding to fish or not is an echogram created by three acoustic sounders on the ship that send out 3 different frequency wavelengths. The image shows a relatively low frequency 18 kHz, 38 kHz, and a longer wavelength of 120 kHz. Keep in mind that sound travels faster in water than on land so this is a great way to gather information while being minimally invasive to the marine environment.

annotated bridge screens for 9.4 post
Bridge of Bell M. Shimada. The 3 screens we watch during a AWT trawl for Hake.

The backscatter, sound that scatters off of an object or its echo, on the echogram is what they look at to determine what marine life is on the transect we are scouting. As the sound wave bounces off of material in the ocean be it rock, flora or fauna it will create a spot or colored pixel on the echogram. Hake has a particular “look” of backscatter. When the echogram shows this particular hake sign we move in the direction of fishing.

Of course they only know what “hake sign” is because of gathering evidence throughout the course of this multi-year survey. During this survey they have created a huge reference database of hake sign and sign of other integral species to the hake’s environment, for example Euphausiid sp., one of the hake’s favorite food. RT and Julia have both interpreted many echograms and fished to confirm the identity the organisms that created the sign.  They are able to rule out images on the echogram until they find the backscatter that most resembles what they have historically experienced as hake.

The third part of this decision making process is the most variable…what is currently happening. As the boat travels and the sounders are sending out the trio of wavelengths an image of the ocean shelf is created. The scientists are able to see topography and measure the depths of the shelf’s different contours. The Shimada is a 209 foot long boat weighing over 2,400 tons. When deciding to trawl for hake that we suspect are present because of backscatter sign in the echogram the scientists and Commanding Officer always consider the depth to bottom, contours, wind and the maneuverability of the ship. Deploying the Aleutian Wing Trawl (AWT) net to catch hake is a task that involves cooperation and communication between the deck crew, Boatswain, bridge officers and the Chief Scientist. When RT sees a sign on the echogram that she wants to fish, she and Commanding Officer Kunicki quickly discuss the approach, wind direction and depth to get an idea on how the net will be affected and how close the ship can get to the exact sign that she wants to sample.

This is my bare bones description of the process that goes into deciding when to fish on Leg 5 of the Pacific Hake Survey. Stay tuned to see what we learn from comparing the echogram of sign to the actual yield from the AWT fishing net.

For more specifics from NOAA on the Bell M. Shimada’s acoustic and trawling capabilities https://www.omao.noaa.gov/learn/marine-operations/ships/bell-m-shimada/about

Personal Log

This ship is filled with kind, creative and industrious people. I am reminded of this constantly and appreciate this often. To me it is astounding to consider all the work and thought that is involved in a fifteen-day research survey at sea. This is a science survey so there are specific tools, computer programs and labs that must run well. To me, coming in with a science focus, this is most obvious. What I am blown away by are all of the additional layers that work together to make science even possible on this successful voyage. There are several teams at play: engineering, technology, deck, science and the bridge officers. Engineers are constantly maintaining engines, generators (this ship has 4), plumbing, ventilation and so much more. I had a tour today with Engineering Chief Sabrina Taraboletti that I am still trying to process through.

Technology is handled by one person on this ship. He maintains and trouble shoots computers in the acoustics lab, the bridge, the chemical lab and even found time to help maximize signal for the Fantasy Football draft. The deck crew is as versatile as anyone on this ship. We have two types of nets that we fish with. The deck crew is responsible for getting the nets out to fish and back in with the catch. Way easier said than done when we are talking about over a ton of weight with net, camera, chain, and doors. On top of all their other responsibilities many of the men in the deck crew have been helping out in the galley (kitchen) on this leg of the hake survey. Larry is the chief steward (chef) on board this leg and he typically has someone working with him but not on this leg of the Survey. So in addition to working their 12 hour shift, many of the deck crew have been working with Larry to prep food, clean up the mess (dining area), do dishes or even create their own personal specialties for dinner. We have been spoiled by Matt’s rockfish, Joao’s fresh salsa and soups and our Operations Officer Doug’s amazing BBQ. Liz and I even got to help out and make some donuts with Larry. Eating is great on the Shimada!

Liz & OCB makin the donuts
Liz and OCB making the donuts – thanks for the lesson Larry.

The Shimada team is rounded out with the bridge crew made up of 4 officers. The officers on a NOAA ship have a foundation of science knowledge and extensive nautical training. Before we go fishing I get to participate in the marine mammal watch up in the bridge. As I look for whales, dolphins and other marine mammals near the boat I can listen to the Captain and officers working their magic. We have had an incredibly smooth trip thus far which I credit to our Officers and of course Mother Nature.

 

 

 

 

 

 

 

 

Did You Know?

our Viperfish for blog
Who is this?

Crazy cool catch of the day…can you figure out what type of fish this is?

Here is a clue…they have specially adapted cells called photocytes that create light producing organs called photophores.  The photophores run along the sides of the fish and help them to lure prey and attract mates.

Viperfish from strangeanimals site
photo credit: http://www.strangeanimals.com

 

Answer:

This is a Viperfish.

Viperfish live in the deep ocean and migrate vertically as the day goes on in order to catch prey. They typically live around 1,500m (4,921 ft) and in the night will end up around 600m (1,969 ft) at night. This particular fish appears to have photophores along its mouth but it is difficult to be 100% sure from this specimen.

 

 

Sian Proctor: Nothing But Net!, July 12, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard Oscar Dyson

July 2 – 22, 2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2017

Me next to chafing gear from AWT. Image by Meredith Emery.

 

Weather Data from the Bridge

  • Latitude:   56° 46.8 N
  • Longitude: 154° 13.7 W
  • Time: 0800
  • Sky:Clear
  • Visibility: 10 nautical miles
  • Wind Direction: 279
  • Wind Speed: 9 Knots
  • Sea Wave Height: 1-2 foot swell
  • Barometric Pressure: 1019.9 millibars
  • Sea Water Temperature:   11.1°C
  • Air Temperature:   12.0°C
  • Sunrise: 0531
  • Sunset: 2300

Science and Technology Log: Nothing But Net!

Once the scientists determine where and how deep they want to fish, based on analyzing the echogram, then the boat moves into position and the net is deployed. Safety is the top priority when working on the vessel. The deckhands all have to wear life jackets, hard hats, and good boots when working on deck because the conditions can be sunny one moment and stormy the next.  There is some serious hardware at the back of boat. There are cranes, winches, and spools of wire ropes & chains. The Chief Boatswain is responsible for all deck operations and deploying any gear overboard. The following video illustrates the sampling process using an Aleutian Wing Trawl net.

There is a camera (aka camtrawl) attached to the net along with a small pocket net. The pocket net is designed to catch tiny animals that slip through the AWT meshes. The pocket mesh only catches a small amount of escaping animals which can then be used to determine what was in the water column with the bigger pollock. The camtrawl has a pair of cameras that shoot stereo images of what is entering the net. The camtrawl was developed by NOAA scientists and its goal is to estimate the size and identify the species that enter the net using visual recognition software from University of Washington. The ultimate goal of the camtrawl is to be able to identify everything entering the net without ever having to actually catch the fish.

 

This slideshow requires JavaScript.

A limitation of the AWT is that it can’t go closer than a few meters from the sea floor. Pollock are semi-pelagic so they are sometimes down at the sea floor and a different net is used. The Poly Nor’Easter (PNE) is used to trawl along the bottom of the Gulf of Alaska because the bottom can be rocky. The PNE has roller gear along its bottom to keep it from getting stuck. The opening of the PNE is 6 meters tall and 15 meters wide and also funnels to a codend.

There is a third net on Oscar Dyson called the Methot and it is used to catch large plankton such as krill. The Methot is so small that it sits on the deck and is easily lifted and put into the water. The net you use is determined by what you are trying to catch and where they are located in the water column.

Interview with Ryan Harris

Chief Boatswain

Chief Boatswain Ryan Harris managing Oscar Dyson crane.
  • Official Title
    • Chief Boatswain
  • Normal Job Duties
    • I am in charge of the deck operations on board the ship from deploying gear over the side to up keep of the ship.
  • How long have you been working on Oscar Dyson?
    • 15 months
  • What is your favorite thing about going to sea on Oscar Dyson?
    • I get to see things normal people do not.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • 11 years ago I fell in love with the excitement of travel.
  • What are some of the challenges with your job?
    • Trying to keep all the gear working to complete the mission.
  • What are some of the rewards with your job?
    • I get to serve my country and leave something behind that me and my family can be proud of.
  • Describe a memorable moment at sea.
    • Seeing killer Whales 5 feet away.

Interview with Tom Stucki

Lead Fishermen

Lead Fishermen Tom Stucki on the NOAA ship Oscar Dyson. Image by Matthew Phillips.
  • Official Title
    • Lead Fishermen
  • Normal Job Duties
    • I run the winches for trawls, Maintain and fix the nets, help with maintenance of our equipment. Paint and preserve the ship when time and weather allows, clean up inside of ship.
  •  How long have you been working on Oscar Dyson?
    • 2 months this time and a month long trip last year. I am a relief pool employee. I fill in where the fleet needs me.
  • Why the ocean? What made you choose a career at sea?
    • I grew up on the coast in a fishing community.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • The crew and work we do.
  • Why is your work (or research) important?
    • Our work is translated back to the commercial fleets so we don’t end up overfishing.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • Once I got out of the Army and went on my first successful Salmon fishing trip.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • Traveling as a relief pool employee.
  • What are some of the challenges with your job?
    • Working 12 hour days for months at a time.
  • What are some of the rewards with your job?
    • Knowing that the work I am helping with actually matters and hopefully will have positive implications down the road.
  • Describe a memorable moment at sea.
    • There are lots but its always nice in the middle of a trawl when you look up the sun is setting the water is flat calm and you think to yourself “yeah, I get paid for doing this.

Interview with Jay Michelsen

Skilled Fisherman

  • Official Title
    • Skilled Fisherman
  • Normal Job Duties
    • Operations of equipment to facilitate the needs of the science party.
  •  How long have you been working on Oscar Dyson?
    • two years
  • Why the ocean? What made you choose a career at sea?
    • I love the challenge of creating something stable from something so uncertain and ever changing as the ocean.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • Seeing some of the creatures that the ocean has living in its depth.
  • Why is your work (or research) important?
    • My work is important more for personal reasons, I am able to support my family and make their lives more comfortable. My work on the ship is nothing special besides understanding the rigging and being able to trouble shoot issues that arise just as quickly as they show up.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • I have wanted to pursue a career on the water for as long as I can remember, however it was my mother five years ago who pushed me to follow that desire.
  • What are some of the rewards with your job?
    • I enjoy seeing the creatures that we pull up from the ocean. The pay isn’t bad. If you are able to stay in for a long period of time, you can get a stable retirement.
  • Describe a memorable moment at sea.
    • There was a time that we brought up a salmon shark in the net and I was able to get it back into the water by cutting a hole in the net and pulling it out with the help of another deckhand. It was exhilarating!

Personal Log

Me in the survival suit.

I will admit that my biggest concern with going to sea was the thought of falling overboard. Now that I have been on Oscar Dyson I have learned that safety is a top priority and there are a lot of procedures for keeping everyone productive yet safe. Every week there are safety drills such as fire, abandon ship, and person overboard. The one I like the most is the abandon ship because I get to try on the survival suit. The waters here are so cold that survival overboard is unlikely without the survival suit.

It is comforting to know that the crew of Oscar Dyson work hard to keep themselves and everyone on board safe. I am no longer afraid of falling overboard because I’ve learned to be safe when navigating around the vessel and I have finally developed my sea legs – well sort of! The weather has been amazing with smooth sailing almost everyday. We did have a few days with some rolling seas and I had to put a seasickness patch behind my ear.

 

Education Tidbit: NOAA Fisheries Website

Another cool NOAA website that lets you explore deeper into fisheries and this video shows you how to find information for educators and students.

Did You Know?

The average size of a Bering Sea commercial fishing net is 60m tall by 120m wide.

Cristina Veresan, Nets and the Wet Lab, August 3, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Monday, August 3, 2015

Data from the Bridge:
Latitude: 58° 51.5 N
Longitude: 149° 30.8 W
Sky: Scattered Clouds
Visibility: 10 miles
Wind Direction: SSE
Wind speed: 8 knots
Sea Wave Height: <1 feet
Swell Wave: 0 feet
Sea Water Temperature: 16.3° C
Dry Temperature: 17.2 ° C

Science and Technology Log

Once it is determined where to fish, the scientists also have to decide which trawl to deploy and tow behind the ship in order to catch the targeted fish. The most common trawl we use to catch mid-water pollock is the Aleutian wing trawl (AWT). Our AWT is 140 meters long, and it can be fished anywhere from 30-1,000 meters underwater. A net echosounder is mounted at the top of the net opening and transmits acoustic images of fish going in the mouth of the net in real time to a display on a computer on the bridge that is monitored by the scientist and the Lead Fisherman. Additionally, at the entrance of the codend (the end of the net where the fish are collected), a stereo camera called the  CamTrawl takes pictures of anything entering the codend. CamTrawl pictures are later analyzed to determine species and lengths of the fish that were caught.  Sometimes the net is fished with the codend opened and the catch is only evaluated based on what is seen in the CamTrawl images. As this technology gets perfected less fish will need to be brought onboard.

A view of the stern as the deck crew prepares to deploy the AWT. Note the net reel at the bottom of the frame.
A view of the stern as the deck crew prepares to deploy the AWT. Note the AWT on the net reel at the bottom of the frame.

Cooperation among many different people is necessary during a trawl. The wet lab team prepares  the CamTrawl to collect data. The deck crew physically handles all the gear on deck, including attaching the CamTrawl camera, net echosounders, and physical oceanography instruments to the net and deploying and recovering the net. From the bridge, the Lead Fisherman controls the winches that move the trawl net in and out of the water. Once the trawl net is in the water, the scientists work closely with the Lead Fisherman and the officers to ensure a safe, effective trawl. Sometimes the trawl net will be down for a few minutes, and other times it will be closer to an hour. Once the net is back on the ship and emptied out, the catch and CamTrawl images are ready to be analyzed by the scientist and wet lab team.

CamTrawl images were filmed by two cameras in stereo and so scientists can run a program that calculates length.
Fish are filmed in stereo so scientists can run a program that calculates their length.

Two other nets, more seldom used, are the bottom trawl net, known as the Poly Nor’easter (PNE) and the Methot net, used to catch krill and zooplankton. The PNE is deployed if there is a large concentration of fish close to the ocean floor. It is smaller than the AWT and it is usually lowered to just above the ocean floor. The Methot net was named after Dr. Richard Methot, a famous fisheries modeler who designed the net. This net has an opening of 5 square meters, and it has a finer mesh than the AWT or the PNE. At the end of the net is a small PVC codend where the sample is taken from.

Shipmate Spotlight: Interview with Kirk Perry

Kirk Smith, Lead Fisherman and Chief Boatswain
Kirk Perry, Lead Fisherman and Chief Boatswain

What is your position on the Oscar Dyson?
I am the Lead Fisherman and also sailing as active Chief Boatswain.

What training or education do you need for your position?
I went to Cal Poly San Luis Obispo and got a BS in Natural Resource Management. I have certifications from the Coast Guard like an AB (Able-Bodied Seaman) unlimited, which means I have over 1070 days sailing as an AB. I also have a Masters license to operate a 100-ton vessel. You need a lot of fishing experience.

What do you enjoy the most about your work?
Fishing! Obviously. You just never know what you are going to get, and it’s always exciting.

Have you had much experience at sea?
I have been fishing since I was 10 years old and I helped a neighbor build a boat and go salmon fishing in Monterey Bay. When I visited family in Hawai’i, we would go trolling, set net fishing, beach casting, and spearfishing. I have been sailing professionally with NOAA for 11 years on different vessels in Hawai’i, Mississippi, and here in Alaska.

Where do you do most of your work aboard the ship? What do you do?
As Lead Fisherman I operate the machinery from the bridge when we are trawling. Basically, I get the fishing gear in and out of the water safely. As Chief Boatswain, I am in charge of the Deck Department, so I schedule crew, assign daily crew duties, maintain supply inventories, oversee the ship’s survival gear, and operate deck equipment like winches, anchor, and cranes.

When did you know you wanted to pursue a marine career?
By 25 years old I knew I had to be on the water, full time, all the time, but I did not get to be here until I was 44 years old.

What are your hobbies?
When I’m not fishing, I like to hunt. Mainly ducks and geese.

What do you miss most while working at sea?
Home, my family. And my own bed!

What is your favorite marine creature?
Tuna because they are so fast powerful and so delicious! When you are fishing for them, it’s like nothing else. It can turn into a wide open frenzy.

Inside the Oscar Dyson: The Wet Lab

The ship's wet lab
The ship’s wet lab

The wet lab is where we do most of our work, and it gets really busy in here after a trawl. It is called a “wet” lab because it is designed to get just that. When a trawl net is full of fish, it is emptied onto a table that tilts onto a conveyor belt feeding into the wet lab. We have controls to run the conveyor belt as well as tilt the tableAs the fish are brought in on the conveyor, we sort them in large and small baskets, and then collect data from the different species. The metal counters, outfitted with electronic balances and automated length readers provide us with workspace to process our samples. The work of the wet lab is messy and fun. When we process a catch, fish scales get everywhere! The shiny, sticky little discs coat every surface, especially areas that you touch like the computer screens and handles. It is fun to clean this lab because you spray everything down with the salt water from hoses that are rigged from the ceiling. You can even spray down the computer screens themselves, and then rinse them with fresh water. Water washes over everything and drips down, entering drains in troughs along the edges of the floor.

 

Processing pollock in the wet lab!
Processing pollock in the wet lab! Photo by Emily Collins

Personal Log

Whenever it’s time to process fish in the wet lab, I have to get geared up! What is the latest in fisheries fashion, you might ask? Rubber boots are a must. We take the lead of Alaskans and wear brown XtraTuf boots. Once I get my boots on, I put on my Grundens foul weather coveralls over my pants. The weather has been mild, so I have been forgoing the matching foul weather jacket and just wearing a long sleeved t-shirt or sweatshirt. I have not been wearing a hat, but I do pull my hair back. Lastly, I pull on elbow-length yellow rubber gloves over my sleeves.

Before you enter the wet lab, you get geared up here. Sometimes to make a quick entrance/exit, you leave your boots in your coveralls (bottom right)
Before you enter the wet lab, you get geared up here. Sometimes to make a quick entrance/exit, you leave your boots in your coveralls (bottom right)
These boots are made for fishin'
These boots are made for fishin’

I am really enjoying my time with this ship’s crew and the rest of the science party. Everyone has been very welcoming, and, though we work hard, we maintain a sense of fun. If we have down time between data collection, Emily and I play cribbage. Or we go out on deck and take in the sights, like the Holgate glacier we passed the other day. Quite a few people on board have spent time in Hawai’i, so we can ‘talk story’ about the islands from all the way up here in the North Pacific. It is amazing how we are all connected in some way through our love of the ocean.

My voyage of discovery continues…

glacier
We sailed within 4 miles of Holgate Glacier on a beautiful sunny morning

Andrea Schmuttermair, Pollock Processing Gone Wild, July 12, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 6 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 12, 2015

Weather Data from the Bridge:
Latitude: 55 25.5N
Longitude: 155 44.2W
Sea wave height: 2ft
Wind Speed: 17 knots
Wind Direction: 244 degrees
Visibility: 10nm
Air Temperature: 11.4 C
Barometric Pressure: 1002.4 mbar
Sky:  Overcast

Science and Technology Log

I’m sure you’re all wondering what the day-to-day life of a scientist is on this ship. As I said before, there are several projects going on, with the focus being on assessing the walleye pollock population. In my last post I talked about the transducers we have on the ship that help us detect fish and other ocean life beneath the surface of the ocean. So what happens with all these fish we are detecting?

The echogram that shows data from the transducers.
The echogram that shows data from the transducers.

The transducers are running constantly as the ship runs, and the information is received through the software on the computers we see in the acoustics lab. The officers running the ship, who are positioned on the bridge, also have access to this information. The scientists and officers are in constant  communication, as the officers are responsible for driving the ship to specific locations along a pre-determined track. The echograms (type of graph) that are displayed on the computers show scientists where the bottom of the ocean floor is, and also show them where there are various concentrations of fish.

This is a picture of pollock entering the net taken  from the CamTrawl.
This is a picture of pollock entering the net taken from the CamTrawl.

When there is a significant concentration of pollock, or when the data show something unique, scientists might decide to “go fishing”. Here they collect a sample in order to see if what they are seeing on the echogram matches what comes up in the catch. Typically we use the Aleutian wing trawl (AWT) to conduct a mid-water trawl. The AWT is 140 m long and can descend anywhere from 30-1,000 meters into the ocean. A net sounder is mounted at the top of the net opening. It transmits acoustic images of fish inside and outside of the net in real time and is displayed on a bridge computer to aide the fishing operation. At the entrance to the codend (at the end of the net) a CamTrawl takes images of what is entering the net.

This slideshow requires JavaScript.

Once the AWT is deployed to the pre-determined depth, the scientists carefully monitor acoustic images to catch an appropriate sample. Deploying the net is quite a process, and requires careful communication between the bridge officers and the deck crew. It takes about an hour for the net to go from its home on deck to its desired depth, and sometimes longer if it is heading into deeper waters. They aim to collect roughly 500 fish in order to take a subsample of about 300 fish. Sometimes the trawl net will be down for less than 5 minutes, and other times it will be down longer. Scientists are very meticulous about monitoring the amount of fish that goes into the net because they do not want to take a larger sample than needed. Once they have determined they have the appropriate amount, the net is hauled back onto the back deck and lowered to a table that leads into the wet lab for processing.

Here the scientists, LT Rhodes, and ENS Kaiser assess the catch.
Here the scientists, LT Rhodes, and ENS Kaiser assess the catch.

We begin by sorting through the catch and pulling out anything that is not pollock. We don’t typically have too much variety in our catches, as pollock is the main fish that we are after. We have, however, pulled in a few squid, isopods, cod, and several jellies. All of the pollock in the catch gets weighed, and then a sub-sample of the catch is processed further. A subsample of 30 pollock is taken to measure, weigh, collect otoliths from, and occasionally we will also take ovaries from the females. There are some scientists back in the lab in Seattle that are working on special projects related to pollock, and we also help these scientists in the lab collect their data.

The rest of the sub-sample (roughly 300 pollock) is sexed and divided into a male (blokes) and female (sheilas) section of the table. From there, the males and females are measured for their length. The icthystick, the tool we use to measure the length of each fish, is pretty neat because it uses a magnet to send the length of the fish directly to the computer system we use to collect the data, CLAMS. CLAMS stands for Catch Logger for Acoustic Midwater Survey. In the CLAMS system, a histogram is made, and we post the graphs in the acoustics lab for review. The majority of our pollock so far have been year 3. Scientists know this based on the length of pollock in our catch. Once all of the fish have been processed, we have to make sure to clean up the lab too. This is a time I am definitely thankful we have foul weather gear, which consists of rubber boots, pants, jackets and gloves. Fish scales and guts can get everywhere!

This slideshow requires JavaScript.

Personal Log

Here is one of many jellies that we caught. .
Here is one of many jellies that we caught. .

I am finally adjusting to my nighttime shift schedule, which took a few days to get used to. Luckily, we do have a few hours of darkness (from about midnight until 6am), which makes it easier to fall asleep. My shift runs from 4pm-4am, and I usually head to bed not long after my shift is over, and get up around noontime to begin my day. It’s a little strange to be waking up so late in the day, and while it is clearly afternoon time when I emerge from my room, I still greet everyone with a good morning. The eating schedule has taken some getting used to- I find that I still want to have breakfast when I get up. Dinner is served at 5pm, but since I eat breakfast around 1 or 2pm, I typically make myself a plate and set it aside for later in the evening when I’m hungry again. I’ll admit it’s a little strange to be eating dinner at midnight. There is no shortage of food on board, and our stewards make sure there are plenty of snacks available around the clock. Salad and fruit are always options, as well as some less healthy but equally tasty snacks. It’s hard to resist some of the goodies we have!

Luckily, we are equipped with some exercise equipment on board to battle those snacks, which is helpful as you can only walk so far around the ship. I’m a fan of the rowing machine, and you feel like you’re on the water when the boat is rocking heavily. We have some free weights, an exercise bike and even a punching bag. I typically work out during some of my free time, which keeps me from going too crazy when we’re sitting for long periods of time in the lab.

Up on the bridge making the turn for our next transect.
Up on the bridge making the turn for our next transect.

During the rest of my free time, you might find me hanging out in the lounge watching a movie (occasionally), but most of the time you’ll find me up on the bridge watching for whales or other sea life. The bridge is probably one of my favorite places on the ship, as it is equipped with windows all around, and binoculars for checking out the wildlife. When the weather is nice, it is a great place to sit outside and soak in a little vitamin D. I love the fact that even the crew members that have been on this ship for several years love seeing the wildlife, and never tire of looking out for whales. So far, we’ve seen orcas, humpbacks, fin whales, and Dall’s porpoises.

 

 

 

Did you know? Otoliths, which are made of calcium carbonate, are unique to each species of fish.

Where on the ship is Wilson?

Wilson the ring tail camo shark is at it again! He has been exploring the ship even more and made his way here. Can you guess where he is now?

Where's Wilson?
Where’s Wilson?
Where's Wilson?
Where’s Wilson?

Melissa George: Catch Me if You Can, July 31, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  July 31, 2013

Current Data From Today’s Cruise

Weather Data from the Bridge (12 noon Alaska Daylight Time)
Sky Condition:  Cloudy
Temperature:  12.8 ° C
Wind Speed:  14 knots
Barometric Pressure:  1024.7 mb
Humidity:  89%

Clouds Seen from Bow of Oscar Dyson on July 31, 2013
Clouds Seen from Bow of Oscar Dyson on July 31, 2013

Sun and Moon Data 
Sunrise:  6:03 am
Sunset:  10:28 pm

Moonrise:  1:06 am
Moonset:  5:58 pm

Geographic Coordinates at 12 noon (Alaska Daylight Time)

Latitude:  59° 39.3′ N
Longitude:  157° 51.2′ W

The ship’s position now can be found by clicking:  Oscar Dyson’s Geographical Position

Science and Technology Log

The main goal of Leg 3 of this mission is to survey the mid-water portion of the pollock population using acoustics and trawls.  Pollock usually inhabit the middle of the water column down to the seafloor. This mid-water survey is typically carried out once every two years.  Another NOAA Fisheries survey observes the pollock that live close to the seafloor using bottom trawls.

Location of Fish in Water Column
Location of Fish in Water Column

Trawling 

The Oscar Dyson carries three different types of trawling nets for capturing fish as part of the mid-water survey:  the Aleutian Wing Trawl  (AWT),  a mid-water trawl net called the Poly Nor’Eastern bottom trawl, a net with special rubber bumpers so it can bounce along the ocean floor; and the Methot,  a small encased net that gathers very small ocean creatures such as krill.  I will be discussing trawling with the AWT in this blog.

leg 3
Leg 3 of the Mid-Water Survey Began East of Kodiak and Will End Near Yakutat

First, I will describe the AWT net, then I will explain how it works.  The AWT net is HUGE:  the mouth is about 25 m high and 35 m wide while the  net itself is over 150 m long (this is not counting the trawling wires that it is attached to!).  To give you an idea of how big this is, let’s think in school buses.  If we estimate a school bus to be about 10 m long, then this net would be 15 school buses long, and its mouth would be 3 school buses  wide and 2 school buses (end to end) tall.   The picture below also gives perspective in dimensions (keep in mind that the Blue Whale is only used to give relative dimensions, they are never caught in NOAA’s nets!)

Relative Dimensions of AWT Net (courtesy of Kresimir Williams)
Relative Dimensions of AWT Net (courtesy of Kresimir Williams)

I am going to describe how the net goes into the water, step by step.  Then you can watch a short sped-up video that my fellow Teacher at Sea mate, Julia Harvey, created.  She works the night shift (4 pm to 4 am) on the same cruise that I am on.

So here it goes…

Step 1:  The Codend

When the net is deployed from the ship, the first part of the net to hit  the water is called the codend (see the far right of the diagram above).  This is where most of the fish end up after the trawl.  The mesh size of the net is smallest at the codend (about 1 cm) and gets larger as it approaches the doors (about 1 m).

AWT
Labeled Scale Model of the Aleutian Wing Trawl (AWT) Net (courtesy of NOAA Scientist Kresimir Williams)

Step 2:  The Trawl Camera

A trawl camera is the next major part that hits the water.  This is a pair of cameras that help scientists identify and measure the fish that are caught in the net. This technology can also be used to help  scientists validate their biomass estimate from trawling sampling counts.    This piece of equipment has to be clipped into the side of the net each time the crew is instructed to deploy the AWT.

trawl camera
The Trawl Camera

Step 3:  The Kite

The next piece of the net to hit the water is the kite which is secured to the head rope.  Attached to the kite is  a series of sensors that help the scientists gather data about the condition of the net including depth, size, and shape underwater.   The major acoustic sensor, affectionately termed the turtle, can tell the scientists if the fish are actually going into the net.

Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net.  The third wire holds the electrical wires that send data from the turtle to the bridge.
Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net. The third wire holds the electrical wires that send data from the turtle to the bridge.

Step 4:  Deployment from A-Frame

Once the kite is deployed, a pair of tom weights (each weighing 250 lbs), are attached to the bridal cables to help separate the head rope from the foot rope and ensure the mouth of the net will open.  Then, after a good length of cable is let out, the crew transfers the net from the net reel to the two tuna towers and attaches the doors.  The doors act as hydrofoils and create drag to ensure the net mouth opens wide.

The scientists use acoustic data to determine at what depth they should fish, then the OOD (Officer on Deck) uses a scope table to determine how much cable to let out in order to reach our target depth.  Adjustments to the depth of the head rope can be made by adjusting speed and/or adjusting the length of cable released.

The scientists use more acoustic data sent from the turtle to determine when enough fish are caught to have a scientifically viable sample size, then the entire net is hauled in.  Once on board, the crew uses a crane to lift the codend over to the lift-table.  The lift-table then dumps the catch into the fish lab where the fish get sorted on a conveyor belt.  Click on Julia’s video below to see the entire process (sped up to retain the your interest!)

 Personal Log: 

Belongingness

Continuing with Maslow’s hierarchy of needs, I will discuss some of the ways that the need of belongingness is  met on the Oscar Dyson.  There are several different ways that comaraderie is fostered on the ship:   teamwork, common areas, meal time, and celebrations.

A Version of Maslow's Hierarchy of Needs
A Version of Maslow’s Hierarchy of Needs
Teamwork
Remember the main goal of Leg 3 of this mission is to survey by acoustic-trawl the mid-water portion of the pollock population.  To ensure that the goal of the mission is accomplished, several crews are necessary:  engineering, officer, deck, and science crews.   People assigned to a crew work together, and there is cross-talk between crews.  For example,  on the bridge where the officers work, there are two to four  people navigating the ship and instructing the deck crew.  The deck crew works together to put out and pull in the trawling nets, and the engineering crew works together to make sure the ship is operating properly. Similarly, the scientist crew members consult with each other while:  reading the acoustics on the computer screens;  deciding when, where, and how long to trawl; determining the best way to process the trawl; and reconciling the “catch” with the acoustical data.  The collaboration within and between the four crews mimics a sports team that has offensive and  defensive strings working together to maintain their positions to accomplish a common goal.
Oscar Dyson Crews
Oscar Dyson Crews
Common Areas
The ship is like a house with many rooms.  Most of the staterooms (bedroom/bath) are shared.  In terms of “living space” there is one dining area (called the galley), a conference room with books where people meet for drills or quiet work, a movie room, a laundry room, and an extra rest room.  Because all these areas are shared,  “ship etiquette” is followed, meaning that every individual keeps his or her space neat and also keeps the other common areas clean and organized.  Sometimes, reminders are placed in areas where ship etiquette needs polishing.
Reminder of Ship Etiquette in Common Restroom
Reminder of Ship Etiquette in Common Restroom
Meal Times
Meals on the Oscar Dyson are during one hour windows three times a day.  Breakfast is served from 7 to 8 am, lunch 11am to noon, and dinner 5 to 6 pm.  Unless people are sleeping or actively involved in trawling or processing, they eat at these times.  Therefore, mealtime is a time to chat, joke, ask questions, and tell stories.  
Galley Reminder
Galley Reminder
Celebrations
We have had three celebrations.  Two of these were for birthdays celebrated on the ship.  The stewards made a cake for dessert in one instance and hosted an ice cream social in the second.  Another celebration was when we were in Prince William Sound to pick up net repair supplies.  Because we were near land for the first time in many days and the sun was shining, many people came on deck at the same time to take pictures.  Some spotted porpoises which added to the excitement.  Fellow Teacher at Sea, Julia Harvey, captured a wonderful video of this event.  

Did You Know?

The ship stewards are the people who plan and prepare the meals for those on board.  Adam (below) is the second cook on the Oscar Dyson.  He worked in various restaurants in Portland before coming to NOAA as a General Vessel Assistant (GVA) helping with the different crews on various ships as needed. When the spot as a steward opened on the Oscar Dyson, Adam got the job.  He has taken various NOAA training courses for stewardship and is on the ship nine months out of the year as it surveys both in the Bering Sea and the Gulf of Alaska.

Adam, Steward on the Oscar Dyson
Adam, Steward on the Oscar Dyson

Something to Think About: 

 Today’s episode of Trawling Zoology features the animal family, Cnidaria.  Cnidaria is a word that originates from the Greek word cnidos which means “stinging nettle.”   Although the cnidarians are a very diverse family, all the members contain nematocysts (combination of Greek words nema meaning “thread” and kystis meaning “bladder”), basically barbed threads tipped with poison.  If you have ever been stung by a jellyfish,  you have felt this stinging sensation.

There are four very diverse groups of cnidarians:  Anthozoa which includes true corals, anemones, and sea pens;  Cubozoa, the amazing box jellies with complex eyes and potent toxins;  Hydrozoa,  the most diverse group with siphonophores, hydroids, fire corals, and many medusae; and  Scyphozoa, the true jellyfish.  We have brought up several members of these groups in our trawling.

Anthozoa:  We have brought on deck both sea pens and sea anenomes.  In both groups there was only one species represented.

Sea Pens
Sea Pens
Sea Anenomes (hermit crabs in front are not anthozoans)
Sea Anenomes (hermit crabs in front are not anthozoans)

Schyphozoa:  We brought up a couple of different species of jellyfish; we used a classification field guide to help us identify them.

Jellyfish from the Invertebrate Field Guide for Alaskan Waters
Jellyfish from the Invertebrate Field Guide for Alaskan Waters
Many Jellies (members of the Aequorea genus) Found in the Methot Trawl
Many Jellies (members of the Aequorea genus) Found in the Methot Trawl
Jellyfish, Cyanea capillata
Jellyfish, Cyanea capillata

To learn more about the Cnidaria Family, click the Cnidaria on the picture below, and stay tuned for further exploration of this animal Tree of Life.

Can you spot the Cnidarian on the Tree of Life?  Click on it to learn more.
Can you spot the Cnidarian on the Tree of Life? Click on it to learn more.

Johanna Mendillo: Nets, Northern Sea Nettles and More…, August 5, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA ship Oscar Dyson
July 23 – August 10

Mission: Pollock research cruise
Geographical area of the cruise: Bering Sea
Date: Sunday, August 5, 2012

Location Data
Latitude: 61º 10′ N
Longitude: 179º 28’W
Ship speed: 4.3 knots ( 4.9 mph)

Weather Data from the Bridge
Air temperature:  11.1ºC (52ºF)
Surface water temperature: 8.1ºC (46.6ºF)
Wind speed: 5.4 knots ( 6.2 mph)
Wind direction: 270ºT
Barometric pressure: 1013 millibar ( 1.0 atm)

Science and Technology Log:

So far, you have learned a lot about the pollock research we conduct on board.  You have learned:

  • How to age fish (with otoliths)
  • How to measure fish (with the Ichthystick)

and

  • How to identify fish gender (with your eyes!)

Now, we are going to backtrack a bit to the two big-picture topics that remain:

  • How do we CATCH the pollock (hint hint, that is today’s topics… NETS!)

and

  • How do we even find pollock in the Bering Sea (that is the next blog’s focus: acoustics!)

So, to begin, there are several types of nets we are carrying on board.  Remember, when a net is dragged behind a ship in the water it is called trawling, and the net can be considered a trawl.  The most-used is the Aleutian Wing Trawl, or AWT, which we use to sample the mid-water column (called a midwater trawl).  We are also using a net called the 83-112, which is designed to be dragged along the ocean floor as a bottom trawl, but we are testing it for midwater fishing instead.  In fact, sometimes during my shift we do one AWT trawl, and immediately turn around and go over the same area again with the 83-112 to see differences in the fish sizes we catch!

If the 83-112, which is a smaller net, proves to be adequate for midwater sampling, NOAA hopes it can be used off of smaller vessels for more frequent sampling, especially in the years the NOAA does not conduct the AWT (NOAA currently does AWT surveys biennially).

Now, for each type of net, there is some new vocabulary you should know:

 A typical midwater trawl
A typical midwater trawl…

The codend is the bottom of the net.  A closed codend keeps the fish inside the net and an open cod end allows them to swim through.  It may seem odd, but yes, sometimes scientists do keep the codend open on purpose!  They do this with a camera attached to the net, and they simply record the numbers of fish traveling through a certain area in a certain time period, without actually collecting them!  Here on the Dyson, the NOAA team is testing that exact type of technology with a new underwater camera called the Cam-Trawl, and you will learn about it in a later post.

The headrope is the top of the opening of the net.

The footrope is the bottom of the opening of the net.

(The 83-112 is called such because it has an 83 ft headrope and an 112 ft footrope.)

The trawl doors are in front of the headrope and help keep the net open.  Water pressure against the trawl doors pushes them apart in the water column during both setting of the net and while trawling, and this helps spread out the net so it maintains a wide mouth opening to catch fish.

There are floats on the top of the net and there can be weights on the bottom of the net to also help keep it open.

Lastly, the mesh size of the net changes: the size at the mouth of the net is 3 meters (128in.), and it decreases to 64in., 32in., 16in.., 8in., etc. until it is only ½ inch by the time you are holding the codend!

Here is a diagram to put it all together:

Courtesy of Kresimir Williams, NOAA

If you think about the opening of the net in terms of school buses, it will help!  It turns out that the AWT’s opening height, from footrope to headrope, is 25m, which is 2 school buses high!  The AWT’s opening width, is 40m across, about 3.5 school buses across!  Now, you can see why positioning and maneuvering the net takes so much care– and how we can catch a  lot of pollock!

Here is a trawl returning back to the ship's deck!
Here is a trawl returning back to the ship’s deck!

Now, when the scientists decide it is “time to go fishing” (from acoustic data, which will be the topic of the next blog) they call the officers up on the Bridge, who orient the ship into its optimal position and slow it down for the upcoming trawl.  Meanwhile, the deck crew is preparing the net.  The scientists then move from their lab up to the Bridge to join the officers– and they work together to monitor the location and size of the nearby pollock population and oversee the release and retrieval of the net.

Along the headrope, there are sensors to relay information to the Bridge, such as:

  • The depth of the net
  • The shape of the net
  • If the net is tangled or not
  • How far the net is off the bottom and
  • If fish are actually swimming into the net!

The fish and the net are tracked on this array of computer screens.  As the officers and scientists view them, adjustments to the net and its depth can be made:

The Bridge!
The Bridge!

The start of the trawl is called “EQ” – Equilibrium and the end of the trawl is called “HB” – haul back.  The net can be in the water anywhere from 5-60 minutes, depending on how many fish are in the area.

The AWT will get would up on this new reel
The AWT will get wound up on this reel

Now, sometimes an AWT catches so many fish that there are simply too many for us to measure and process in a timely fashion, so it is deemed a “splitter”!  In a splitter, there’s an extra step between hauling in the net from the ocean and emptying it to be sorted and processed.  The codend of the AWT is opened over a splitting crate, and half of the pollock go into a new net (that we will keep and sort through) and the rest of the pollock are returned to the water.

 The net is back on board!  Time to open up the codend and see what we have caught!
The net is back on board! Time to open up the codend and see what we have caught!

Personal Log:

Let’s continue our tour aboard the Oscar Dyson!  Follow me, back to the bridge, where the OOD (Officer on Duty) is at the helm.  As you already know, the first thing you notice on the bridge is the vast collection of computer screens at their disposal, ready to track information of all kinds.  You will learn more about these in an upcoming blog.

Busy at work on the bridge...
Busy at work on the Bridge…

In addition to these high-tech instruments, I was very happy to see good old-fashioned plotting on a nautical chart.  In class, students, you will have a special project where you get to track the changing position of the Oscar Dyson!

This chart is showing the northernmost point of three of our sampling transects- including the one closest to Russia!
This chart is showing the northernmost point of three of our sampling transects- including the one closest to Russia!

Here is a sample of the hour-by-hour plotting, done by divider, triangle, and pencil:

Can you spot them, hour by hour?
Can you spot them, hour by hour?

I will end here with a sea specimen VERY different from pollock, but always a fan favorite— jellyfish!  Interestingly, there are a large number of jellyfish in the Bering Sea- something I never would have assumed.  The one that we catch in almost every net is the Northern Sea Nettle (Chrysaora melanaster).  In one net, we collected 22 individuals!

When we collect non-pollock species such as these, we count, weigh, and record them in the computerized database and then release them back into the ocean.  Here they are coming down the conveyor belt after the net has been emptied:

Processing a net with many a jelly!
Processing a net with many a jelly!

The so-called bell, or the medusa, can be quite large- some are the diameter of large dinner plates (45cm)!  Their tentacles can extend to over 3m in length.  They consume mostly zooplankton, small fish (including juvenile pollock), and other jellies.  How so, exactly?  Well, when the tentacles touch prey, the nematocysts (stinging cells) paralyze it.  From there, the prey is moved to the mouth-arms and finally to the mouth, where it’s digested.

Some of the larger ones!
Some of the larger ones!

This same mechanism is used by sea nettle when it encounters danger like a large predator.  It stings the predator with its nematocysts and injects its toxins into its flesh.  In the case of smaller predators, this venom is strong enough to cause death.  In larger animals, however, it usually produces a paralyzing effect, which gives the sea nettle enough time to escape.

Now in the case of me handling them… and other humans…their sting is considered moderate to severe.  In most cases, it produces a rash, and in some cases, an allergic reaction.  However, we wear gloves on board and none of the scientists have ever had an issue holding them.  In fact, they offered to put one on my head and take a picture… but I declined!  If a few students email me, begging for such a picture, maybe I will oblige…

Anne Mortimer: Otoliths and more otoliths…, July 8, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 8, 2011

Weather Data from the Bridge
Air temperature: Sunny, 10°C
Sea temperature: 9.1°C
Wind direction: SW; 318 degrees
Wind Speed: 24.1 knots
Barometric pressure: 1012.12 mbar

Science and Technology Log

On my last 12 hour shift, a beautiful, sunny day, we started by pulling in, sorting, counting, and weighing fish caught in a mid-water trawl.  The scientists were also testing out a new “critter cam” that was attached to the net. The trawl net has a special device called a M.O.C.C. which stands for Multiple Opening and Closing Cod-ends. The net has three separate nets that can be opened and closed by the M.O.C.C. when the scientists reach the desired depth or location for catching, this keeps the catches from different targeted depths from mixing together. The three separate nets are called cod-ends. Each cod-end catch is processed separately. In this trawl, we saw multiple jellies, juvenile pollock, krill, juvenile squid, juvenile Pacific sandlance, capelin, juvenile flatfish, and juvenile cod.

capelin
Capelin from our trawl covered the deck of the boat.
MOCC entering the water
The Multiple Opening and Closing Cod-end, or MOCC, and net being released to the water for a mid-water tow.

Later, we trawled a 2nd time for about an hour. The trawl net used is called the AWT or Aleutian Wing Trawl because the sides of the net are like wings. After the net is in the water, two large steel doors are dropped in the water and help to pull the net open wide. You can see them in the picture above, they are the giant blue steel plates attached to the very stern (end) of the ship. During this trawl, only one cod-end was opened, and the catch was several hundred pounds of Pollock, with some eulachon, capelin, squid and jellies also.

Because pollock are the target fish of this survey, each was sexed and counted, and a smaller number were measured for length and weight, and the stomachs and otoliths were removed. The stomachs are being preserved for another research project back in Seattle, and as I mentioned previously about otoliths, they tell the age of the fish.

Personal Log

Today I was happy to have beautiful sunshine and 2 trawls to sort through. The skies and surrounding islands were absolutely stunning. I can understand why people are drawn to this place. It’s wild and rugged and looks like it probably did hundreds of years ago.

Scenery of the Shumigan Islands.
sunset
Dusk in the Shumigan Islands.

Species List

humpback whale (just one today!)

fulmar

tufted puffin

pollock

arrowtooth flounder

jellies

krill

squid

Pacific sandlance

capelin

juvenile flatfish

juvenile cod

sea gulls

eulachon

Thought for the day… if I was a blubbery whale, I would live in the Gulf of Alaska. If I was a pollock, I’d try not to get into a net, they can give you a splitting headache.

Obed Fulcar, July 26, 2010

NOAA Teacher at Sea Obed Fulcar
NOAA Ship Oscar Dyson
July 27, 2010 – August 8, 2010

Mission:Summer Pollock survey III
Geograpical Area:Bering Sea, Alaska
Date:July 26, 2010

Weather from the Bridge: 

Time: 04:18 am
Latitude:60.02 N
Longitude:176.59 W
Wind Speed:15.2 knots
Wind Direction:180 degrees South
Sea Temperature:9.2 C (48.56 F)
Air Temperature:8.2 C (46.76 F)
Barometric Pressure: 1009.7 mb
Cloudy Skies

SCIENCE & TECHNOLOGY LOG:
The purpose of this mission aboard the Oscar Dyson is for a team of scientists to conduct a survey of the Bering Sea Walleye Pollock population, in oder to help the government establish sustainable commercial fishing quotas that will allow to manage a healthy population of this abundant, but yet fragile species. In order to carry the Pollock survey it is necessary to perform a combined Acoustic -Trawl Survey where acoustic data is collected along a line transect and then a Trawl (net) is used to catch a sample quantity of the fish observed in the acoustic data.

Acoustics Lab
Acoustics Lab

In the Acoustic Lab there are a number of video monitors displaying several screens. Taina Honkalehto, the Chief Scientist of the Oscar Dyson explained to us how the acoustic sonar operates. First the acoustic survey relies on Sonar technology where it sends an acoustic “ping” powerful enough to detect fish at any depths. It travel back and forth between the bottom and the surface of the ocean, and its signature then registered on a video screen, allowing us to “see” where the fish are and the precise location. One screen shows an actual graph, or “echogram”, displaying several layers at different depths in colors ranging from gray, blue, green, yellow, orange to red. The dark red color represented the ocean floor, and the green/blue dots represented the fish. The darker the color, the more dense were the objects. Another sceen showed the location of the ship on a Nautical Topographic Map, including a red line showing transects (line routes) followed by the ship., as well as icons showing the points where the fish has been detected along the way. Tainathen uses this constant information to decide how to instruct the bridge into when where to position the ship in order to launch thetrawl net.

transect lines
Transect Lines

The trawl net used is known as an Aleutian Wing Trawl (AWT). It is equipped with specialized sensors that show in the video monitor where the fish are in relation to the net. Once the trawl is finished the net is then hauled back and the contents spread on deck for sorting out and identification. Target species such as the Walleye Pollock will be separated to be measured and weight then released overboard. Some of the catch will be kept for dissection to determine the sex, and to determine the age by studying the Ear bone or Otholith,that registers the gowth of the fish by marking each year with a dark ring, just like the growth rings on a tree. The otolith, stomach contents, and sample fish are carefully placed in vials, mesh and ziploc bags to be sent to NOAA’s Alaska Fisheries Science Center in Seattle for laboratory analysis. all this information will tell us how healthy is the Pollock population o the Bering sea, and help determine commercial fishing quotas for next year’s fishing season.

Video Monitor
Video Monitor

PERSONAL LOG:

I could not help to think about the amount of technology involved in the Pollock survey. I am pretty sure that Mr.Sanchez, my school technology teacher would be excited to see all the servers, CPUs, monitors, and all the coputer harware and gear used around here onboard the Oscar Dyson. I believe that the middle school students of the Maria Teresa Mirabal school MS319 will be right at home, since they are accustomed to used technology as part their everyday school work. From getting their password to log on into the school website network, using Netbooks for interactive podcast lessons, to taking online reading comprehension quizzes, these are part of a technology rich learning environment. Technology literacy is basic for a 21st Century education. But technology alone is not enough if we don’t tech the kids how to apply it in the real world. One example of the importance of using mathematical skills in the real world is best demonstrated in the Acoustic survey when calculating the estimated size of the fish that appears as dots on the Acoustic radar screen. The sonar software allows to isolate the fish by scanning a selected area of the monitor display and calculating the average decibel (sound unit) value per dot representing a fish. Knowing this value we can replace it in a given formula and easily calculate the approximate size of the fish in order to start trawling.

VOCABULARY:
Aleutian (Alaska native group), Dissection, Decibel, Nautical Topographic Map (underwater map of the ocean floor), Otolith, Transect

Tecnologia en Alta Mar” El proposito de la Mision abordo del Oscar Dyson es la de tomar un muestreo del Pollock o Bacalao para poder determinar que tan robusta esta su poblacion, a fin de poder determinar las cuotas apropiadas a ser dictadas a las flotas de pesca comercial. Para poder hacer este muestreo es necesario el uso de tecnologia de Sonar Acustico en combinacion con el uso de la Red de Arrastre.Todo comienza en el Laboratorio Acustico donde un numero de pantallas de monitor muestran diferentes imagenes. Taina Honkalehto, la Cientifico en Jefe del Oscar Dyson, nos explico que la tecnologia de sonar consiste en enviar un “ping” acustico que es lo suficiente poderoso para viajar de la superficie al fondo del mar de ida y vuelta, penetrando las capas mas profundas. La onda acustica que es reflejada es pues registrada en las pantallas permitiendonos ver una imagen de la ubicacion de los peces, y la precisa profundidad. Una pantalla nos muestra una grafica en tiempo real con lineas de diferentes colores que van del gris, azul, verde, amarillo, hasta el rojo que representa el fondo del mar. Otra pantalla nos muestra un Mapa Topografico Nautico que incluye una linea roja mostrando la linea de transeccion o el curso que sigue la nave. Con toda esta informacion Taina puede instruir al puente sobre que ruta de navegacion debe tomar la nave a fin de hacer la pesca. La red de Arrastre Aleutina, empleada en el muestreo, esta equipada con sensores especiales que indican en la pantalla la ubicacion de los peces en todo tempo. Realmente tienen la pesca totalmente calculada a lo mas minimo! Tan pronto se termina la pesca, el contenido de la red es pues depositado en la cubierta donde los peces seran separados para ser medidos y disecados a fin de averiguar el sexo y la edad. Muestras del contenido del estomago, y especimenes seran recogidos a fin de enviarlos a los laboratorios de NOAA en Seattle para determinar si la poblacion estara optima para la peca de la proxima estacion.

Story Miller, July 23, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: July 23, 2010
 
Time: 1240 AKST
Latitude: 60°30N
Longitude:176°29W
Wind: 8 knots (approx. 9.21 mph)
Direction: 156° (SE)
Sea Temperature: 8.9°C (approx. 48°F)
Air Temperature: 9.2°C (approx. 48.6°F)
Barometric Pressure (mb): 1008
Wave Height: 0.5 feet
Wave Swell: 5 – 6 feet
Scientific Log:
Survey Tech Robert Spina and Fisherman Mike Tortorella deploying the CTD

We started the morning by dropping a CTD (Conductivity, Temperature, Depth) and monitoring the salinity of the ocean, the temperature, and depth. Salinity, the amount of salt in the ocean, is important as the higher the salinity the more conductivity it possesses. Conductivity is necessary for many things such as scientific observation and for marine life. For example, the transducer we use to send pings of energy through the ocean relies on conductivity and sound tends to travel better through waters with a higher salinity. Sound traveling through water is also important for animal communication. Salinity can influence the presence of fish species due to the different ways they process the water (think about freshwater fish versus saltwater fish). Water temperature is important for observing climate change. Because salinity affects the density of water (My students: remember the lab where we floated the egg with salt), it can change the temperature at which the ocean freezes. A simple example is that plain distilled water freezes at 0°C but the ocean at the surface typically begins to freeze at -1.1°C. As the water depth increases, so does the salinity and therefore as the temperature decreases the ocean does not freeze. We also launched an expendable bathythermograph (XBT) which measures depth and temperature at a deeper level than the CTD. These two tests are used to characterize the Bering Sea shelf environment.

Streaming the AWT net
Pollock caught in the codend

Approximately six hours later we spotted our first school of pollock. We shot the AWT and caught a lot of two year-old pollock and a few one year-olds! The water temperature where they were located was about 2.5°C. I quickly donned my foul-weather gear and ExtraTuffs (rubber boots) and was ready to sort fish. From one sample, we sorted the fish, separating the small one year-olds from the two year-olds. Second, we cut open the fish to locate ovaries or testes. The males and the females were separated into bins and we fondly refer to the males as “Blokes” and the females as “Sheilas.” We measured their length and entered the data into the computer. With another sample, we sexed the fish, measured their length, extracted stomach samples to see what they are eating and to collect plankton samples, and last we extracted the otoliths. Otoliths are ear-bones and they are used to measure age, very much like looking at tree rings to find the age of a tree.

Me sorting the 1 year from the 2 year-olds

The walleye pollock observation has been conducted each summer since 1979 by the Midwater Assessment and Conservation Engineering (MACE) as a program of the Alaska Fisheries Science Center (AFSC) to estimate pollock abundance and distribution. The Oscar Dyson is following a route consisting of evenly spaced (20 nautical miles) parallel transects to estimate the pollock population over the entire Bering Sea shelf. So if you are tracking the ship using “Ship Tracker” this is why we are sailing in a strange pattern!

Personal Log:

Yesterday I was slightly anxious because I chose to experiment with my sea tolerance and not take the seasickness medication. Of course the seas decided to be a little more active as we began our pollock transit. Combined waves reached 10-12 feet and I just ate plain rice and bread for supper! Today the waves are more gentle and my stomach is very excited about that! Up on the “Bridge” where the controls for driving the boat are located tends to rock with the waves the most and it was fun to try and type my blog while attempting to keep my balance! However, by the end of the day, I was well enough to help “supervise” ENS Payne in the construction of chocolate chip cookies during my time off!

Doughy thumbs up while makin’ cookies!

Dissecting the fish was incredibly fun and I cannot wait to have my students try their hands at it! I was very excited to extract otoliths because those particular bones were the fossils we used to identify the different fish species at the Always Welcome Inn in Baker City, Oregon when I was conducting research in college! To see those fossils go to the following website:

http://www.eou.edu/geology/index.html

Tomorrow we will be crossing the International Dateline and theoretically will have traveled into the tomorrow of tomorrow. The Oscar Dyson has become my time machine!

Image produced by the echo sounder telling us we have pollock! Notice how it looks different from the view in the previous blog.

Animals Viewed Today:
Least Auklet
Laysan Albatross
Fork-tailed Storm Petrels
Northern Fulmars
Short-tailed Shearwaters
Walleye Pollock

Something to Ponder:
Have you ever ordered pollock? How many of you have eaten fish sticks or surimi? Most likely you have eaten pollock and thought it was cod! Where does pollock fit in the food chain in the wild?
Also, how do you know when you have crossed the International Dateline? (Hint: check the data at the beginning of my blogs.)

Story Miller, July 24, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: July 24, 2010
View from the Deck
View from the Deck

Time: 1837 ADT
Latitude: 62°11N
Longitude:177°52W
Wind: 15.1 knots (approx. 17.4 mph)
Direction: 156° (SW)
Sea Temperature: 8.3°C (approx. 47°F)
Air Temperature: 7.4°C (approx. 45.3°F)
Barometric Pressure (mb): 1007
Wave Swells: 4 – 5 feet
Wave Height: 1 – 2 feet
Combined: 5 – 6 feet

Scientific Log:
Today started out with the launching of another CTD (Conductivity, Temperature, Depth) and XBT to measure the salinity and temperature of the ocean. On average we typically deploy a little more than one per day, depending on whether we are wanting to hit key locations. Today when we launched two and contrasted locations where there were pollock to locations where there weren’t so we could better analyze how sea temperature affects where the pollock prefer to hang out.

Survey Tech, Robert Spina, taking samples from the CTD

We attempted to launch the Cam-Trawl this morning but as is typical with new equipment, we encountered some problems once it was in the water. And as my students have learned, sometimes it’s necessary to make modifications and try the science experiment again! Even the pro’s must go through the Scientific Method multiple times before they can publish their findings!

Ovaries of a female Walleye Pollock

At approximately 1030 we deployed the AWT and went fishing for more pollock. This time we were able to gather a variety of different ages between the years 1-3. Once the fish are dumped from the codend, they are placed on a type of conveyor belt that allows us to do a preliminary sort through the fish. For example, jellyfish are commonly caught in the net and so we place them in a separate bucket to measure later. Sometimes we accidently catch other fish in the net, this is called bycatch, and they too need to be separated. At the end of the conveyor belt another person weighs baskets of fish and records the weights in the computer. Afterward, we take a random sample of about 400 fish and sex them. This sample is used to determine how many fish of each size are in the sample.  Unfortunately we do not have a way to identify the sex of the fish without having to cut into them to see. In addition to measuring, weighing, and sexing the fish, we again took samples of pollock stomachs and otoliths. We conducted two fish hauls during my shift and we will probably do two more tonight.

Testes of a male Walleye Pollock

When we finish collecting the data we must clean the lab. The best part of this cleanup is that the dissected fish become food for the numerous Northern Fulmars trailing our ship and then the lab is simply hosed down, including the computers! We clean the lab after every fishing event because if the fish scales dry out, they become impossible to remove, much like cereal crusted in a bowl! Not to mention all the fish parts would become unbearable stinky when we have a rare, sunny, warm day!

Pollock stomach contents: Amphipods (dark) and some type of fish.

Personal Log:
When I walked outside to observe the activity on the deck (where the fishing nets are located in the back of the ship) the fog was very thick. Of course, living in Dutch Harbor, I have become accustomed to such conditions but being out on the boat gave me an entirely new feeling. The boat rocked calmly, pitching every-so-often and overall there was an eerie silence among the crashing of the waves. The fog creeped aboard the boat drifting like fingers into every space available and subtly created a chill when it brushed against your neck. I can understand why sailors are prone to superstitious beliefs.

Northern Fulmars trailing the boat on the starboard side.

Later, the weather cleared into a gorgeous blue sky and the golden sun glistened on the water. I had an exciting day as I was allowed to launch an XBT and able to advance my skills in fish dissecting as I extracted stomachs and otoliths along with my regular fish duties of sorting, sexing, and measuring.
Today was a full day of work and when I when I walked into the mess hall for supper, I could not believe my eyes. There is nothing better than having a chef aboard a ship that cares for his crew. There was turkey, ham, bread dressing, mashed potatoes, cranberry sauce, candied yams, salmon tetrazzini, brown gravy, Tom Yumm Soup, dinner rolls, and corn bread! In addition, we had the lovely view of food art as our chef Ray Capati created a swan out of an apple, bouquets of baby bok choy and celery, “water lilies” made of grapefruit or oranges and mixed with flowers, and palm trees made of carrots and green bell peppers! I feel like I’m eating in a 5-star restaurant aboard the Oscar Dyson!

Ray Capati behind another fantastic, aesthetically pleasing buffet!

Animals Spotted Today:
Today is known by the “birders” from the US Fish and Wildlife folks as the Day of the Jaeger because we were able to see all three species: Longtail, Parasitic, and Pomarine!
Northern Fulmars
Black-legged Kittiwake
Common Murre
Thickbilled Murre

Slaty-backed Gull

Least Auklet
Slaty-backed Gull (Russian seagull)
Jellyfish (Chrysaora Melanaster)
Walleye Pollock
Rock Sole
Silver Salmon (Coho)
Arrowtooth Flounder
Digested shrimps, euphausiids, amphipods, and copepods from pollock stomachs!

Something to Ponder:
Random samples are important in scientific observations because we want to obtain a general idea of what is in the ocean. Imagine if a scientist only selected the largest pollock caught in the codend. How would that skew the data samples and the information given to the public about the pollock in the ocean?

Story Miller, July 22, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: July 22, 2010
Black-legged Kittiwake

Time: 0754 AKST
Latitude: 58°31N
Longitude:175°45W
Wind: 13-20 knots (approx. 14.96 – 23.02 mph)
Direction: 239° (SW)
Sea Temperature: 8.28°C (approx. 46.9°F)
Air Temperature: 8.03°C (approx. 46.5°F)
Barometric Pressure (mb): 1017
Wave Height: 4 feet
Sea Swells: 6 feet
Combined Wave Height: 10 – 12 feet

Scientific Log 

This afternoon, we conducted a test with a drogue which is like a large sea anchor. Sea anchors allow a boat that is simply sitting in the water to not drift so far with the waves. This drogue will stabilize the camera of an experimental trawl net device, called a Cam-Trawl, and prevent it from fluttering when it is photographing the fish. The Cam-Trawl was designed by Kresimir Williams. Currently the objective of this new device is to observe the fish we see in the backscatter which are the animals we can see in the echosounder

(See Figure 1).

Figure 1: Image of the echo sounder in the acoustics lab. The image on the top in the blue is representing a swarm of jellyfish. Jellyfish tend to be best seen using the 18 kHz transducer.

In short, the ship’s hull has transducers that send pings of sound energy down through the ocean and when they hit some object, such as the bottom of the ocean or a fish, some of the energy in the sound ping is returned to the ship and received by our echo sounding system in the acoustics lab of the ship.

When we locate a group of fish we want to study with the echo sounder, we have two primary methods of collecting data from the fish. The device we use the most is the AWT(Aleutian Wing Trawl) net and the other is an 83-112 bottom trawl net. The AWT is used for catching fish located at midwater depths and the other, as stated in the name, trawls the sea floor. To imagine the shape of these devices in the water, imagine a large funnel with a catch sack on the end. The beginning portion of these nets, nearest to the boat, has large meshes and its primary function is to funnel the fish toward the catch sack. As fish move farther down the net, the meshes get smaller until they reach the catch sack, which we call the codend, and once in there, the fish cannot escape. We then pull them to the surface and begin collecting data, such as size and species. The largest drawback to these methods is that the fish caught in the net will most likely die. To understand why, think of a diver in the deep ocean. If the diver comes up too fast, the body cannot adjust to the pressure fast enough as air expands, potentially causing lungs to rupture. For the fish, bringing them up too quickly causes their swim bladders to rupture. Rockfish tend to have their stomachs inverted out of their mouth. While killing the fish for research is unfortunate, it is one of the few ways we can learn about their patterns of behavior, health, and diversity.

Chris Wilson in the process of attaching buoys to stabilize the Cam-Trawl

The Cam-Trawl is an innovative experimental design that may help reduce the killing of fish and allow us to collect data from endangered or nearly extinct fish species. For example, many Rockfish species off the west coasts of California, Washington and Oregon are endangered and as a result, we do not want to catch them in our nets because we would most likely kill them. The Cam-Trawl would remedy that and would allow us to receive continuous data at each depth along its path. The other trawls catch all the fish in their path which means the collection of fish is mixed and we cannot tell the depth at which they were originally swimming or which species was at what depth. To picture how the Cam-Trawl works underwater, imagine a funnel again, except this time, there is no codend attached. At the end of the funnel, the stereocamera is positioned to photograph the fish that pass through the funnel. The resolution of the fish photos is much more advanced than what we have ever had before. This sampling technique is supposed to give us a better resolution of what we are able to “see” using acoustics (echo sounder) than the traditional midwater (AWT) and bottom trawls (83-112).

 
Personal Log:

Sleeping at sea was a new experience for me. The seas were only four to eight feet high which are marginal compared to the conditions this ship experiences in the winter months. Overall, I enjoyed being rocked to sleep but my 0330h alarm was not as pleasant. My room is located four flights of stairs below the bridge deck and I’ve been told it is one of the better places to be because the rocking of the boat is not as intense. The rooms are pretty cozy as space is limited but there is room for a desk, two closets and a bathroom (called a head on a ship) that reminds me of the sizes found in European hotels. I have the top bunk and each has a curtain that wraps around the entire bed so that if your roommate has a different shift than you, the light to the main room won’t be a disturbance. Of course, since I have lived in Alaska for two years, I have become accustomed to sleeping in bright conditions.

Something the non-boating community may not realize is that on a ship, it is very important that there is a night crew and a day crew operating. On the bridge where the main controls of the ship are located, there must always be a NOAA Corps Officer, with qualifications to drive the ship, on watch 24/7. However, all crews, with the exception of the kitchen, on the ship are operating around the clock. For example, there are always engineers operating in case there is some type of mechanical issue and scientists operate because there are still fish in the ocean and their behavior needs to be observed at all times.

Me trying on my “Gumby” Suit during the fire drill

The entire crew participated in a fire drill and abandon ship drill yesterday so that all hands on the ship knew where to muster for a head count and to learn how to operate the life rafts in case the ship was sinking. Additionally we needed to learn how to get into our survival suits (Gumby Suits). My first experience putting on the suit was during a field trip onto this vessel with my seventh and eighth grade students in May so I was aware of the cozy fit! Fire and abandon ship drills are practiced once a week when the ship is underway, which is very important as the crew onboard are not just NOAA employees but also in charge of fighting fires and responding to any onboard emergencies. So, if you want to be a fireman and a scientist and cannot choose, perhaps serving aboard a NOAA ship would be right up your alley!
To end my day (remember bedtime for me is early as my alarm is set for 0330) I had a “late” supper of sushi, spring rolls, meatloaf, and for dessert a fabulous set of s’mores! Who says you can’t have them on the ship?
 

Animals Observed:
Northern Fulmar
Crested Auklets
Tufted Puffin
Black-legged Kittiwake
Orcas

Something to Ponder:

When we are asked, “What do you want to be when you grow up?” usually we say one occupation – firefighter, actor, scientist, teacher, soldier, waitress. However, most jobs require many skills. For example, the scientists on board put a variety of skills into practice and as mentioned in the Scientific Log, scientist Kresimir Williams engineered the Cam-Trawl which employed his knowledge of the biological sciences (fish/oceanography), physical science (how to deploy the device without it breaking), and photography! So for my students, what do you want to be when you grow up?

Rebecca Kimport, JULY 12, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 12,  2010

More Fish in the Sea

Table of Fish
As we have moved farther west, we have encountered more fish and are therefore completing more trawls. Yesterday was our biggest day so far and we completed two trawls for pollock (referred to as AWTs for Aleutian Wing Trawl) and one Methot during our 12 hour shift (with more fishing done in the next shift). Our first trawl started at the beginning of our shift and we hustled to finish processing before breakfast. To help keep our spirits up, Abby, Michele, Katie, Robert and I rocked out to some 80s tunes as we sorted and processed fish. Imagine the five of us bopping around the lab, in our foul weather gear, with scalpels in hand, while Rick Springfield wishes he had Jessie’s Girl, all before sunrise.

Even though we completed three hauls, I still had time to work on my “Run Across Germany” (for Chuck Norris Snuggle Muffin) and to spend time with the mammal observers. As I mentioned before, marine mammal observers have to be extremely patient. I spent about an hour and a half with them yesterday evening and saw two groups of whales through the big eyes (which was more than average). One was clearly a group of 2-3 fin whales while another was an unidentified blow.
Checking out the big eyes
The marine mammal observers mark all sightings in a data program with a mapping function that then predicts where the cetaceans might be moving so the observers can identify whether future sightings are the same or new animals. They might see two or three sets of blows before they spot any part of the body which could help them identify it. Fin whales come up to the surface once every 8-10 minutes and it took until the third set of blows before marine mammal observer Paula Olson was able to identify them (I got to see them on the fourth surface visit).
While we were waiting for the fin whales to come up again, Paula explained that in our part of the Bering Sea, there are five cetacean species that we are most likely to see. We determined that with the fin whale sighting I have already seen three (killer whales, Dall’s porpoises, and fin whales) leaving me with two species to scope out before we leave (minke whales and humpback whales (you know, like Humphrey)). Hopefully the weather will stay clear and I’ll be able to spend some more time on the flying bridge.
Animals Seen • Squid • Fin Whales • Pteropods • Ctenophores • Amphipods • Euphausiids • Pollock

Word of the day descry: to catch sight of something in the distance

Michele Brustolon, July 4, 2010

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)
Date: July 4, 2010

Weather Data from the Bridge

Time: 1500
Latitude: 57.59N
Longitude: 171.10W
Cloud Cover: 100%
Wind: 11 knots
Air Temperature: 7.20 C/ 44.960 F
Water Temperature: 5.50 C/ 41.90 F
Barometric Pressure: 1010 mb

Science and Technology Log

Now that I have provided you with information about the importance of pollock and how the Oscar Dyson works to survey the stock in the Eastern Bering Sea, I wanted to answer a few related questions.

What about other species?

In the Bering Sea, pollock are so abundant that our mid-water trawls capture mostly pollock. However, there are a lot of other species in the Bering Sea that scientists are interested in. In addition to the Oscar Dyson, NOAA charters fishing boats (such as the Alaska Knight and the Aldebaron) to trawl on the ocean floor. This allows scientists to see more species in the Bering Sea. These ships trawl all day; sometimes up to 6 trawls a day. The GF boats cover the eastern Bering Sea shelf, extending up to the region around St. Lawrence Island (a wider area than the Oscar Dyson will cover). While the Oscar Dyson focuses on euphausiids and pollock, the ground fishing boats examine everything else found on the bottom.

Euphausiids from Methot trawl
Katie proudly holding a pollock from our first Aleutian wing Trawl

Who owns the water?
International laws provide countries with an Exclusive Economic Zone (EEZ) within 200 miles of their shoreline. The area we are studying in the Bering Sea can be fished solely by fishing boats operated in the United States. On the other side of the Sea, Russians fish in their own 200-mile zone. However, in the middle there is a “donut hole” which is considered “international waters”. This Donut Hole supported a large pollock fishery in the late 1980’s.

Transects for Leg II on Oscar Dyson
The “Donut Hole” or “Bubleek” in Russian, is shown here in the shaded circular area between U.S. and Russia.

How do American scientists collaborate with scientists from other countries?
The United States works with other Pacific countries to conduct research on the Pacific Ocean and the Bering Sea. For example, the Oscar Dyson, in addition to hosting two Teachers at Sea, is hosting two Russian scientists from the Pacific Research Institute of Fisheries and Oceanography (TINRO) in Vladivostok, Russia – Mikhail Stepanenko and Elena Gritsay.

I had the opportunity to sit down with Mikhail the other night and asked him about his experience and how he ended up on the Oscar Dyson. Born and raised in Primorye, Mikhail spent a great deal of time at the Ussuri River. He studied biology at The Far East State University in Vladivostok and began researching at sea soon after his graduation in 1968. After the first USA-USSR agreement regarding marine research, Mikhail visited the United States and worked out of La Jolla, CA starting in 1969. He has spent about 5-6 months at sea per year for the last 40 years, including the last 18 summers on the NOAA summer pollock survey (specifically on the Oscar Dyson and its sister ship the Miller Freeman)

This wealth of experience has made Mikhail an expert and he is a well-respected member of the Pacific marine science community. Throughout the years, there have been numerous conferences between stakeholder countries, and Mikhail has played an active role in recommending action for working together to maintain the populations of pollock and other fish. Mikhail has served on the Intergovernmental Consultative Committee – a six-nation committee that meets biannually to discuss fishing polices in the “donut hole.” In addition, Mikhail worked as a Russian delegate during meetings which led to the creation of PICES (North Pacific Marine Science Organization), an “intergovernmental scientific organization, was established in 1992 to promote and coordinate marine research in the northern North Pacific and adjacent seas.” (Visit their website for more information). Mikhail was elected Chairman of the Fisheries Science Committee (FIS), a branch of PICES, in 2008 and is currently preparing for their next meeting in October.

Each organization is trying to find the best policies to help understand the organisms through reproduction, population dynamics, stock assessments and fishery management. Mikhail’s wealth of knowledge, collaborative scientific research and commitment to the sustainable fishing benefits all members of the international community and we are lucky to have such a science superstar in our midst.

Catch of jellyfish and pollock coming in (Abby: left; Kathy: right)
This is a lumpsucker. Isn’t it cute?

PICES website: http://www.pices.int

Personal Log

The Fourth of July ending up being a packed day! First thing I was able to help with the CTD (remember from previous journals- conductivity, temperature, depth). You definitely wake up standing on the Hero Deck at 0400! My day of adventure continued when we got to fish after lunch. Why was this such a big deal? We hadn’t fished since June 30! We saw 100s of pounds of Chrysaora melanaster (jellies) that were so large we had to struggle to move them. We focused more on the pollock that were 1-3 years old this trawl, but the COOLEST animal by far was the lumpsucker! I was able to help sort the pollcok, sex them, and take the otoliths out for research. After we cleaned up the wet lab, we had a great ending to our day…

We had a cookout on the Boat Deck. Ray, the Chief Steward, with the help of Floyd Pounds, 2nd Cook, made everything you could possible imagine: a variety of kabobs, cheese burgers, salmon, different salads, cake, fruit, and the list goes on. To top the evening off (remember, it’s still light out!), Ensign (ENS) Amber Payne gathered and shot off expired flares for our “light show.” I enjoyed having the time to hang out with some people that I never see now that we are all working our shifts. It is a Fourth of July that I will remember always!

Fourth of July cookout on the Boat Deck

Animals Seen
brown jellies or northern sea nettle- Chrysaora melanaster
pollock- many 1-3 years
smooth lumpsucker
rock sole
fulmars

Word of the Day
Propiate: appease
New Vocabulary
GF boats: ground fishing boats
“Donut hole”: the area between Russia and the U.S. that was considered International waters” so it did not belong to a certain country