Nikki Durkan: Global Commons, June 13, 2015

NOAA Teacher at Sea
Nikki Durkan
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Midwater Assessment Conservation Survey
Geographical area of cruise: Gulf of Alaska
Date: Saturday, June 13, 2015

Weather Data from the Bridge:
Wind speed (knots):  14.16
Sea Temp (deg C):  8.97
Air Temp (deg C):  8.06

Science and Technology Log

During my first several days in Kodiak, I spent as much time as possible exploring the island on foot.  I hiked up Pillar Mountain to the wind turbines which now help to make Kodiak virtually 100% renewably powered; 14% comes from these turbines while the bulk of the electricity is generated by Terror Lake hydro-power facility located within the interior of the island.  The hydro and wind generation replaced a diesel powered generator and resulted in many benefits to the town and our atmospheric global commons.

View from Pillar Mountain

View of turbines from Pillar Mountain

The idea of a global commons is one I spend a lot of time discussing in the first days of my environmental science course.  The Global Commons includes resources or regions outside the political reach of any one nation state:  the Atmosphere, Outer Space, Antarctica, and you guessed it…the High Seas!

June is National Ocean Month – and the theme for this week is marine debris.  I recently learned a new doctrine of mare liberum (free sea for everyone), but I’d like to add the latin word for responsibility, officium.  Dumping wastes is commonplace with the mantra of “dilution is the solution to pollution” and this practice continues to create challenges in our oceans.  Plastics pose a major threat to our marine life and NOAA is taking significant steps toward reducing plastic pollution through a variety of educational campaigns.  Plastic marine debris can come from a variety of industrial and domestic products, as well as lost or discarded fishing equipment.

While exploring the lovely little town of Kodiak, I came upon the rare plastic Iqaluk (Iñupiaq word meaning fish):

Sculpture constructed from collected marine debris

Sculpture constructed from collected marine debris

Another challenge facing our Global Commons includes over fishing in the High Seas.  Have you eaten Fish sticks, Filet-o-fish, Imitation-crab….otherwise known as Alaskan Pollock?  My mother often told me she craved McDonald’s fish sandwiches while pregnant with me; perhaps those sandwiches somehow led me to this spot 20 miles off the Aleutian Islands?  One of the main reasons we are on the Oscar Dyson for the next three weeks is to gather data on the Alaskan Pollock populations so that the fishery can be maintained at a sustainable level.  This Alaskan Pollock commercial fishery is one of the most economically valuable and well managed fisheries in the world.  Part of this success is due to the implementation of the MSA (Magnuson-Stevens Fishery Conservation and Management Act) that set up a system governing the EEZ (Exclusive Economic Zone – waters three to 200 miles offshore), and also established NMFS (National Marine Fisheries Service) under NOAA (you better know what this means).  The UNCLOS (UN Convention on the Law of the Sea) provides international guidelines and law for our oceans.  Acronyms…scientists and the military love them.  I will learn to love them.

 Personal Log

On the topic of marine debris, there are often jokes made on the bridge about the too-fat-to-fly puffins. They furiously flap their little wings in front of our ship.

Tufted Puffin

Tufted Puffin Photo credit: NOAA image gallery

Apparently cribbage is the game to play on the Oscar Dyson and thanks to Emily Collins (fisheries biologist), I now have another card game to add to my repertoire.  Ever tried to ride a stationary bike on a ship?  The feeling is hard to describe and I must have a sensitive stomach because occasionally I feel as if I am on a roller coaster! Currently I am sitting in my stateroom listening to the sloshing ocean that gurgles and surges with the swell against the wall; the sounds are 95% soothing and 5% terrifying.  I will not get sea sick and I will do my best not to become marine debris….
Did You Know?  In the event that I have to abandon ship, my “Gumby suit” will help me survive the frigid waters of the Gulf of Alaska.
Donning my Immersion Suit!

Donning my Immersion “Gumby” Suit!

 

Gregory Cook, Introduction, July 22, 2014

NOAA Teacher at Sea

Gregory Cook

(Almost) Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: July 23, 2014

Welcome to the Seablog! This is where I’ll be posting about my adventures aboard the NOAA Ship Oscar Dyson, as we study the fisheries off the coast of Alaska.

Introductions!
First allow me to introduce myself. My name is Gregory Cook, and I am, as far as I can tell, in the running for Luckiest Guy on the Planet! I teach middle school science and math at the East Somerville Community School to some of the coolest kids I know, and work with some of the best teachers in the country. Go Phoenix!

Me and my buzzing buddy

Me and a Humming Bird in Costa Rica

On top of that, I received acceptance this year with the National Oceanic and Atmospheric Administration’s (NOAA) Teacher at Sea program! NOAA is part of the Department of Commerce, and does research on everything from fish and whale populations to climate change to mapping the ocean floor and coastline!

In their Teacher at Sea program, I get to work with world class scientists, be a part of real-world research, learn about amazing careers, and share that knowledge with my students. In a small way, I get to share with you the exploration and study of this great planet. What else do you want out of life? A pony? I think not, good sir!

 

oscar dyson

NOAA Ship Oscar Dyson  (Photo from http://www.moc.noaa.gov/od/)

 

The Oscar Dyson is a ship built by the U.S. Government (Your tax dollars doing great work!) to study the Earth’s oceans. It’s over two-thirds of a football field long and almost fifty feet wide. It can deploy (or send out) over five kilometers (more than three miles!) of cable, It has two massive winches for launching scientific study packages. It can use something akin to Doppler Radar to tell you about what’s in the water beneath us and what the sea floor beneath THAT looks like.

Wanna see how they built it? Of course you do!

See Video Credits for Source Material

Alaska

The first thing you need to know about Alaska is its name. It comes from the Aleutian word Alakshak, which means Great Lands or Peninsula… the entire state, in the end, seems to be named after the great Alaskan Peninsula that juts out into the Pacific Ocean.

http://www.ngdc.noaa.gov/mgg/image/ak_crm_512.jpg

Alaska gets its name from the Alaskan Peninsula, which juts out into the Pacific and then trails off and becomes the Aleutian Islands. (http://www.ngdc.noaa.gov/mgg/coastal/s_alaska.html)

If you’re one of my students, you’re probably asking “How…?”

Well, The Alaskan Peninsula forms in a Subduction Zone. That means that the Pacific Plate is diving underneath the North American Plate. This creates some beautiful upthrusts that you and I know as mountains… or, in the case of the Aleutians,… Islands! Geologists think The Aleutians are about 37 Million Years Old, formed by volcanic activity.

As a matter of fact, the Island I’ll be sailing from, Unalaska, was created this very way. You might remember (from 6th grade if you’re a Somerville kid!) Oceanic crustal plates are more dense than crustal plates, so they dive under them, pushing the mountains and islands up.

When I first heard I was sailing out of Unalaska, I wondered what was so “Unalaska” about it… like… were they Yankees fans or something?

It turns out that in the Aleutian language (the language of the Aleuts… the native people of the area) placing “Un-” in front of a word means “near.” So Unalaska means “Near the Peninsula.” You could say that I live “Undunkindonuts.” (Though, yeah, I’m a Starbucks guy).

OK, back to Geology…

So it turns out that a great deal of the Bering Sea is over the continental shelf of North America. What that means is that the sea is more shallow than the Pacific.

Much of the Eastern Bering Sea is shallow. This helps create a thriving ecosystem!

http://www.pbs.org/harriman/explog/lectures/alexander.html

What THAT means is that all the good nutrients that run off of the land… from the rains and rivers… can support a huge amount of sea life. The Bering sea is one of the most productive fisheries in the world… It is teeming with life!

Which brings us to this guy…

http://www.afsc.noaa.gov/Quarterly/amj2012/divrptsREFM7.htm

Walleye Pollock… Fishy-fishy!!!

http://www.afsc.noaa.gov/species/pollock.php

If you’ve ever had Fish Sticks or McDonald’s Fillet o’ Fish, you’ve probably had some form of Pollock. They grow quickly, they die young, and have a lot of offspring. They also represent almost 2/3 of all the groundfish (fish that live near the bottom of the sea) caught in Alaska 2012.

So to say Pollock are important is kind of like saying bread is important… They have a huge impact on our lives here in the United States. So it’s important we look in on them every now and then, and make sure they’re doing ok… So we can eat them. 😀

That’s what I’ll be doing up there in Alaska. Exploring the Bering Sea, and looking in on our good friend, Mr. Pollock. I hope you can come along for the ride. 😀

Britta Culbertson: An Introduction, August 28, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, August 28, 2013

NOAA instrumentation

Britta checking out some NOAA instrumentation at Summit Station in Greenland

My name is Britta Culbertsonand I am currently serving as anAlbert Einstein Distinguished Educator Fellow in Washington, DC.  Prior to my fellowship, I was a high school science and art teacher in Seattle, Washington at The Center School.   I am serving my fellowship in NOAA’s Office of Education and have spent the last year getting exposed to many aspects of NOAA’s education efforts.

Einstein Fellows are K-12 science, technology, engineering, or math (STEM) educators who come from all over the United States after a competitive selection process to serve in federal agencies or on Capitol Hill.  They typically serve for the duration of one school year.  Fortunately, I was offered to stay one more year in my office and will complete my second year in July 2014.  Through my role as an Einstein Fellow, I have been able share NOAA resources with teachers at national conferences, work on the education website, and network with a community of STEM professionals in Washington, D.C. among other things.  One task that I hope to accomplish this year is figuring out a way to make real-time NOAA datasets more accessible to teachers.

I am really excited about the opportunity to be a NOAA Teacher at Sea to learn more about the fisheries research conducted by NOAA scientists and to see if there might be opportunities to share real data from my cruise with students and their teachers.

After spending a year meeting Teacher at Sea alumni and hearing about their experiences, I am overjoyed to embark on my own cruise and to have a chance to work with scientists in the field.  I think these real-life experiences are crucial for teachers because it allows them get in touch with the scientific process in the field as opposed to the artificial environment in which we conduct experiments in the classroom.  Sharing these real-life research experiences with students is vital to their understanding of science.

Flat White

Britta at Summit Station, Greenland in “flat white” conditions (elevation 10,530 feet)

I spent part of my summer in Greenland working with high school students from Denmark, Greenland, and the United States.  During my three weeks there, I was inspired by the way the students were more interested in the research they conducted.   Being in the field made it more relevant and the students were more engaged.  We had visual teleconferences with scientists who were studying climate change and also worked with scientists who were in Greenland conducting research.  It was such a phenomenal experience for everyone involved.  I wish to use this trip as a model for my future classroom experiences and I am hoping that some of the scientists on my cruise might be willing to stay in touch with me and my students in the future.  Not only do I wish to incorporate more “real world” experiences and data into my science teaching, but I hope to connect more students with scientists.

Russell Glacier

Britta near Russell Glacier, Greenland

I will be departing Washington, D.C. on September 2 and will travel via Seattle and Anchorage to reach my final destination in Kodiak, Alaska.  I will board NOAA’s ship the Oscar Dyson on September 4 at port in Kodiak.  From Kodiak, we will head into the Gulf of Alaska and eventually make our way toward Prince William Sound, which incidentally, was the site of the disastrous Exxon Valdez oil spill in 1989.  During the cruise, we will be collecting and studying walleye pollock.  If you’ve ever eaten fish sticks or imitation crabmeat, you were most likely eating pollock!  According to NOAA’s Fishwatch.gov, “The Alaska pollock fishery is one of the largest, most valuable fisheries in the world.”

Our cruise has several objectives ranging from the study of walleye pollock to physical and chemical oceanography.  I’m also excited about one aspect of the cruise, which is a gear comparison to examine the catch differences for each species between the anchovy trawl and the CamTrawl. We will also be describing the community structure, biomass, and vitality of the other swimming, aquatic organisms we capture along with pollock.  These organisms include capelin, eulachon, Pacific cod, arrowtooth flounder, sablefish, and rockfish.  Additionally, we will examine species that typically prey upon pollock and we will measure the environmental variables that could affect pollock ecology.

It was a wonderful coincidence that I happened to be in Washington State visiting the Olympic Coast National Marine Sanctuary (OCNMS) the NOAA Alaska Fisheries Science Center  when the science team for my cruise had their pre-cruise meeting.  I was able to attend in person and meet the scientists with whom I will spend the next three weeks.  I am really looking forward to working with them!  Visiting the OCNMS was a special treat before my upcoming cruise.  It was pretty awesome to stand along the Olympic Coast and check out all of the tide pools and other things like the huge whale skeleton I found.  In a few days instead of being on the edge of this massive ocean, I’ll be on a boat discovering what is in the depths of the same ocean. I’m looking forward to leaving the hot and humid D.C. weather behind for the cooler weather in Kodiak.  Next time you hear from me, I’ll be a teacher at sea!

Whale Skeleton

Whale skeleton on Lake Ozette Trail, Olympic Coast National Marine Sanctuary

Sea Stack

Sea stack on Lake Ozette Trail at the Olympic Coast National Marine Sanctuary

Melissa George: Do You Hear What I Hear? July 28, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  Sunday, July 28, 2013

Current Data From Today’s Cruise

Weather Data from the Bridge 
Sky Condition:  Cloudy
Temperature:  14° C
Wind Speed:  4 knots
Barometric Pressure:  1025.1 mb
Humidity:  90%

Sun and Moon Data 
Sunrise:  5:57 am
Sunset:  10:34 pm

Moonrise:  11:52 pm  (July 27, 2013)
Moonset:  2:35 pm

Geographic Coordinates at 

Latitude:  59° 53.3′ N
Longitude:  149° 00.0′ W

The ship’s position now can be found by clicking:  Oscar Dyson’s Geographical Position

False Point on Kenai Peninsula (viewed this morning through the fog)

False Point on Kenai Peninsula (viewed this morning through the fog)

Science and Technology Log

How do scientists use acoustics to locate Pollock (and serendipitously other ocean creatures)?

Scientists aboard the NOAA Research Vessel Oscar Dyson use acoustic, specifically hydroacoustic data, to locate schools of fish before trawling.  The trawl data provide a sample from each school and allow the NOAA scientists to take a closer look by age, gender and species distribution.  Basically, the trawl data verify and validate the acoustics data.  The acoustics data, collected in the Gulf of Alaska in systematic paths called transects, combined with the validating biological data from the numerous individual trawls, give scientists a very good estimate for the entire Walleye pollock population in this location.

This screen is showing the echogram from the EK 60 echosounder during a trawl at 83.13 meters.  The red line in the middle of the screen is the ocean floor.  The colorful spikes above the red line indicate “backscatter” that is characteristic of capelin, a small fish that pollock feed on.

This screen is showing the echogram from the EK 60 echosounder during a trawl at 83.13 meters. The red line in the middle of the screen is the ocean floor. The colorful spikes above the red line indicate “backscatter” that is characteristic of capelin, a small fish that pollock feed on.

Hydroacoustics  (from Greek words: hydro meaning “water”  and  acoustics meaning “sound”) is the study of sound in water.  Sound is a form of energy that travels in pressure waves. In water, sound can travel great distances without losing strength and can travel fast, roughly 4.3 times faster in water than in air (depending on temperature and salinity of the water).

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

The Oscar Dyson has powerful, extremely sensitive, carefully calibrated, scientific acoustic instruments or “fish finders” including the five SIMRAD EK60 transducers located on the bottom of the centerboard, the SIMRAD ME70 multibeam transducer located on the hull, and a pair of SIMRAD ITI transducers on the trailing edge of the centerboard.

Image of acoustic instruments on the Oscar Dyson.  (Photo courtesy of NOAA Teacher at Sea Program)

Image of acoustic instruments on the Oscar Dyson. (Photo courtesy of NOAA Teacher at Sea Program)

This “fish-finder” technology works when transducers emit a sound wave at a particular frequency and detect the sound wave bouncing back (the echo) at the same frequency.  When the sound waves return from a school of fish, the strength of the returning echo helps determine how many fish are at that particular site.

The green ship’s transducer is sending out sound waves towards the fish.  The waves bounce back echoes towards the ship that are received by the transducer.  (Photo courtesy of Oracle Thinkquest)

The green ship’s transducer is sending out sound waves towards the fish. The waves bounce back echoes towards the ship that are received by the transducer. (Photo courtesy of Oracle Thinkquest)

Sound waves bounce or reflect off of fish and other creatures in the sea differently.  Most fish reflect sound energy sent from the transducers because of their swim bladders, organs that fish use to stay buoyant in the water column.  Since a swim bladder is filled with air, it reflects sound very well.   When the sound energy goes from one medium to another, there is a stronger reflection of that sound energy.  In most cases, the bigger the fish, the bigger the swim bladder; the bigger the swim bladder, the more sound is reflected and received by the transducer.  The characteristic reflection of sound is called target strength and can be used to detect the size of the fish. This is why fish that have air-filled swim bladders show up nicely on hydroacoustic data, while fish that lack swim bladders (like sharks) or that have oil or wax filled swim bladders (like Orange Roughy), have weak signals.

The above picture shows the location of the swim bladder.  (Photo courtesy of greatneck.k12.ny.us)

The above picture shows the location of the swim bladder. (Photo courtesy of greatneck.k12.ny.us)

These reflections of sound (echoes) are sent to computers which display the information in echograms.  The reflections showing up on the computer screen are called backscatter.  The backscatter is how we determine how dense the fish are in a particular school.  Scientists take the backscatter that we measure from the transducers and divide that by the target strength for an individual and that gives  the number of individuals that must be there to produce that amount of backscatter.  For example, a hundred fish produce 100x more echoes than a single fish.  This information can be used to estimate the pollock population in the Gulf of Alaska.

The above picture shows a computer screen with dense red “backscatter” characteristic of large amount of fish. The yellow lines above and below the backscatter show the location of the trawl lines.

The above picture shows a computer screen with dense red “backscatter” characteristic of large amount of fish, most likely pollock. The yellow lines above and below the backscatter show the location of the trawl lines.

Personal Log: 

Safety

Safety Announcements Don the Walls of the Oscar Dyson

Safety Announcements Don the Walls of the Oscar Dyson

Continuing with Maslow’s hierarchy of needs, I will continue up the pyramid  (see below) and discuss some ways that the basic need of safety is  met on the ship.  The safety and security of all staff (as well as sea animals we encounter) are top priority on the Oscar Dyson.   There are constant reminders of  this priority during ship life.
A Version of Maslow's Hierarchy of Needs

A Version of Maslow’s Hierarchy of Needs

Safety Drills

On the first day of our travel,  before the Oscar Dyson was far from port at Kodiak,  we had three drills.  The fire drill and man overboard drill required me to report to the conference room and meet up with the rest of the science team.  Patrick, the lead scientist, then reported that we (the scientist team) were all accounted for.  The crew had more complex tasks of deploying a small boat and retrieving “the man overboard”.

The other drill was the abandon ship drill.  On the ship, every person is assigned to a life boat (mine is Lifeboat 1).  When the drill commenced, I reported to my muster, the portside of the trawl deck, with survival gear:  jacket, hat, survival suit and life preserver.  We will have drills weekly at anytime.

Abandon Ship Crew Assignments

Abandon Ship Crew Assignments

Safety Gear
When working in the lab, the scientists wear orange slickers, boots, and gloves, not only to keep clean, but to protect us from anything that might be dangerous (fish spines, jellyfish tentacles, and so on).  When on deck, we must wear hardhats (to protect from falling objects from the crane or trawl) and life preservers like the rest of the crew.
Gloves, a Must in Fish Lab!

Gloves, a Must in Fish Lab!

Water Tight Doors
Watertight doors are special types of doors found on the ship which prevent the flow of water from one compartment to other during flooding or accidents. These doors are used onboard in areas, such as the engine room compartment,  science and acoustics labs, and control bridge, where chances of flooding are high.
Water Tight Door on Bridge

Water Tight Door on Bridge

These are just a few examples of how safety is emphasized on the ship.  There are reminders in one’s line of vision constantly.
Safety, Everyone's Responsibility

Safety, Everyone’s Responsibility

Did You Know?

There are various seafarer or crew positions on the Oscar Dyson.  A ship’s crew can generally be divided into three main categories: the deck department, the engineering department, and the steward department.  Rob and Greg are members of the deck department; both men hold Merchant Mariner Credentials as “Able Bodied Seamen” or ABS.  Rob is from Boston, Massachusetts and went to school for seamanship in Fairhaven, MA.  He considers his NOAA position as a good job with a good income, but his main profession is lobstering which he does on the open sea when he is not working for NOAA.  Rob says, “The ocean is in my blood” and always wanted to work on it.   Greg, on the other hand, chose to be a Merchant Mariner after a voyage at sea.  He moved to Texas from Louisiana in his 20’s, went fishing for the first time, and got seasick.  He considered battling seasickness a challenge, and thus pursing seamanship as a career.  In his free time he is a free-lance photographer and journalist.  Below are some pictures of Greg and Rob on the job.  Notice they are always wearing their safety gear.
Greg and Rob Bringing in the Trawling Net

Greg and Rob Bringing in the Trawling Net

Greg and Rob, Preparing for a Camera Drop

Greg and Rob, Preparing for a Camera Drop

Something to Think About: 

Since I will begin teaching Zoology later in August, I have decided to highlight some of the animals that the scientist team has found in our trawls.  Today’s feature will be one of the simplest multicellular animal families, the Porifera.  Porifera is a word formed from combining the Latin words porus which means “passage-way” and fera meaning “bearing.”  Porifera, commonly referred to as sponges, have tiny pores in their outer walls that filter water to get nutrients.  

Various Porifera (Sponges) from a Bottom Trawl

Various Porifera (Sponges) from a Bottom Trawl

Teacher (me) Demonstrating How Water Flows out the Osculum (opening) of a Poriferan

Teacher (me) Demonstrating How Water Flows out the Osculum (opening) of a Poriferan

To learn more about the Porifera Family, click the Porifera on the picture below, and stay tuned for further exploration of this animal Tree of Life.

Tree of Life:  Can you spot  the Poriferan?

Tree of Life: Can you spot the Poriferan?

Julia Harvey: Yakutat or Bust, July 23, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013 

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  July 22, 2013

Weather Data from the Bridge: (7/23/13 at 11 pm)
Wind Speed = 13 knots
Air Temperature = 12.7 C
Humidity = 93%
Barometric  Pressure = 1017 mb

Science and Technology Log: 

There is a great deal of hope to complete the survey, which is supposed to end near Yakutat in the southeast of Alaska.  It began near the islands of Four Mountains during leg 1. We are on leg 3, the final leg this summer.  Leg 3 began in Kodiak. Three Legs of the Survey

Gulf of Alaska Map

Kodiak Island is the green marker and Yakutat Bay is the red.

The purpose of this cruise is to survey the walleye pollock (Theragra chalcogramma) in the Gulf of Alaska. Pollock is a significant fishery in the United States as well as the world.  Pollock is processed into fish sticks, fish patties and imitation crab.   Last year, about 3 million tons of pollock were caught in North Pacific.  The scientists on board will collect data to determine the pollock biomass and age structure.  These data are used with results from other independent surveys to establish the total allowable pollock catch.

Walleye Pollock

Walleye Pollock from the Latest Trawl

According to the Alaska Fisheries Science Center, pollock can grow to about 3 ½ feet and weigh about 13 lbs.  More typically the pollock are approximately 50 cm (20 in) and weigh .75 kg  (1.7 lbs). They live in the water column and feed on krill, zooplankton and other crustaceans.  As they age they will eat juvenile pollock and other small fishes such as capelin, eulachon and herring as well.  Sexual maturity is reached around age 4.  Spawning and fertilization occurs in the water column in early spring.  The eggs stay in the water column and once hatched are part of the zooplankton until they are free swimming.

The general process used to catch the pollock involves multiple parts.  I will break down those steps in a series of blogs.  But basically, acoustics are used to locate fish in the water column.   Once the scientists have located the fish along the transect (transects are the paths that the ship will travel on so the scientists can collect data), the Oscar Dyson sets out a trawl equipped with a camera.  The trawl is brought in and data from the catch is documented.  And then the ship continues on.

Trawling Nets on the Oscar Dyson

Trawling Nets on the Oscar Dyson

Fish Lab on the Oscar Dyson

Fish Lab on the Oscar Dyson

Trawling is usually completed only during daylight hours.  Fortunately the sun does not set here in Alaska right now until after 10 pm.  When it is dark, work aboard the Oscar Dyson continues.  Jodi is documenting the sea floor with a drop camera.  She is looking at life that is there as well as potential threats to the trawl nets for the bottom trawl surveys.

Questions:

  • How do scientists use acoustics to locate pollock?
  • How are the transects locations determined?
  • How are pollock and the rest of the catch processed?
  • What information is retrieved from the trawl camera?
  • What is a bottom trawl and how is it different from a mid-water trawl?

Personal Log: 

We left Kodiak at 1 pm on July 22 heading southwest.

Koodiak Island

Goodbye Kodiak Island

We had 8 hours of travel time before we would reach our first transect.  But before we got too far away from Kodiak, we needed to practice the three drills for the safety of everyone.  The fire drill and man overboard drill required me to report to the conference room and meet up with the rest of the science team.  Patrick, the lead scientist, then reported that we were all accounted for.  The crew had more complex tasks of deploying a small boat and retrieving “the man overboard”.

The other drill was the abandon ship drill.  We are assigned to a lifeboat and I reported to my muster on the portside of the trawl deck with my survival suit, long sleeve shirt, hat and life preserver.  We will have drills weekly at anytime.

For the last two days I have been becoming oriented to the ship and to my responsibilities to the science team.  Jodi, a post doctorate from Juneau gave us a tour of the boat on the first day we arrived in Kodiak.  I then practiced finding all of the key parts of the ship I will need to access.  I now am confident that I can find my stateroom, the mess, laundry room, both exercise spaces, acoustics lab, and fish lab.  For other sites, I wander around for a while until I locate it.

A Door

Many doors on the the Oscar Dyson are water tight. They must be latched after passing through them.

My first shift began at 4 pm on Monday.  There are two shifts for scientists.  Some work 4 am to 4 pm and the others work 4 pm to 4 am.  I work the night shift.  I never drink coffee but today I realized that I needed it.  My shift includes scientists Paul, Jodi and Darin as well as a survey tech named Vince.  We all share staterooms with people who work the opposite shift.

Science Team in Cave

The night shift science team includes Paul, Darin and Jodi (left to right). They monitor the fish in the acoustics lab also known as “The Cave”.

The ocean is very calm but most of us took Bonine (a seasickness medication) anyway to acclimate to the movement.  Hopefully we will be adjusted to the motion before the seas get very rough if it does.  The rocking of the boat does make one very sleepy.

Cruising the Gulf of Alaska

The sea have been very calm for us.

 

Did You Know?

The requirements for joining the NOAA Corps include a bachelor’s degree in science, math or engineering and a 5 month program at the US Coast Guard Academy in New London,  CT.  This is Abby’s second cruise with the NOAA Corps.  She has a bachelor’s degree in chemistry and just completed her NOAA officer basic training.

Something to Think About: 

What is a day in the life aboard the Oscar Dyson like?

 

Melissa George: Contemplating Kodiak, July 20, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22–August 9, 2013

Mission:  Alaska Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  July 20, 2013

Introductory Blog

Greetings from Lafayette, Indiana, where I recently moved back after spending two years in Washington, D.C. as an Albert Einstein Distinguished Educator Fellow at the National Science Foundation in the Division of Environmental Biology.  In my recent position, I learned of many of the interesting research projects that ecosystem ecologists, population and community ecologists, systematic biologists, and evolutionary biologists are working on in various parts of the world. Beginning this fall, I will be returning to the Lafayette School Corporation to teach Biology and Zoology at Jefferson High School in Lafayette, Indiana.  I am excited to integrate aspects of the research I have learned about into my classroom.

Enhancing my understanding will be the authentic research experience in the  Gulf of Alaska as a  NOAA Teacher at Sea.  I will fly to Kodiak Island and board NOAA Ship Oscar Dyson, a support platform to study and monitor various aspects of the ocean:  environmental conditions,  habitat assessments, and marine mammal, fish, and bird populations.

Map of Kodiak Island

Map of Kodiak Island

This particular mission will be surveying the population of a species of fish called Alaskan pollock or scientifically speaking, Theragra chalcogramma.   These fish belong to the cod family and are one of the United States’ most valuable fisheries; they are typically sold as fish sticks, fish patties, or imitation crab, scallops, or shrimp.  Pollock populations vary from year to year, thus fish surveys, help to enact management practices as well as monitor the effects of climate change.

Ways to Identify the Alaskan Pollock

Ways to Identify the Alaskan Pollock

This adventure is exciting to me for several reasons.  First, growing up on the Pacific Coast in Santa Cruz, California I fell in love with the ocean at a young age.  I realize the importance of respecting the ocean and the ecosystems within it and around it.  Having spent the second half of my life in the Midwest, I have missed its calming effect as well as the wealth of ecological wonders it holds.  I escape to the ocean whenever I have the chance.  Below is a picture of me resting on the beach at Halawa Bay on the east end of Molokai, one of the Hawaiian Islands.

On Beach at Halawa Falls

On Beach at Halawa Falls

Second,  I hope to incorporate what I learn about how ocean scientists monitor various animal populations  into my high school classes.  There are so many aspects to this endeavor, I think my students will be excited to learn about many, if not all, of them.

Fun Fact:

I have four traveling companions.  They are in the photo below.  One of them will be accompanying me on the Teacher at Sea mission.  See if you can find pictures of this traveling companion in future posts and please comment when you do!

My Four Traveling Companions:  Manny, Molly, Mini Me, and Bust of Einstein

My Four Traveling Companions: Manny, Molly, Mini Me, and Bust of Einstein

Amie Ell: Preparing for an Adventure, June 26, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (Ship Tracker)
June 29 — July 18, 2013

Mission: Walleye Pollock Survey
Geographical Area: Kodiak, Alaska

Date: June 26, 2013

Personal Log

Amie Ell, NBCT Columbia High School White Salmon, WA

Amie Ell, NBCT
Columbia High School – White Salmon, WA

Hello everyone!  Thank you for visiting my blog.  I hope you continue to follow my journeys this summer.  Please allow me to introduce myself. My name is Amie Ell.  I am a teacher of sciences and mathematics at Columbia High School in White Salmon, WA. I live across the beautiful Columbia River in The Dalles, Oregon with my husband and two daughters.  I have taught for 10 years, 8 of them with my wonderful CHS clan!  I teach Physical, Earth, and Space Sciences as well as Algebra to primarily 9th graders.

This Friday I will fly to Kodiak to meet the crew of the Oscar Dyson and begin my adventure.  I was elated to learn that I had been chosen to be a part of the NOAA Teacher at Sea program and assigned to the Oscar Dyson. I had hoped that I would be given the opportunity to visit Alaska.   I have traveled to and explored many tropical ocean waters, but this will be my first Alaskan experience.  The commanding officer tells me that “…This Gulf of Alaska Pollock survey is one of the best ways to see the remote coastline of Alaska and to experience one of its foundation industries from a research perspective…”

The NOAA Ship Oscar Dyson (photo courtesy of NOAA)

The NOAA Ship Oscar Dyson (photo courtesy of NOAA)

I have learned that I will be helping with a survey of the Alaskan walleye pollock.  The main source of fish for many fast food fish sandwiches,  fish sticks, and even your imitation crab meat is the walleye pollock.  It is very important for scientists to maintain a careful watch on these fish so that their populations are not decimated by overfishing.

Please leave questions and comments for me.  I would love to hear from you all.  I know I will be missing home, friends, family, and all “my kids” at Columbia High.  Check back often.  I will always try to investigate and answer any questions you have.  Let’s begin our communication with a little survey:

Did You Know?  NOAA’s Pacific Marine Operations Center is located in Newport, OR.  Nine ships are serviced here including the Oscar Dyson.  Many of you have visited the Oregon Coast Aquarium in Newport.  Next time you are there, see if you can spot this NOAA hub.

NOAA Pacific Marine Operations in Newport, OR.  (photo courtesy of NOAA)

NOAA Pacific Marine Operations in Newport, OR. (photo courtesy of NOAA)