Amanda Dice: Ending Week 1 at Line 8, August 26, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

map cropped
Oscar Dyson moves across the Shelikof Straight to collect the Line 8 samples

Geographic area of cruise: Western Gulf of Alaska

Date: August 26, 2017

Weather Data: 13.2 C, cloudy with light rain

Latitude 57 36.6 N, Longitude 155 .008 N

 

 

Science and Technology Log

As part of this survey, the scientists onboard collect data from what is known as “Line 8”. This is a line of seven sampling stations, positioned only a few miles apart, near the southern opening of Shelikof Straight between Kodiak Island and the Alaskan Peninsula. Water samples are taken at different depths at each sampling station to measure several different properties of the water. This study is focused on profiling water temperature and salinity, and measuring the quantities of nutrients and phytoplankton in the water.

IMG_0988
The CTD rosette is lowered into the water using a winch – as seen from above.

To collect this data, a conductivity and temperature at depth (CTD) instrument is lowered into the water. This instrument can take water samples at different depths, by using its eleven canisters, or Niskin bottles. The water collected in the Niskin bottles will be used to determine the nutrient quantities at each station. The rosette of Niskin bottles also has sensors on it that measure phytoplankton quantities, depth, temperature, and how conductive the water is. Scientists can use the readings from conductivity and temperature meters to determine the salinity of the water.

Each Niskin bottle has a stopper at the top and the bottom. The CTD goes into the water with both ends of each Niskin bottle in the open position. The CTD is then lowered to a determined depth, depending on how deep the water is at each station. There is a depth meter on the CTD that relays its position to computers on board the ship. The survey team communicates its position to the deck crew who operate the winch to raise and lower it.

IMG_1164
Niskin bottles are lowered into the water with the stoppers at both ends open.

When the CTD is raised to the first sampling depth, the survey crew clicks a button on a monitor, which closes the stoppers on both ends of Niskin bottle #1, capturing a water sample inside. The CTD is then raised to the next sampling depth where Niskin bottle #2 is closed. This process continues until all the samples have been collected. A computer on board records the depth, conductivity and temperature of the water as the CTD changes position. A line appears across the graph of this data to show where each sample was taken. After the Niskin bottles on the CTD are filled, it is brought back onto the deck of the ship.

IMG_1173
They let me take control of closing the Niskin bottles at the sampling depths!
CTD screen cropped
I used this screen to read the data coming back from the CTD and to hit the bottle to close each Niskin bottle. The purple horizontal lines on the graph on the right indicate where each one was closed.

Water is collected through a valve near the bottom of each Niskin bottle. A sample of water from each depth is placed in a labeled jar. This study is interested in measuring the quantity of nutrients in the water samples. To do this it is important to have samples without phytoplankton in them. Special syringes with filters are used to screen out any phytoplankton in the samples.

Screen Shot 2017-08-26 at 8.28.56 PM
Syringes with special filters to screen out phytoplankton are used to collect water samples from the Niskin bottles.

The “Line 8” stations have been sampled for nutrient, plankton, and physical water properties for many years. The data from the samples we collected will be added to the larger data set maintained by the Ecosystems and Fisheries-Oceanography Coordinated Investigations (Eco-FOCI), Seattle, Washington. This NOAA Program has data on how the marine ecosystem in this area has changed over the last few decades. When data spans a long time frame, like this study does, scientists can identify trends that might be related to the seasons and to inter-annual variation in ocean conditions. The samples continue to be collected because proper nutrient levels are important to maintaining healthy phytoplankton populations, which are the basis of most marine food webs.

 

IMG_1171
Collecting water samples from a Niskin bottle.

Personal Log

As we travel from one station to the next, I have some time to talk with other members of the science team and the crew. I have really enjoyed learning about places all over the world by listening to people’s stories. Most people aboard this ship travel many times a year for their work or have lived in remote places to conduct their scientific studies. Their stories inspire me to keep exploring the planet and to always search for new things to learn!

Did you know?

Niskin bottles must be lowered into the water with both ends open to avoid getting an air bubble trapped inside of them. Pressure increases as depth under water increases. Niskin bottles are often lowered down below 150 meters, where the pressure can be intense. If an air bubble were to get trapped inside, the pressure at these depths would cause air bubble to expand so much that it might damage the Niskin bottle!

Gregory Cook, Introduction, July 22, 2014

NOAA Teacher at Sea

Gregory Cook

(Almost) Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: July 23, 2014

Welcome to the Seablog! This is where I’ll be posting about my adventures aboard the NOAA Ship Oscar Dyson, as we study the fisheries off the coast of Alaska.

Introductions!
First allow me to introduce myself. My name is Gregory Cook, and I am, as far as I can tell, in the running for Luckiest Guy on the Planet! I teach middle school science and math at the East Somerville Community School to some of the coolest kids I know, and work with some of the best teachers in the country. Go Phoenix!

Me and my buzzing buddy
Me and a Humming Bird in Costa Rica

On top of that, I received acceptance this year with the National Oceanic and Atmospheric Administration’s (NOAA) Teacher at Sea program! NOAA is part of the Department of Commerce, and does research on everything from fish and whale populations to climate change to mapping the ocean floor and coastline!

In their Teacher at Sea program, I get to work with world class scientists, be a part of real-world research, learn about amazing careers, and share that knowledge with my students. In a small way, I get to share with you the exploration and study of this great planet. What else do you want out of life? A pony? I think not, good sir!

 

oscar dyson
NOAA Ship Oscar Dyson  (Photo from http://www.moc.noaa.gov/od/)

 

The Oscar Dyson is a ship built by the U.S. Government (Your tax dollars doing great work!) to study the Earth’s oceans. It’s over two-thirds of a football field long and almost fifty feet wide. It can deploy (or send out) over five kilometers (more than three miles!) of cable, It has two massive winches for launching scientific study packages. It can use something akin to Doppler Radar to tell you about what’s in the water beneath us and what the sea floor beneath THAT looks like.

Wanna see how they built it? Of course you do!

See Video Credits for Source Material

Alaska

The first thing you need to know about Alaska is its name. It comes from the Aleutian word Alakshak, which means Great Lands or Peninsula… the entire state, in the end, seems to be named after the great Alaskan Peninsula that juts out into the Pacific Ocean.

https://i0.wp.com/www.ngdc.noaa.gov/mgg/image/ak_crm_512.jpg?resize=512%2C224
Alaska gets its name from the Alaskan Peninsula, which juts out into the Pacific and then trails off and becomes the Aleutian Islands. (http://www.ngdc.noaa.gov/mgg/coastal/s_alaska.html)

If you’re one of my students, you’re probably asking “How…?”

Well, The Alaskan Peninsula forms in a Subduction Zone. That means that the Pacific Plate is diving underneath the North American Plate. This creates some beautiful upthrusts that you and I know as mountains… or, in the case of the Aleutians,… Islands! Geologists think The Aleutians are about 37 Million Years Old, formed by volcanic activity.

As a matter of fact, the Island I’ll be sailing from, Unalaska, was created this very way. You might remember (from 6th grade if you’re a Somerville kid!) Oceanic crustal plates are more dense than crustal plates, so they dive under them, pushing the mountains and islands up.

When I first heard I was sailing out of Unalaska, I wondered what was so “Unalaska” about it… like… were they Yankees fans or something?

It turns out that in the Aleutian language (the language of the Aleuts… the native people of the area) placing “Un-” in front of a word means “near.” So Unalaska means “Near the Peninsula.” You could say that I live “Undunkindonuts.” (Though, yeah, I’m a Starbucks guy).

OK, back to Geology…

So it turns out that a great deal of the Bering Sea is over the continental shelf of North America. What that means is that the sea is more shallow than the Pacific.

Much of the Eastern Bering Sea is shallow. This helps create a thriving ecosystem!

http://www.pbs.org/harriman/explog/lectures/alexander.html

What THAT means is that all the good nutrients that run off of the land… from the rains and rivers… can support a huge amount of sea life. The Bering sea is one of the most productive fisheries in the world… It is teeming with life!

Which brings us to this guy…

http://www.afsc.noaa.gov/Quarterly/amj2012/divrptsREFM7.htm
Walleye Pollock… Fishy-fishy!!!

http://www.afsc.noaa.gov/species/pollock.php

If you’ve ever had Fish Sticks or McDonald’s Fillet o’ Fish, you’ve probably had some form of Pollock. They grow quickly, they die young, and have a lot of offspring. They also represent almost 2/3 of all the groundfish (fish that live near the bottom of the sea) caught in Alaska 2012.

So to say Pollock are important is kind of like saying bread is important… They have a huge impact on our lives here in the United States. So it’s important we look in on them every now and then, and make sure they’re doing ok… So we can eat them. 😀

That’s what I’ll be doing up there in Alaska. Exploring the Bering Sea, and looking in on our good friend, Mr. Pollock. I hope you can come along for the ride. 😀

Katie Sard: Introductory Post, July 3, 2013

NOAA Teacher at Sea
Katie Sard
25 days until I am aboard the NOAA Ship Rainier
July 29 – August 15, 2013


Misson: Hydrographic Survey
Geographical area of the cruise:  Alaska Peninsula
Date:  July 3, 2013

 

Personal Log

Hello from Newport, Oregon!  I cannot begin to explain how excited I am for my upcoming Teacher at Sea (TAS) experience on the NOAA Ship Rainier. I have the privilege of working in a coastal community at Isaac Newton Magnet School (INMS) here in Newport.

Yaquina Bay Bridge
Although I don’t typically get to walk across the bridge each day on my commute, this is me as I made my way over the Yaquina Bay Bridge for the first time by foot!

I teach Integrated Science to blended classes of 6th, 7th, and 8th grade students.  My daily drive to work consists of looking out across the Pacific Ocean and passing over the Yaquina Bay Bridge.  My students are one of a kind, and their budding interests in science motivate me to continue my own scientific education.

I moved to Oregon in June of 2011 with my husband so that he could pursue a PhD position at Hatfield Marine Science Center through Oregon State University.  We moved here from Chautauqua County in Western New York State.  Although I grew up on the “East Coast”, it wasn’t until moving to Oregon that I really began to appreciate our Ocean and what it means to be a member of a coastal community.  Ever since our move I’ve been on a mission to discover all that I can about the Ocean in order to help my students appreciate what an amazing resource it truly is.  While I was attending a teacher workshop recently, I read the following quote by David Sobel that said, “Give children a chance to love the earth before we ask them to save it.”  The demands of the upcoming generations are enormous, and I am dedicated to making sure that my students grow to be scientifically literate citizens of our world.  I know that my TAS experience will help me to help my students love their planet!

The NOAA Teacher at Sea program is giving me the opportunity to continue my scientific education, and to bring my knowledge back to my students, colleagues, and community members.  The ship’s mission will be to do hydrographic surveys out around the Shumagin Islands, and in and around Cold Bay on the Alaska Peninsula.

NOAA Survey Plans
Here is a map that I found to help me understand where exactly I will be visiting.

I’m nervous, excited, and eager for my journey to start as I’ve never been on a ship of this size, and I’ve never been out on the ocean for this duration of time.  Be sure to check out the link to the Ship to get more information on the NOAA Ship Rainier.

In the upcoming month before my cruise I will be traveling back to my home town in New York with my husband Nick and my dog Luna.

Lost Creek State Park
My husband Nick, my dog Luna, and myself at Lost Creek State Park near our house in Newport.

We will spend several weeks there before heading back cross-country on the 40+ hour road trip.  The next time you hear from me will be when I am aboard the NOAA Ship Rainier!  I hope that you help to shape my experience by interacting with my via this blog while I am aboard the ship!

Did You Know?

  • The NOAA Ship Rainier is named for Mount Rainier which is the tallest peak in the state of Washington.  It is the fourth tallest peak in the United States.

Here are a few interesting fishermen’s superstitions that I will keep in mind as I begin my journey:

  • It is bad luck to look back once your ship has left port.
  • It is said that disaster will follow if you step onto a boat with your left foot first.