Julia Harvey: The Nearest Land is 3 Miles Down, June 28, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 28th, 2016

 

Weather Data from the Bridge
(June 28th at 2pm)

Wind Speed: 12 knots

Temperature: 26.2 C

Humidity: 81%

Barometric Pressure: 1016.3 mb

 

Science and Technology Log

The Aloha Station is about 100 miles north of Oahu, Hawaii and was selected because of its closeness to port but distance from land influences (temperature, precipitation etc).  The goal is to select a site that represents the north Pacific, where data can be collected on the interactions between the ocean and the atmosphere. Woods Hole Oceanographic Institution Hawaii Ocean Time Series (WHOTS) has used this site for research since 2004.  You can find real time surface and meteorological data and archived data at the WHOTS website.

We are stationed in the vicinity of mooring 12 and 13 in the Aloha Station to begin intercomparison testing.  CTD (conductivity/temperature/depth) casts are conducted on a regular schedule. This data will help align the data from mooring 12 to mooring 13. If CTDs don’t match up between the two moorings then efforts will be made to determine why.

Mooring 13 is being inspected to make sure sensors are working. Photographs have been taken to determine measurement height of the instruments and where the water line is.

When I was aboard the Oscar Dyson, there were multiple studies going on besides the Walleye Pollock survey. The same is true on the Hi’ialakai. The focus is on the mooring deployment and recovery but there are a professor and graduate student from North Carolina State University who are investigating aerosol fluxes.

Professor Nicholas Meskhidze earned his first Physics degree from Tbilisi State University (Georgia).  He completed his PhD at Georgia Institute of Technology (USA).  He is now an Associate Professor at NC State University Department of Marine Earth and Atmospheric Sciences.

Meskhidze’s study on this cruise is looking at sea spray aerosol abundance in marine boundary layer and quantifying their flux values. Sea spray is formed from breaking waves. Sea spray analysis begins by collecting the aerosol. Using electrical current, particles of a given size (for example 100 nanometer (nm)) are selected for. This size represents the typical size of environmental climatically important particles (70-124 nm). The next step is to remove all other particles typically found in the marine boundary layer, such as ammonium sulfate, black carbon, mineral dust and any organics. The remaining particles are sea salt.

Sea spray analysis

Dr. Nicholas Meskhidze with the sea spray analysis equipment

Meskhidze is looking at the fluxes of the salt aerosols.  Sea salt aerosols are interesting.  If a salt aerosol is placed in 80% humidity, it doubles in size.  But then placed in 90% humidity, it quadruples in size. Due to their unique properties, sea salt aerosols can have considerable effect on atmospheric turbidity and cloud properties.

Aerosols are key components of our climate but little is known about them. Climate models are used to predict future climatic change, but how can one do this without understanding a key component (aerosols)?

little is known

Source: IPCC Fourth Assessment Report, Summary for Policy Makers

 

Personal Log

The galley (ship’s kitchen) is a happening place three times a day.  The stewards are responsible for feeding 30-40 people.

Chief Steward Gary Allen is permanently assigned to the Hi’ialakai. He has worked for NOAA for 42 years and he has stories to tell. He grew up in Tallahassee, Florida and his early work was at his father’s BBQ stand. He attended Southern University on a football scholarship and majored in food nutrition. After an injury, he finished school at Florida A & M. He worked for a few years in the hotel food industry, working his way up to executive chef. Eventually he was offered the sous chef job at Brennan’s in New Orleans. He turned it down to go to sea.

Chief Steward Allen Gary

Chief Steward Allen Gary

In 1971, he sailed for the first time with NOAA. The chief steward was a very good mentor and Gary decided to make cooking at sea his career. He took a little hiatus but was back with NOAA in 1975, where he would spend 18 years aboard the Discoverer and would become chief steward in 1984. He would sail on several other ships before finding his way to the Hi’ialakai in 2004.

In the 42 years at sea, Gary has seen many changes. Early in his career, he would only be able to call home from ports perhaps every 30 days. Now communication allows us to stay in contact more. He is married to his wife of 43 years and they raised 3 daughters in Seattle.

I asked him what he enjoys the most about being at sea. He has loved seeing new places that others don’t get to see. He has been everywhere, the arctic to Antarctica. He enjoys the serenity of being at sea. He loves cooking for all the great people he meets.

I met Ava Speights aboard the Oscar Dyson in 2013 when she was the chief steward and I was participating in the walleye pollock survey as a Teacher at Sea. She has been with NOAA for 10 years.

Ava Speights (on the right) and me

Ava Speights (on the right) and me

She and a friend decided to become seamen. Ava began working in a shipyard painting ships. In 2007, she became a GVA (general vessel assistant) and was asked to sail to the Bahamas for 2 weeks as the cook. This shifted her career pathway and through NOAA cooking classes and on the job training, she has worked her way up to chief steward.

She is not assigned to a specific ship. She augments, meaning she travels between ships as needed. She works 6 months of the year, which allows her to spend time with her 2 daughters, 1 son, 2 stepdaughters and 4 grandchildren. Her husband is an engineer with NOAA. Her niece is an AB (able bodied seaman) on deck. Her son is a chief cook for Seafarer’s.  And her daughter who just graduated high school will be attending Seafarer’s International Union to become a baker.  Sailing must run in her family.

She loves to cook and understands that food comforts people. She likes providing that comfort.  She has also enjoyed traveling the world from Africa to Belgium.

2nd Cook Nick Anderson

2nd Cook Nick Anderson

Nick is 2nd cook and this is his first cruise with NOAA. He attended cooking school in California and cooked for the Coast Guard for 6 years where he had on the job training. In 2014, he studied at the Culinary Institute of America and from there arrived on the Hi’ialakai. He also is an augmenter, so he travels from ship to ship as Ava does.

 

 

 

Did You Know?

The Hi’ialakai positioned mooring 13 in an area with a 6 mile radius known as the Aloha Station. Check out all of the research that takes place here at Station Aloha. There is a cabled observatory 4800 meters below the ocean surface. A hydrophone picks up on sounds and produces a seismograph. Check the results for the night the anchor was dropped.

Seismograph

Seismograph during Mooring Deployment

Click here to hear whales who pass through this area in February.

Pacific Sunset

Pacific Sunset

Jacquelyn Hams: 24 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: November 24, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 0830
Wind Direction: 246.10
Wind Speed (m/s): 9.3
Air Temperature (C): 27.4
Relative Humidity: 86.1%
Dew Point: (C): 25.10
Precipitation (mm): 25.1

PAR (Photosynthetically Active Radiation) (microeinsteins): 177
Long Wave Radiation (w/m2): 454.3
Short Wave Radiation (w/m2): 36.7

Surface Water Temperature (C): 300
Sound Velocity: 1545.9
Salinity (ppm): 35
Fluorometer (micrograms/l): 0.9
Dissolved Oxygen (mg/l): 2.6
Water Depth (m): 4637

Wave Data from WAMOS Xband radar

Wave Height (m) 2.2
Wave Period (s): 15.3
Wavelength (m): 290
Wave Direction: 29000

Science and Technology Log

Aerosols Group

 The Aerosols Group consists of Derek Coffman, Langley Dewitt and Kristen Schultz from the NOAA Pacific Marine Environmental Lab (PMEL) in Seattle, Washington. The Aerosols group measures the chemical, physical, and optical properties of sub and supermicron aerosols (liquids or solids suspended in gas) in the lowest layer of the troposphere. Aerosols are important in the study of climate change and the largest unknown due to the complicated nature of the particles. Aerosols are being studied in the MJO experiment to determine how they affect the radiative balance and how the MJO affects aerosols.

The measurements and analyses include:

  • real-time and filter-based analysis of the aerosol chemical composition
  • size distributions from 20 nm to 10 microns (aitken mode to course mode aerosols)
  • particle number concentrations
  • aerosol scattering and absorption
  • cloud condensation nuclei (CCN)
  • total mass of filtered collected aerosol
  • O3 and SO2 gas phase measurements.

Aerosols are captured via an opening in the inlet (mast). The base of the inlet consists of 21 individual sample lines. The inlet is designed to collect particles in average marine conditions without preferentially selecting particles and is efficient in collecting particles up to 10 microns in diameter.  Each sample line connects to a specific instrument for analysis. The captured aerosols are sampled for physical, chemical, and optical properties. . In general, for the ocean, particle sizes that are <1 micron are typically more anthropogenic, while particles >1 micron are sea salts and generated by wind and rain.

Aerosols are captured through the Inlet (mast).

Aerosols are captured through the Inlet (mast).

Base of aerosol inlet with sample lines.

Base of aerosol inlet with sample lines.

Impactors are attached to the sample lines to separate and collect aerosols. Each impactor has a filter to capture a particular particle size range. The filters are removed from the Impactors in a clean lab for analysis. Half of the samples collected are analyzed on the ship and the remaining samples are analyzed at the NOAA PMEL Lab in Seattle, WA. Analytical methods used on the ship to measure chemical species are ion chromatography, liquid chromatography with mass spectrometry (LCMS), total organic carbons (TOC), and organic carbon and elemental carbon (OCEC). The optical properties measured include scattering and absorption. Scattering is measured by an instrument called a nephelometer and absorption is measured by a Particle Soot Absorption Photometer (PSAP). The physical properties measured are total particle concentration and size distribution of the particles. Condensation particle counters (CPCs) measure the particle concentrations and size distribution is measured by a Scanning Mobility Particle Sizer (SMPS), The Aerosol Mass Spectrometer measures the size and chemical composition of non-refractory submicron aerosols.

Kristen removes impactor for sampling

Kristen removes impactor for sampling

Vacuum Pump closet houses vacuum and pressure needs for the aerosol vans.

Vacuum Pump closet houses vacuum and pressure needs for the aerosol vans.

Filters are removed from the impactor.

Filters are removed from the impactor.

Example of a clean filter (left) and sampled filter containing exhaust from the ship (right).

Example of a clean filter (left) and sampled filter containing exhaust from the ship (right).

The Aerosol Mass Spectrometer captures and analyzes the chemical composition of aerosol particles in near real time (every 5 minutes).

The Aerosol Mass Spectrometer captures and analyzes the chemical composition of aerosol particles in near real time (every 5 minutes).

Derek in the Aerosol van pictured with various instrumentation.

Derek in the Aerosol van pictured with various instrumentation.

The diagrams pictured above are based on a model prepared by Derek Coffman. The back trajectories on the left show that sub micron aerosols are dominant in the continental air mass and there is also more organic aerosol that is likely causing the absorption in the continental air mass. The clean marine diagram shows that sub micron aerosol is greatly reduced and aerosols >1 micron (coarse mode) play a dominant role in scattering in the air mass.

The diagrams pictured above are based on a model prepared by Derek Coffman. The back trajectories on the left show that sub micron aerosols are dominant in the continental air mass and there is also more organic aerosol that is likely causing the absorption in the continental air mass. The clean marine diagram shows that sub micron aerosol is greatly reduced and aerosols >1 micron (coarse mode) play a dominant role in scattering in the air mass.

Personal Log

Thanksgiving week proved to be the most interesting weather of the cruise. The winds picked up to 48 knots on Thanksgiving Day. This made for a real exciting time on the winch. During several drops (each time Chameleon is lowered in the water column), I had to hold on to the canopy with one hand, and the winch with the other so I would not fall over when the swells hit the stern of the ship.

I was surprised that Chief Scientist Jim Moum continued to work on his computer and did not run out to snatch me away from his valuable research instrument! If he had that much confidence in my ability to handle the situation, I had to prevail. Just as I was convincing myself I had to prevail, I heard the bridge call on the hand-held radio. I could not understand the communication and did not want to release the winch since it was difficult to control in the wind. Someone from the Ocean Mixing Group came out to tell me that the bridge called and could not control the ship direction and to take Chameleon out of the water. By this time Chameleon was trailing behind the ship and I could not see if it had gone under the ship. A bit of chaos ensued and I saw a boat hook out of the corner of my eye as crew prepared to get Chameleon out. Somewhere in the midst of the chaos, Jim Moum came on deck and decided that profiling could continue. By that time the ship had re-positioned, however, the wind speed was the same. Jim surveyed the situation and said that he had profiled in far worse weather conditions and went back to his work. I breathed a huge sigh of relief when my shift was over that night and Chameleon was not damaged.

Thanksgiving Day was another day of collecting data. The cooks prepared a Thanksgiving Dinner and I think I speak for all of the scientists when I say we appreciated the turkey and all the trimmings.

Scott, a Wiper in the Engineering Department asked me if I would like an interesting video of a crew job for the website. Scott is a polite crew member and has an interest in education. My first question was “What is the job description for a wiper?” I was told that a wiper is an unlicensed engine room staff member. According to Scott, he empties trash, cleans, and performs other projects as needed such as needle gunning (removing paint and rust from metal surfaces) natural air vent shafts as seen in the video below. I wasn’t prepared for the noise when I shot this video.

There are no gorgeous sunrise and sunset photographs to end this blog – we are probably in the beginning stages of the MJO. There is a tropical cyclone to our north and the outer bands were reaching the ship. We are experiencing squalls with high winds. It is unusual to have cyclones during the MJO event – they usually develop in the wake of the cycle according to the Atmospheric Soundings Group. I get dressed in rain boots and gear and run to the winch and run back inside when my shift is over. Although I am sure you would like to see a photo, it is not exactly a desirable Kodak moment for cameras. Stay tuned, the weather is bound to change.

For this post’s quiz, please answer in the comments of this post:

Using the Aerosol source diagram above, what particle size aerosols are dominant in
continental air masses and what particle size aerosols are dominant in clean marine air masses?

 

Susan Carty, March 22, 2001

NOAA Teacher at Sea
Susan Carty
Onboard NOAA Ship Ronald H. Brown
March 14 – April 20, 2001

Mission: Asian-Pacific Regional Aerosol Characterization Experiment (ACE-ASIA)
Geographical Area: Western Pacific
Date: March 22, 2001

Well, well, well.. And I thought last night was something. Rather like an amusement ride on Coney Island! When I went to bed the swells were 14-15 ft., but during the night they increased to 20ft. And the winds increased from 30kts. to 40kts. No wonder I almost fell out of bed! The trick is to use your life jacket as a brace to wedge yourself into your bunk. Tends to give you a false sense of security.

This morning we had a “damage assessment” meeting, taking note of any equipment that became mobile during the night. It seems that some of the portable vans changed location on the deck during the night. There will not be much testing going on today. We are battening down the hatches until the storm passes. This morning, one humorous (or possibly disturbed) scientist was actually reading a book titled Shipwrecks of the Pacific while I, on the other hand, was looking for the book titled The One Minute Mariner. It occurred to me that this experience should be a mandatory freshman course for anyone interested in oceanography.  That would certainly separate the men from the boys (or girls as it were). And probably save some tuition strapped parent a few dollars as well.

Last nights “science night” meeting was very helpful to me It clarified a number of issues regarding the project as a whole. ACE-ASIA is a part of the International Aerosol Experiment that has been ongoing since 1995. One of the goals is to bring to the public a broader understanding of the impact of aerosols on society in general. Not only is the issue of climate change a concern, but also the issue of human health, crop production (particularly of wheat and rice in China) and other economic impact.

Specific goals of this trip are to quantify the interactions between aerosols in the atmosphere and to quantify the physical and chemical processes/characteristics of the various aerosols. The interactions of these particles in the air and at the air-water interface are believed to be of significant impact on multiple earth process systems. Not only can the aerosols create a cooling effect by reflecting light energy, but they also can create a warming effect by absorbing light energy. Another interesting point is that the aerosols can have a cloud nucleating effect. They can actually cause the clouds to become larger for longer periods of time… Or, possibly the opposite effect. The question is : What is the impact of all of these processes as they occur simultaneously? Interesting, isn’t it?

What I find particularly fascinating is the process in which Saharan dust clouds travel all the way to Europe and the Atlantic. What other interesting types of particles could be traveling along with that dust? Something to think about….

Since one of the pieces of testing equipment on board is an OCEC Analyzer (organic carbon/elemental carbon) lets have a question that relates to that instrument.

Questions of the Day: What is the difference between organic carbon and elemental carbon? What might be the sources of each type of carbon?

Oh, by the way. It is actually Thursday out here for me. It’s only Wednesday for you. When will I catch up with that lost day?

I am enjoying your email. Keep them coming!
Bye for now,
Susan

Susan Carty, March 18, 2001

NOAA Teacher at Sea
Susan Carty
Onboard NOAA Ship Ronald H. Brown
March 14 – April 20, 2001

Mission: Asian-Pacific Regional Aerosol Characterization Experiment (ACE-ASIA)
Geographical Area: Western Pacific
Date: March 18, 2001

Today I thought it would be helpful to discuss why a ship is being used for the aerosol experiments. As you know, our planet is approx. 70% water which logically indicates that particles would be moving over water even more than land. The atmosphere over water, particularly remote waters, provides ideal conditions for sampling. The slower speed at which the ship moves permits the scientists to conduct testing at a manageable pace as compared to samplings taken from airplanes.

The ship can take the scientists to locations on the planet only accessible by water. It becomes a floating platform for data collection and experimentation.  The ship can also follow the wind patterns across the seas (ie:  tradewinds/westerlies). These winds carry particles from one continent to another.

The testing of air samples on board focuses on many aspects of aerosols. For example, some equipment may focus on how light energy and particles interact in the air as well as in the water, while another type of equipment focuses on size distribution of particles in the atmosphere. Understanding what types of organic and inorganic particles are collected is significant in terms of determining origin and interactive behaviors.

This is just a small sampling of the types of experiments taking place on the ship. The testing and collection of aerosols is a daily activity. At times the scientists must work under difficult and awkward conditions that are directly influenced by weather, seas and swells. They also conduct their testing at all hours of the day. It may look like a “cruise” but it is definitely a “working cruise”. It calls for committed scientists with a sense of adventure and endurance.

QUESTION OF THE DAY: What is the difference between a “sea” and a “swell”?

Talk to you tomorrow. The albatross are still with us!
Susan