Gregory Cook, The Dance, August 7, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 7, 2014

Science and Technology Log: Abiotic Factors in the Bering Sea

Ecosystems are made up of biotic and abiotic factors. Biotic is just another word for “stuff that is, or was, alive.” In a forest, that would include everything from Owl to Oak Tree, from bear to bacteria, and from fish to fungi. It includes anything alive, or, for that matter, dead. Keep in mind that “dead” is not the same as “non-living.”

Salmon and Black-Legged Kittiwake
The salmon and the black-legged kittiwake are both biotic members of the sub-arctic ecosystem.

“Non-living” describes things that are not, cannot, and never will be “alive.” These things are referred to as “abiotic.” (The prefix a- basically means the same as non-). Rocks, water, wind, sunlight and temperature are all considered abiotic factors. And while the most obvious threat to a salmon swimming up river might be the slash of a bear’s mighty claw, warm water could be even more deadly. Warm water carries less dissolved oxygen for the fish to absorb through their gills. This means that a power plant or factory that releases warm water into a river could actually cause fish to suffocate and, well, drown.

Bering Panorama
A 90 degree panorama of the Bering Sea from atop the Oscar Dyson. I’d show you the other 270°, but it’s pretty much the same. The sea and sky are abiotic parts of the sub-arctic ecosystem.

Fish in the Bering Sea have the same kind of challenges. Like Goldilocks, Pollock are always looking for sea water that is just right. The Oscar Dyson has the tools for testing all sorts of Abiotic factors. This is the Conductivity Temperature Depth sensor (Also known as the CTD).

CTD Deployment
Survey Technicians Allen and Bill teach me how to launch The Conductivity Temperature Depth Probe (or CTD).

The CTD sends signals up to computers in the cave to explain all sorts of abiotic conditions in the water column. It can measure how salty the water is by testing how well the water conducts electricity. It can tell you how cloudy, or turbid, the water is with a turbidity sensor. It can even tell you things like the amount of oxygen dissolved in the ocean.

To see how abiotic factors drive biotic factors, take a look at this.

Thermocline
The graph above is depth-oriented. The further down you go on the graph, the deeper in the water column you are. The blue line represents temperature. Does the temperature stay constant? Where does it change?

I know, you may want to turn the graph above on its side… but don’t. You’ll notice that depth is on the y-axis (left). That means that the further down you are on the graph, the deeper in the sea you are. The blue line represents the water temperature at that depth. Where do you see the temperature drop?


Right… The temperature drops rapidly between about 20 and 35 meters. This part of the water column is called the Thermocline, and you’ll find it in much of the world’s oceans. It’s essentially where the temperature between surface waters (which are heated by the sun) and the deeper waters (typically dark and cold) mix together.

OK, so you’re like “great. So what? Water gets colder. Big deal… let’s throw a parade for science.”

Well, look at the graph to the right. It was made from another kind of data recorded by the CTD.

Fluoresence
Fluoresence: Another depth-oriented graph from the CTD… the green line effectively shows us the amount of phytoplankton in the water column, based on depth.

The green line represents the amount of fluorescence. Fluorescence is a marker of phytoplankton. Phytoplankton are plant-like protists… the great producers of the sea! The more fluorescence, the more phytoplankton you have. Phytoplankton love to live right at the bottom of the thermocline. It gives them the best of both worlds: sunlight from above and nutrients from the bottom of the sea, which so many animals call home.

Now, if you’re a fish… especially a vegetarian fish, you just said: “Dinner? I’m listening…” But there’s an added bonus.

Look at this:

CTD Oxygen
Oxygen data from the CTD! This shows where the most dissolved oxygen is in the water column, based on depth. Notice any connections to the other graphs?

That orange line represents the amount of oxygen dissolved in the water. How does that compare to the other graphs?

Yup! The phytoplankton is hanging down there at the bottom of the thermocline cranking out oxygen! What a fine place to be a fish! Dinner and plenty of fresh air to breathe! So here, the abiotic (the temperature) drives the biotic (phytoplankton) which then drives the abiotic again (oxygen). This dance between biotic and abiotic plays out throughout earth’s ecosystems.

Another major abiotic factor is the depth of the ocean floor. Deep areas, also known as abyss, or abyssal plains, have food sources that are so far below the surface that phytoplankton can’t take advantage of the ground nutrients. Bad for phytoplankton is, of course, bad for fish. Look at this:

The Cliff and the Cod
The blue cloud represents a last grouping of fish as the continental shelf drops into the deep. Dr. Mikhail examines a cod.

That sloping red line is the profile (side view of the shape of the land) of the ocean floor. Those blue dots on the slope are fish. As Dr. Mikhail Stepanenko, a visiting Pollock specialist from Vladivostok, Russia, puts it, “after this… no more Pollock. It’s too deep.”

He goes on to show me how Pollock in the Bering Sea are only found on the continental shelf between the Aleutian Islands and Northeastern Russia. Young Pollock start their lives down near the Aleutians to the southeast, then migrate Northwest towards Russia, where lots of food is waiting for them.

Pollock Distribution
Alaskan Pollock avoid the deep! Purple line represents the ocean floor right before it drops off into the Aleutian Basin… a very deep place!

The purple line drawn in represents the drop-off you saw above… right before the deep zone. Pollock tend to stay in the shallow areas above it… where the eating is good!

Once again, the dance between the abiotic and the biotic create an ecosystem. Over the abyss, Phytoplankton can’t take advantage of nutrients from the deep, and fish can’t take advantage of the phytoplankton. Nonliving aspects have a MASSIVE impact on all the organisms in an ecosystem.

Next time we explore the Biotic side of things… the Sub-arctic food web!

Personal Log: The Order of the Monkey’s Fist.

Sweet William, a retired police officer turned ship’s engineer, tells the story of the order of the monkey’s fist.

William and the Monkey's Fist
Sweet William the Engineer shows off a monkey’s fist

The story goes that some island came up with a clever way to catch monkeys. They’d place a piece of fruit in a jar just barely big enough for the fruit to fit through and then leave the jar out for the monkeys. When a monkey saw it, they’d reach their hand in to grab the fruit, but couldn’t pull it out because their hands were too big now that they had the fruit in it. The monkey, so attached to the idea of an “easy” meal wouldn’t let go, making them easy pickings for the islanders. The Monkey’s Fist became a symbol for how clinging to our desires for some things can, in the end, do more harm than good. That sometimes letting go of something we want so badly is, in the end, what can grant us relief.

Another story of the origin of the monkey’s fist goes like this: A sea captain saw a sailor on the beach sharing his meal with a monkey. Without skipping a beat, the monkey went into the jungle and brought the sailor some of HIS meal… a piece of fruit.

No man is an Island. Mt. Ballyhoo, Unalaska, AK
No man is an Island. Mt. Ballyhoo, Unalaska, AK

Whatever the true origin of the Order is, the message is the same. Generosity beats selfishness at sea. It’s often better to let go of your own interests, sometimes, and think of someone else’s. Onboard the Oscar Dyson, when we see someone committing an act of kindness, we put their name in a box. Every now and then they pull a name from the box, and that person wins something at the ship store… a hat or a t-shirt or what have you. Of course, that’s not the point. The point is that NOAA sailors… scientists, corps, and crew… have each other’s backs. They look out for each other in a place where all they really have IS each other.

And that’s a beautiful thing.

Steven Wilkie: July 3, 2011

NOAA TEACHER AT SEA
STEVEN WILKIE
ONBOARD NOAA SHIP OREGON II
JUNE 23 — JULY 4, 2011

Mission: Summer Groundfish Survey Geographic Location: Northern Gulf of Mexico Date: July 3, 2011 Ship Data

Latitude 29.27
Longitude -94.39
Speed 9.30 kts
Course 298.00
Wind Speed 6.70 kts
Wind Dir. 281.88 º
Surf. Water Temp. 29.90 ºC
Surf. Water Sal. 24.88 PSU
Air Temperature 29.30 ºC
Relative Humidity 75.00 %
Barometric Pres. 1015.75 mb
Water Depth 15.70 m

Science and Technology Log

One of the first expeditions devoted to the study of the world’s oceans was that of the H.M.S. Challenger.  This voyage covered a distance of more than 68,000 nautical miles.   Although other expeditions prior to the Challenger expedition would periodically collect data about the ocean environment, none were devoted solely to the exploration of the chemical, biological and physical attributes of the oceans.

The Voyage of the HMS Challenger
The HMS Challenger’s voyage spanned 4 years and covered close to 70,000 nautical miles.
A sounding device used by the Challenger expedition. This weighted line would be lowered over the side of the ship and the amount of line let out would indicate depth.

If you have read my previous posts, you know how important monitoring the abiotic factors are.  This was no different aboard the Challenger expedition.

And remember it took 23 years to process and publish all of the data, well with the help of computers and the internet, the Oregon II’s data is available in hours.

Michael Hendon (lead scientist) performs a winkler titration to determine dissolved oxygen content. See wet chemistry skills are still important!
Michael Hendon (lead scientist) performs a winkler titration to determine dissolved oxygen content. See wet chemistry skills are still important!

Although technology plays a pivotal role in collecting and analyzing the data, computers still need to be cross referenced against tried and true scientific processes.  In order to ensure that all of the CTD equipment is accurate, random water samples are pulled using the CTD’s sample bottles.  A chemical titration, known as the Winkler titration is used to determine the amount of dissolved oxygen present in the water samples.

The method for sampling the living organisms along the bottom of the seafloor has not changed much since the Challenger expedition.  Trawl nets are still the name of the game, although the way they are deployed might vary a bit!

Mike and Cliff bring the Oregon II's trawl aboard complete with catch.

Once the catch is on board, the process begins to collect data (remember that is why NOAA is out here) to better understand how populations are changing in order to set catch limits and analyze human impact.  In the day’s of the Challenger expedition, the work of analyzing samples and collecting their would have been done in a lab aboard ship, and we rely on similar if not more automated facilities onboard the Oregon II.  Follow this link to take a virtual tour of the Challenger’s “Wet lab”. The wetlab onboard the Oregon II is where I spend the majority of my 12 hour watch.   It is here that the catch is brought after we bring it on deck, we sort the catch, count and measure a subsample of what is brought on board.  If we had to measure everything that came up with the net we would never get finished.  By taking a subsample we can split the catch into percentages depending on the weight of the entire catch and count a smaller sample of the catch.  This subsample’s diversity can then be used as a basis for the entire catch.  This saves time and effort on our part and still provides an accurate representation of what was in the net.  A few species are selected to be counted in their entirety, that includes all commercially important shrimp (brown shrimp, pink shrimp and white shrimp) and all red snapper.  We will also pull organisms into our subsample that are unique to the catch such as sharks, rays, skates etc.

Now I am not quite sure how the Challenger expedition determined where it would sample and when, perhaps if they saw something interesting they would simply drop their nets in the water, but with the Oregon II, the sampling sites are predetermined and the method to set up those sites is quite sophisticated.  In order to ensure that the cruise covers the majority of the Gulf of Mexico NOAA uses a method known as independent random sampling.  This method uses a computer program to randomly select stations based on depth data, and spatial area.  By choosing random samples independently, the scientists can rest assured that they haven’t purposefully singled out an area with “good fishing” or “bad fishing” and that the data they collect will represent a more accurate count of the actual fish populations in the Gulf of Mexico.